• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Early-stage Internet traffic identification based on packet payload size

    2014-09-06 10:49:44WuTongHanZhenWangWeiPengLizhi
    關(guān)鍵詞:網(wǎng)絡(luò)應(yīng)用有效載荷網(wǎng)絡(luò)流量

    Wu Tong Han Zhen Wang Wei Peng Lizhi

    (1School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China)(2Provincial Key Laboratory for Network Based Intelligent Computing, University of Jinan, Jinan 250022, China)

    ?

    Early-stage Internet traffic identification based on packet payload size

    Wu Tong1Han Zhen1Wang Wei1Peng Lizhi2

    (1School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China)(2Provincial Key Laboratory for Network Based Intelligent Computing, University of Jinan, Jinan 250022, China)

    In order to classify the Internet traffic of different Internet applications more quickly, two open Internet traffic traces, Auckland Ⅱ and UNIBS traffic traces, are employed as study objects. Eight earliest packets with non-zero flow payload sