• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An adaptive generation method for free curve trajectory based on NURBS

    2014-09-06 10:49:44ZhuHaoLiuJingnanYangAnkangWangMulan
    關(guān)鍵詞:數(shù)控技術(shù)南京動(dòng)力學(xué)

    Zhu Hao Liu Jingnan Yang Ankang Wang Mulan

    (1School of Automation, Southeast University, Nanjing 210096, China)(2 Jiangsu Key Laboratory of Advanced Numerical Control Technology, Nanjing Institute of Technology, Nanjing 211167, China)

    ?

    An adaptive generation method for free curve trajectory based on NURBS

    Zhu Hao1,2Liu Jingnan1Yang Ankang1Wang Mulan2

    (1School of Automation, Southeast University, Nanjing 210096, China)(2Jiangsu Key Laboratory of Advanced Numerical Control Technology, Nanjing Institute of Technology, Nanjing 211167, China)

    To realize the high precision and real-time interpolation of the NURBS(non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.

    free curve; NURBS(non-uniform rational B-spline); sigmoid function; Adams algorithm

    The important target of modern CNC machining is free curve machining. Among numerous descriptions of free curve, with its accurate, unified descriptive and powerful shape control ability, the NURBS curve is set as the only description of geometrical shapes in the standard for the exchange of product model data (STEP) by the International Organization for Standardization (ISO)[1]. Most of current CNC systems, particularly domestic machines only support the basic function interpolation. Some of the domestic low-cost machines even only support linear and arc interpolation[2]. The free curve can only be approximated by large amounts of small segments by these machine tools. On the one hand, it increases the speed fluctuation while reducing the machining precision. On the other hand, it also lowers the machining speed. Hence, it is important and meaningful to research the NURBS curves interpolation.

    1 Machining Principle of the NURBS Curve

    1.1 Definition of the NURBS curve

    There are different descriptions of NURBS curves. The parameter description is one of the most common ones. The definition of ap-degree NURBS curve is shown as[3]

    (1)

    (2)

    1.2 Machining of the NRUBS curve

    The key process of machining a NURBS curve is interpolation. The principle is to calculate the three-dimensional coordinate feed value ΔX,ΔY,ΔZafter one interpolator cycleTaccording to the characteristics of the NURBS curveC(u) and current cutting point. The detailed steps are as follows: 1) Determining the model and the constraint of the cutter’s feedratev, accelerationaand jerkjbased on the NURBS curveC(u) and machine parameters. 2) Calculating the step value ΔSin the path domain according to the feedratevof each point in curveC(u). Calculating the position parameteruj+1after one interpolation cycleTin the parameter domain according to the current position parameterujand the step value ΔS. (3) Calculating the feed value ΔX, ΔY, ΔZin the path domain according to the position parameteruj+1in the parameter domain. In the first step, the feedrate is influenced by the curvature ofC(u). The feedrate drops where the curvature is large, otherwise the contour error will be brought in. In addition, the characteristics of acceleration and jerk affect the shock caused by the cutter and the calculation of the feedrate. Hence, a rational kinetic model can enhance the interpolation accuracy. In the second and third steps, the mapping between the path domain and the parameter domain needs to be calculated, so the higher-order derivation of the NURBS curve is needed. Therefore, the computing speed and the real-time performance can be promoted by a well-designed algorithm. In this paper, these topics are discussed.

    2 Kinetic Model Planning Based on Modified Sigmoid Function

    2.1 Basic requirements of the kinetic model

    As mentioned before, in addition to the characteristics of the machine itself, the speed and precision of interpolation also closely depend on tool path. When the curvature changes, the interpolation speed needs to be changed correspondingly. Therefore, how to adjust the feedrate based on tool path is a hot topic in the numerical control field. Generally speaking, the feedrate can reach the maximum value when the tool path is linear. When the radius of curvature increases, the federate decreases. Thus, it is necessary to focus on the continuous change of feedrate. Besides this, the research of Béarée et al.[4-5]shows that the soft shock is generated when acceleration and jerk are discontinuous. This means that the continuity of acceleration and jerk should also be considered.

    For a period tool path which consists of acceleration, uniform-speed and deceleration, the traditional feedrate model can be a linear model, an exponential model, a linear-quadratic model, an S-shape model and etc[6]. The S-shape model can also be divided into a seven-stage form, cubic polynomial form, and trigonometry function form. Refs. [7-8] showed that the feedrate or acceleration cannot be maintained continuously in the linear model, exponential model and linear-quadratic model; in the seven-stage S-shape model, feedrate and acceleration are continuous but not jerk. In the cubic polynomial S-shape model and the trigonometry function S-shape model, the acceleration and jerk are continuous, but the whole feedrate changing process should be separated into 15 stages with a complex algorithm. Based on the above mentioned research, we present a novel kinetic model based on the sigmoid function. In this model, the feedrate changing process is divided into only three stages, while the acceleration and jerk are continuous.

    2.2 The kinetic model

    The sigmoid function is a nonlinear function which is widely used in the artificial neural network field. Its definition is shown as

    (3)

    The sigmoid function and its first-, second-order derivative are continuous and derivable in the definitional domain. The profile of the sigmoid function is S-shape which is in accordance with the requirements of the feedrate model; however, the definitional domain contains a negative part because the time parameter cannot be described. For this reason, we design the modified sigmoid function to describe the kinetic model. In this model, the feedrate changing process is simply separated into three stages: acceleration, uniform-speed, and deceleration stage. The kinetic model is shown as

    (4)

    (5)

    (6)

    wherev(t),a(t),j(t) are the feedrate, acceleration and jerk, respectively;kis the proportionality coefficient;vmis the maximum value of the feedrate.t0-t1is the acceleration stage;t1-t2is the uniform-speed stage;t2-t3is the deceleration stage. The values oft0,t1,t2andt3are determined by the shape of manufacturing objects.t1=t2means that the processing only includes the acceleration and deceleration stage.

    From the kinetic model, we know thatt→∞ implies 1/(1+e-t)-0.5→1/2, e-t/(1+e-t)2→0 and 2e-2t/(1+e-t)3-e-t/(1+e-t)2→0. Actually, ift=10, then e-10/(1+e-10)2=4.539 5×10-5, 2e-2t/(1+e-t)3-e-t/(1+e-t)2=4.539 2×10-5. Therefore, if the value oftis greater than 10, the following conclusions can be drawn: 1)k=2vm; 2)v(t),a(t), andj(t)are all approximately continuous. The profile of this model is shown in Fig.1.

    Fig.1 The kinetic model based on Sigmoid function

    2.3 Constraint

    In the kinetic model, the maximum value of feedratevmis codetermined by chord errorε, the radius of curvaturerand interpolator cycleT. Ref.[9] gave the constraint which is shown as

    (7)

    Given the assumption that the chord error and interpolator cycle is fixed, the greater the radius of curvature, the higher the upper limit of feedrate.

    3 The Optimized Adams Algorithm

    As mentioned in section 2, the new position parameteruj+1after one interpolator cycle should be computed in the interpolation process according to the current position parameterujand feedratev(t) in the path domain. This process is usually realized by the Taylor series expansion. The second-order Taylor expansion formula is shown as

    (8)

    According to the definition of instantaneous feedrate,

    (9)

    The shortcoming of Taylor series expansion is that the Taylor high-order expansion is necessary for high precision. It means that the higher order derivative of NURBS curveC(u) needs to be calculated. This is a very complicated process, but reducing the order of expansion will lower the precision. To resolve the problem, we present an optimized Adams-formula-based algorithm which can fasten theuj+1calculation.

    The core concept of the Adams algorithm is to compute the current function value through the previousnsteps of the derivative values. The common Adams explicit formula is shown as

    37y′(xn-2)-9y′(xn-3))

    (10)

    wherehis the stepping. The truncation error of this formula isO(t5)[10].

    Applying this formula to interpolation, we can obtain

    (11)

    From Eq.(11), we know that the higher-order derivation can be avoided by using the Adams formula rather than the Taylor series expansion. However, there is still the first-order derivative in the formula. For this problem, we can replace the derivative with the difference quotient ofC(u).

    (12)

    Substituting Eqs.(12) and (9) into Eq.(11), we can obtain

    (13)

    For computing the position parameteruj+1, the previous several position parametersuj,uj-1,uj-2,… are needed, which means that this formula cannot be self-started. Other algorithms must be used to acquire the first several position parameters. The Eula formula or Runge-Kutta formula is the proper choice.

    4 Computation of the Feed Value

    After obtaining the position parameter in the parameter domainuj+1, the feed value in the path domain ΔX,ΔY,ΔZcan be computed. The steps of the feed value calculation are shown as follows.

    4.1 Computing knot span of tool position

    The NURBS curve is a type of piecewise parameter curve, so the first step is to determine the knot span in whichuj+1lies. We can use the linear or binary search to accomplish this task.

    4.2 Computing nonzero basis function

    From the De Boor-Cox recursion formula Eq.(2), we know that eachp-degree B-spline basis functionNi,p(u) is a linear combination of two (p-1)-degree basis functions. It means that we need to compute two product terms for one basis function. For example, assume thatp=2, 6 product terms need to be computed for 3 second-degree basis functions. 12 product terms need to be computed for 6 first-degree basis functions. That is to say, totally 18 product terms need to be computed for 3 second-degree basis functions, in which 9 kinds of low-degree basis functions are involved.

    According to the property of the B-spline basis function, we know that in any given knot span [ui,ui+1), at mostp+1 basis functions are nonzero. They are namedNi-p,p,…,Ni,p. So we can draw the relation schema of each degree basis function. For example,N1,2,N2,2,N3,2are 3 second-degree basis functions that we want to compute. The nonzero basis function is in the solid box. From the schema we know that the first and the lastp+1 nonzero basis functions are only related to one low-degree nonzero basis function. As shown by the dotted arrows, there are a large number of low-degree zero-value basis functions. It is not necessary to calculate them (shown in the dotted box). Focusing on 3 second-degree basis functions again, actually 6 product terms (involving three types of low-degree basis functions) need to be computed. Based on Fig.2, the simplified algorithm is described as follows.

    Assume that there arep+1p-degree nonzero B-spline basis functions,Ni-p+k,p(0≤k≤p), then

    (14)

    Fig.2 Relation schema of each degree basis

    Ifk=0 ork=p,Ni-p+k,pis the first or lastp-degree B-spline basis function. When the degree changes frompto 0, the first and last basis functions in every degree are abided by the above principle. According to Eq.(14), the times of computing low-degree basis functionNi,pwill be effectively decreased. The times of computing low-degree basis function in different degrees through the classical De Boor-Cox algorithm and the simplified algorithm are compared in Tab.1.

    Tab.1 Times of computing low-degree basis functions

    4.3 Computing tool path coordinate

    The NURBS curvesC(u) with weightwiand control pointsPican be obtained by substituting B-spline basis functionNi,p(u) computed by Eq.(14) into Eq.(1). According to the definition of parametric description, the coordinate value in the path domainX(uj+1),Y(uj+1),Z(uj+1) can be computed by

    (15)

    5 Simulation and Analysis

    In order to verify the proposed algorithm, the experiments are simulated by Matlab. The parameters of NURBS curve are as follows:p=2; control points areP0(1,2),P1(1.5,1),P2(3,3),P3(4,3.5),P4(5,3),P5(6.5,1),P6(7,2); knot vectorU={0,0,0,1/5,2/5,3/5,4/5,1,1,1}; weightW={1,1,1,1,1,1,1}. The interpolator path is shown in Fig.3.

    The machining parameters are given as follows: the interpolator cycleT=1 ms, the maximum value of feedratevm=4 mm/s, the initial feedratevs=0 mm/s, maximum chord errorε=1 μm. The feedrate can be computed through the kinetic model described by Eqs.(4) to (7). The feedrate-time profile is shown in Fig.4. Figs.3 and 4 show that the feedrate will slow down adaptively if the radius of curvature of tool path decreases. Fig.5 shows that the error is less than the maximum chord error and changes with the feedrate. From Eq.(13), the position para-

    Fig.3 NURBS interpolator path

    meteruand its stepping Δucan be computed. Their profiles are shown in Figs.6 and 7. These two figures indicate that the stepping of the parameter Δuwill also decrease if the radius of the curvature of the tool path reduces. Hence, the position parameter does not depend linearly on process time. Fig.8 shows that the jerk and the acceleration are continuous.

    Fig.4 Feedrate profile

    Fig.5 Error profile

    Fig.8 Acceleration and jerk profile

    The nonzero second-degree B-spline basis functionsNi,2can be computed based on Eq.(14). TheNi,2-uprofile is shown in Fig.9. Based on the computedNi,2, known weight and control points, the coordinate value in the path domainX(uj+1),Y(uj+1),Z(uj+1) can be computed by Eq.(15). According to these algorithms, the actual manufacture is tested by MD-3020 3d carving machine. The maximum cutting feedrate is 3 m/min. The speed of the main shaft is 2 000 r/min. The manufacture time is 2.54 s. The manufacture material is PVC. The manufacture process is shown in Fig.10.

    Fig.9 The Ni,2-u profile

    6 Conclusion

    The whole process of the NURBS curves machining is designed based on the present algorithms. The modifications are presented in terms of feedrate planning, position

    Fig.10 Manufacture processing

    parameter computing and B-spline basis function calculation. Through the modified algorithms, the calculation times can be reduced, and the calculation speed can be increased while ensuring precision. Therefore, it is feasible to apply these algorithms to actual systems.

    [1]Zhang Liyan, Bian Yuchao, Chen Hu, et al. Implementation of a CNC NURBS curve interpolator based on control of speed and precision [J].InternationalJournalofProductionResearch, 2009, 47(6):1505-1519.

    [2]Sekar M, Narayanan V N, Yang S-H. Design of jerk bounded feedrate with ripple effect for adaptive NURBS interpolator [J].TheInternationalJournalofAdvancedManufacturingTechnology, 2008, 37(5/6):545-552.

    [3]Peigl L, Tiller W.TheNURBSbook[M]. New York: Springer, 1995.

    [4]Béarée R, Olabi A. Dissociated jerk-limited trajectory applied to time-varying vibration reduction [J].RoboticsandComputer-IntegratedManufacturing, 2013, 29(2):444-453.

    [5]Lai J-Y, Lin K-Y, Tseng S-J. On the development of a parametric interpolator with confined chord error, feedrate, acceleration and jerk [J].TheInternationalJournalofAdvancedManufacturingTechnology, 2008, 37(1/2):104-121.

    [6]Yong T, Narayanaswami R. A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining [J].Computer-AidedDesign, 2003, 35(13):1249-1259.

    [7]Liu X B, Ahmad F, Yamazaki K, et al. Adaptive interpolation scheme for NURBS curves with the integration of machining dynamics [J].InternationalJournalofMachineToolsandManufacture, 2005, 45(4):433-444.

    [8]Du Daoshan, Liu Yadong, Yan Cunliang. An accurate adaptive parametric curve interpolator for NURBS curve interpolation [J].TheInternationalJournalofAdvancedManufacturingTechnology, 2007, 32(9/10):999-1008.

    [9]Zhang Deli, Zhou Laishui. Intelligent NURBS interpolator based on the adaptive feedrate control [J].ChineseJournalofAeronautics, 2007, 20(5):469-474.

    [10]Atkinson K, Han W M.Elementarynumericalanalysis[M]. Beijing: Post and Telecom Press, 2009.(in Chinese)

    基于NURBS模型的自由曲線加工軌跡自適應(yīng)生成方法

    朱 昊1,2劉京南1楊安康1汪木蘭2

    (1東南大學(xué)自動(dòng)化學(xué)院,南京210096)(2南京工程學(xué)院先進(jìn)數(shù)控技術(shù)江蘇省重點(diǎn)實(shí)驗(yàn)室,南京211167)

    為實(shí)現(xiàn)NURBS曲面快速高精度實(shí)時(shí)差補(bǔ),提出了基于修正型sigmoid函數(shù)的動(dòng)力學(xué)模型,給出了最大速度、弓高誤差、加工曲線的曲率半徑和插補(bǔ)周期之間的約束條件.該模型在滿足jerk、加速度、速度均連續(xù)的前提下,將常用的三次多項(xiàng)式S型以及三角多項(xiàng)式S型動(dòng)力學(xué)模型的15個(gè)分段數(shù)減少至3個(gè).在此基礎(chǔ)上,提出采用差商代替導(dǎo)數(shù)的優(yōu)化Adams算法,避免了常用的Taylor展開所遇到的高階求導(dǎo)計(jì)算,求取了差補(bǔ)周期參數(shù).最后通過(guò)減少低次零值B樣條基函數(shù)的計(jì)算,對(duì)De Boor-Cox遞推算法進(jìn)行了簡(jiǎn)化設(shè)計(jì),提出了精簡(jiǎn)型De Boor-Cox算法,縮減了計(jì)算量.仿真分析表明,所提算法可根據(jù)加工路徑有效控制進(jìn)給速度,在保證加工精度的同時(shí),使計(jì)算量得到減少,提高了運(yùn)算速度.實(shí)驗(yàn)結(jié)果顯示本加工方法可以正確計(jì)算目標(biāo)參數(shù),并適合應(yīng)用于實(shí)際加工系統(tǒng).

    自由曲線; NURBS; sigmoid函數(shù); Adams算法

    TP237

    s:The Doctoral Fund of Ministry of Education of China (No. 20090092110052), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (No. 12KJA460002), College Industrialization Project of Jiangsu Province (No. JHB2012-21).

    :Zhu Hao, Liu Jingnan, Yang Ankang, et al. An adaptive generation method for free curve trajectory based on NURBS[J].Journal of Southeast University (English Edition),2014,30(3):296-301.

    10.3969/j.issn.1003-7985.2014.03.007

    10.3969/j.issn.1003-7985.2014.03.007

    Received 2014-03-16.

    Biographies:Zhu Hao(1980—), male, graduate, associate professor; Liu Jingnan(corresponding author), male, doctor, processor, liujn@seu.edu.cn.

    猜你喜歡
    數(shù)控技術(shù)南京動(dòng)力學(xué)
    南京比鄰
    《空氣動(dòng)力學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    “南京不會(huì)忘記”
    面向智能制造的數(shù)控技術(shù)教學(xué)改革與探索
    數(shù)控技術(shù)在礦山機(jī)械制造中的應(yīng)用探討
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會(huì) 又在大南京
    基于隨機(jī)-動(dòng)力學(xué)模型的非均勻推移質(zhì)擴(kuò)散
    TNAE的合成和熱分解動(dòng)力學(xué)
    C36團(tuán)簇生長(zhǎng)動(dòng)力學(xué)及自由能
    人妻少妇偷人精品九色| 在线观看免费视频日本深夜| 免费av不卡在线播放| 亚洲自拍偷在线| 亚洲国产欧美人成| 好男人在线观看高清免费视频| 精品久久久久久成人av| .国产精品久久| 黄片wwwwww| 舔av片在线| 99在线视频只有这里精品首页| 精品久久久久久成人av| 在线a可以看的网站| 黄片wwwwww| 精品免费久久久久久久清纯| 日本黄色片子视频| 日韩国内少妇激情av| 国产亚洲5aaaaa淫片| 深夜精品福利| 成人av在线播放网站| 99热这里只有是精品50| 日韩欧美 国产精品| 亚洲自偷自拍三级| 久久国内精品自在自线图片| 日本黄色片子视频| 一级毛片我不卡| 中文字幕av成人在线电影| 亚洲精品日韩av片在线观看| 国产精品国产三级国产av玫瑰| 深爱激情五月婷婷| 亚洲av免费高清在线观看| 又爽又黄无遮挡网站| 麻豆一二三区av精品| 免费无遮挡裸体视频| 国产成人精品久久久久久| 亚洲乱码一区二区免费版| 99热只有精品国产| 天美传媒精品一区二区| 禁无遮挡网站| 青春草国产在线视频 | 禁无遮挡网站| 午夜福利成人在线免费观看| 亚洲在线自拍视频| 亚洲无线观看免费| 又粗又爽又猛毛片免费看| 草草在线视频免费看| a级毛片a级免费在线| 亚洲va在线va天堂va国产| 欧美丝袜亚洲另类| 亚洲欧美精品综合久久99| 大又大粗又爽又黄少妇毛片口| 亚洲精华国产精华液的使用体验 | 久久久精品欧美日韩精品| 嫩草影院新地址| 97超视频在线观看视频| 国产亚洲91精品色在线| 亚洲国产精品成人综合色| 美女cb高潮喷水在线观看| 国产69精品久久久久777片| 十八禁国产超污无遮挡网站| 亚洲国产精品久久男人天堂| 亚洲国产精品国产精品| 天堂网av新在线| 亚洲国产精品国产精品| 成人欧美大片| 日韩国内少妇激情av| 高清午夜精品一区二区三区 | 在线观看午夜福利视频| 三级毛片av免费| 免费在线观看成人毛片| 精品99又大又爽又粗少妇毛片| 又黄又爽又刺激的免费视频.| 亚洲欧美成人精品一区二区| 欧美区成人在线视频| 欧美又色又爽又黄视频| 亚洲18禁久久av| av在线播放精品| 国产v大片淫在线免费观看| 欧美激情久久久久久爽电影| 精品久久久久久久久亚洲| 丝袜美腿在线中文| 国产成人a区在线观看| 永久网站在线| 国产精品日韩av在线免费观看| 亚洲成人久久爱视频| a级一级毛片免费在线观看| 神马国产精品三级电影在线观看| 狠狠狠狠99中文字幕| 老司机福利观看| 99久久九九国产精品国产免费| 最新中文字幕久久久久| 插阴视频在线观看视频| 国产在线男女| 国产精品福利在线免费观看| 亚洲高清免费不卡视频| 国产精品野战在线观看| 男人舔奶头视频| 18禁在线播放成人免费| 国产精品久久久久久久久免| 在线观看免费视频日本深夜| 波多野结衣高清作品| 国产真实乱freesex| 看黄色毛片网站| 国产精品福利在线免费观看| 久久韩国三级中文字幕| 国产成人a区在线观看| 久久久久久九九精品二区国产| 成年女人永久免费观看视频| 亚洲欧美精品综合久久99| 一个人看的www免费观看视频| 舔av片在线| 国产视频内射| 少妇熟女aⅴ在线视频| 热99在线观看视频| 国产老妇伦熟女老妇高清| 99久久精品一区二区三区| 日日啪夜夜撸| 国模一区二区三区四区视频| 久久久欧美国产精品| 欧美日韩在线观看h| 久久韩国三级中文字幕| 国产伦精品一区二区三区四那| 亚洲真实伦在线观看| 亚洲七黄色美女视频| 99久久人妻综合| 国产午夜福利久久久久久| 99久久中文字幕三级久久日本| 精品欧美国产一区二区三| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 最后的刺客免费高清国语| 成人综合一区亚洲| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 国产日韩欧美在线精品| 亚洲国产精品sss在线观看| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 五月伊人婷婷丁香| 国产淫片久久久久久久久| 亚洲丝袜综合中文字幕| 少妇被粗大猛烈的视频| 99在线视频只有这里精品首页| 亚洲成av人片在线播放无| 亚洲精品成人久久久久久| 能在线免费看毛片的网站| 黄色欧美视频在线观看| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 精品少妇黑人巨大在线播放 | 久久6这里有精品| 日韩欧美国产在线观看| 久久人人精品亚洲av| 亚洲精品影视一区二区三区av| 国产在线精品亚洲第一网站| 美女大奶头视频| 日韩高清综合在线| 国产伦一二天堂av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 免费看av在线观看网站| 人体艺术视频欧美日本| 欧美性感艳星| 内地一区二区视频在线| 亚洲激情五月婷婷啪啪| 亚洲av第一区精品v没综合| 又爽又黄a免费视频| 日韩一本色道免费dvd| 69人妻影院| 男女那种视频在线观看| av国产免费在线观看| 日韩高清综合在线| 两性午夜刺激爽爽歪歪视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 麻豆久久精品国产亚洲av| 我要看日韩黄色一级片| 国产在线精品亚洲第一网站| 看非洲黑人一级黄片| 男人和女人高潮做爰伦理| 国产伦理片在线播放av一区 | 免费看日本二区| 女同久久另类99精品国产91| 美女xxoo啪啪120秒动态图| 别揉我奶头 嗯啊视频| 人妻夜夜爽99麻豆av| 青青草视频在线视频观看| 久久精品国产鲁丝片午夜精品| 国产乱人视频| 99riav亚洲国产免费| 国产精品人妻久久久久久| 26uuu在线亚洲综合色| 午夜精品在线福利| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 国产v大片淫在线免费观看| 精品熟女少妇av免费看| 亚洲av一区综合| 国产高清三级在线| 黄片无遮挡物在线观看| 成人av在线播放网站| www.av在线官网国产| 在线免费观看的www视频| 99热全是精品| 国产女主播在线喷水免费视频网站 | 欧美又色又爽又黄视频| 性色avwww在线观看| 国产亚洲精品av在线| 丰满的人妻完整版| 蜜桃亚洲精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 欧美激情在线99| 成人一区二区视频在线观看| 丰满的人妻完整版| 久久久国产成人精品二区| 永久网站在线| 中国美女看黄片| 在线播放无遮挡| 免费电影在线观看免费观看| 欧美极品一区二区三区四区| 欧美日本亚洲视频在线播放| 高清毛片免费观看视频网站| 国产免费男女视频| a级毛片免费高清观看在线播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品专区久久| 欧美xxxx性猛交bbbb| 婷婷精品国产亚洲av| 久久精品综合一区二区三区| 久久久a久久爽久久v久久| 国产三级在线视频| 国产成人aa在线观看| 国语自产精品视频在线第100页| 成年女人永久免费观看视频| 成人美女网站在线观看视频| 亚洲av男天堂| 午夜精品国产一区二区电影 | 亚洲最大成人手机在线| av天堂中文字幕网| 国产高清有码在线观看视频| 国产精品野战在线观看| 精品午夜福利在线看| 特大巨黑吊av在线直播| 欧美日本亚洲视频在线播放| 国产精品一区www在线观看| 婷婷精品国产亚洲av| 成人漫画全彩无遮挡| 国产成人a区在线观看| 少妇被粗大猛烈的视频| 国产单亲对白刺激| 亚洲精品亚洲一区二区| 国产片特级美女逼逼视频| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 国产色爽女视频免费观看| 亚洲国产精品sss在线观看| 国产人妻一区二区三区在| 三级经典国产精品| 国产精品女同一区二区软件| 亚洲人成网站在线观看播放| 哪里可以看免费的av片| 精品久久久久久久久久免费视频| 欧美日韩一区二区视频在线观看视频在线 | 日本撒尿小便嘘嘘汇集6| 全区人妻精品视频| 狠狠狠狠99中文字幕| 看黄色毛片网站| 亚洲精品色激情综合| 国产精品蜜桃在线观看 | 99久久精品国产国产毛片| 日本熟妇午夜| 18禁在线播放成人免费| 日韩欧美在线乱码| 久久久久久国产a免费观看| 国产乱人偷精品视频| 国产精品久久久久久亚洲av鲁大| 欧美色视频一区免费| 人人妻人人澡人人爽人人夜夜 | 国产 一区精品| 简卡轻食公司| 亚洲欧美精品自产自拍| 禁无遮挡网站| 高清午夜精品一区二区三区 | 99久久久亚洲精品蜜臀av| 中国美女看黄片| 亚洲最大成人中文| 搡老妇女老女人老熟妇| 欧美人与善性xxx| 成年女人永久免费观看视频| 成人欧美大片| 国产成人福利小说| 亚洲av成人精品一区久久| 搡女人真爽免费视频火全软件| 夜夜夜夜夜久久久久| 亚洲成人久久性| 国产成人影院久久av| 伦理电影大哥的女人| 欧美一区二区亚洲| 日韩欧美在线乱码| 噜噜噜噜噜久久久久久91| 国内精品久久久久精免费| 国产精品久久久久久精品电影| 99久国产av精品| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 欧美一区二区精品小视频在线| 国产精华一区二区三区| 精品熟女少妇av免费看| 久久九九热精品免费| 三级男女做爰猛烈吃奶摸视频| 亚洲七黄色美女视频| 欧美日韩国产亚洲二区| 青春草亚洲视频在线观看| 国产精品电影一区二区三区| 哪里可以看免费的av片| 亚洲丝袜综合中文字幕| 精品久久国产蜜桃| 精品久久久久久久人妻蜜臀av| 免费不卡的大黄色大毛片视频在线观看 | 嫩草影院新地址| 精品久久久噜噜| 婷婷亚洲欧美| 国产精品野战在线观看| 不卡一级毛片| 亚洲精品粉嫩美女一区| 亚洲欧美中文字幕日韩二区| 中文字幕av在线有码专区| 99国产极品粉嫩在线观看| 99国产精品一区二区蜜桃av| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 18禁在线播放成人免费| 亚洲国产精品国产精品| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 亚洲人成网站高清观看| 人人妻人人澡欧美一区二区| av卡一久久| 少妇的逼水好多| 久久亚洲精品不卡| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久,| 国产久久久一区二区三区| 精品久久久久久久久亚洲| 婷婷色av中文字幕| 国产一区二区在线观看日韩| 国产精品久久电影中文字幕| 国产伦精品一区二区三区视频9| 亚洲av不卡在线观看| 成人三级黄色视频| 女的被弄到高潮叫床怎么办| 国产不卡一卡二| 精品日产1卡2卡| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 日韩中字成人| 亚洲图色成人| 亚洲av男天堂| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 99热精品在线国产| 国产一区二区亚洲精品在线观看| 18+在线观看网站| 色综合站精品国产| 中文字幕av在线有码专区| 久久久精品94久久精品| 亚洲无线观看免费| av在线播放精品| 久久久久国产网址| 性插视频无遮挡在线免费观看| 伦精品一区二区三区| 久久综合国产亚洲精品| 黄色配什么色好看| 18禁在线无遮挡免费观看视频| 波野结衣二区三区在线| 久久久久九九精品影院| 日本黄色视频三级网站网址| 日本欧美国产在线视频| 国产午夜福利久久久久久| 午夜精品在线福利| 日韩av不卡免费在线播放| 少妇人妻精品综合一区二区 | 激情 狠狠 欧美| 日韩成人伦理影院| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| av卡一久久| 欧美最新免费一区二区三区| 亚洲精品国产av成人精品| 亚洲国产高清在线一区二区三| 好男人视频免费观看在线| 亚洲经典国产精华液单| 性色avwww在线观看| 成年女人看的毛片在线观看| 精品人妻熟女av久视频| 自拍偷自拍亚洲精品老妇| 干丝袜人妻中文字幕| av免费观看日本| 成年av动漫网址| 国产精品av视频在线免费观看| 国产av一区在线观看免费| 丰满的人妻完整版| 成人综合一区亚洲| 激情 狠狠 欧美| 欧美+日韩+精品| 国产高清有码在线观看视频| 日本成人三级电影网站| 老司机影院成人| 男的添女的下面高潮视频| 在线免费观看不下载黄p国产| 最好的美女福利视频网| 欧美极品一区二区三区四区| 高清日韩中文字幕在线| 国产精品电影一区二区三区| 欧美性感艳星| 网址你懂的国产日韩在线| 一级毛片我不卡| 国产成人精品久久久久久| 人妻少妇偷人精品九色| 亚洲欧美精品专区久久| 亚洲不卡免费看| 国产精品一及| 99热精品在线国产| 偷拍熟女少妇极品色| 国内精品一区二区在线观看| 亚洲精品久久国产高清桃花| 12—13女人毛片做爰片一| 秋霞在线观看毛片| av国产免费在线观看| 色尼玛亚洲综合影院| 深夜精品福利| 联通29元200g的流量卡| 我的女老师完整版在线观看| 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 午夜福利成人在线免费观看| 悠悠久久av| 国模一区二区三区四区视频| 看非洲黑人一级黄片| 国产精品久久久久久精品电影小说 | 岛国在线免费视频观看| 国产精品野战在线观看| 黑人高潮一二区| 中文字幕免费在线视频6| 人人妻人人澡欧美一区二区| 亚洲欧美中文字幕日韩二区| 高清午夜精品一区二区三区 | 国产精品.久久久| 日韩成人av中文字幕在线观看| 中国美白少妇内射xxxbb| a级毛片a级免费在线| a级一级毛片免费在线观看| av在线老鸭窝| 亚洲一级一片aⅴ在线观看| 成人欧美大片| 嫩草影院新地址| 精品不卡国产一区二区三区| 国产淫片久久久久久久久| 国产亚洲5aaaaa淫片| 欧美极品一区二区三区四区| 亚洲精品色激情综合| 少妇的逼水好多| 亚洲七黄色美女视频| 美女脱内裤让男人舔精品视频 | 国产精品久久久久久久电影| 午夜激情福利司机影院| 国内揄拍国产精品人妻在线| 午夜精品一区二区三区免费看| 噜噜噜噜噜久久久久久91| 黄色一级大片看看| 日韩亚洲欧美综合| 2021天堂中文幕一二区在线观| 蜜桃久久精品国产亚洲av| 亚洲国产欧美在线一区| 欧美日韩国产亚洲二区| 日韩欧美精品免费久久| 男人舔奶头视频| 亚洲人成网站在线播| 黑人高潮一二区| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 日韩人妻高清精品专区| 老司机福利观看| 美女国产视频在线观看| 精品久久久久久久人妻蜜臀av| 亚洲七黄色美女视频| 亚洲国产高清在线一区二区三| 热99re8久久精品国产| 26uuu在线亚洲综合色| 精品久久久噜噜| 偷拍熟女少妇极品色| 在线a可以看的网站| 国产成人aa在线观看| 3wmmmm亚洲av在线观看| 国内精品久久久久精免费| 免费大片18禁| 插逼视频在线观看| 亚洲成a人片在线一区二区| 99久久精品热视频| 赤兔流量卡办理| 亚洲欧美日韩卡通动漫| 亚洲成人久久性| 一级av片app| 99久久中文字幕三级久久日本| 午夜免费男女啪啪视频观看| 男女视频在线观看网站免费| 精品人妻偷拍中文字幕| 蜜桃久久精品国产亚洲av| 九色成人免费人妻av| 日韩,欧美,国产一区二区三区 | 成人一区二区视频在线观看| 日日干狠狠操夜夜爽| 亚洲一区二区三区色噜噜| 免费看av在线观看网站| 亚洲精品色激情综合| 成人永久免费在线观看视频| 国产成人影院久久av| 日产精品乱码卡一卡2卡三| 亚洲国产精品国产精品| 噜噜噜噜噜久久久久久91| .国产精品久久| 午夜激情欧美在线| www.色视频.com| 18+在线观看网站| 欧美成人一区二区免费高清观看| 国产精品久久久久久亚洲av鲁大| 高清在线视频一区二区三区 | 91久久精品国产一区二区成人| 亚洲成人久久性| 老司机福利观看| АⅤ资源中文在线天堂| 大香蕉久久网| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av香蕉五月| 成人午夜精彩视频在线观看| 18禁在线无遮挡免费观看视频| 欧美+亚洲+日韩+国产| 99久久人妻综合| 狂野欧美激情性xxxx在线观看| 国产精品一区二区在线观看99 | 国产精品久久久久久亚洲av鲁大| 久久综合国产亚洲精品| 一个人观看的视频www高清免费观看| 国语自产精品视频在线第100页| 亚洲精品国产av成人精品| 国产精品一区二区性色av| 国产精品一区www在线观看| 日产精品乱码卡一卡2卡三| 欧美成人精品欧美一级黄| 久久99热这里只有精品18| 国产高清三级在线| 色综合站精品国产| 欧美激情国产日韩精品一区| 欧美在线一区亚洲| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| 国产爱豆传媒在线观看| 国产日本99.免费观看| eeuss影院久久| 高清毛片免费看| 波多野结衣高清作品| 91精品一卡2卡3卡4卡| 成人午夜高清在线视频| 国产精品.久久久| 97热精品久久久久久| 亚洲人成网站在线播放欧美日韩| 美女cb高潮喷水在线观看| 精品熟女少妇av免费看| 久99久视频精品免费| 久久99精品国语久久久| 极品教师在线视频| 九九久久精品国产亚洲av麻豆| 国产综合懂色| 国产高清视频在线观看网站| 日韩一区二区视频免费看| 99九九线精品视频在线观看视频| 岛国毛片在线播放| 亚洲va在线va天堂va国产| 91久久精品电影网| 国产视频内射| 久久精品夜夜夜夜夜久久蜜豆| 老师上课跳d突然被开到最大视频| 亚洲18禁久久av| 在线国产一区二区在线| 国产高清有码在线观看视频| 欧美日韩综合久久久久久| 国产淫片久久久久久久久| av在线观看视频网站免费| 欧美成人免费av一区二区三区| 久久久成人免费电影| 国产精品人妻久久久久久| 亚洲最大成人手机在线| 一区福利在线观看| 久久久久免费精品人妻一区二区| 好男人在线观看高清免费视频| 搡女人真爽免费视频火全软件| 国产伦理片在线播放av一区 | 成人一区二区视频在线观看| 一区二区三区免费毛片| 亚洲乱码一区二区免费版| 日韩大尺度精品在线看网址| 亚洲精品影视一区二区三区av| 黄片无遮挡物在线观看| 可以在线观看毛片的网站| 国模一区二区三区四区视频| 日本色播在线视频| 人人妻人人看人人澡| 免费观看的影片在线观看| avwww免费| 国产成人一区二区在线| 久久久国产成人免费| 久久婷婷人人爽人人干人人爱| 欧美激情国产日韩精品一区| 最近2019中文字幕mv第一页| 爱豆传媒免费全集在线观看|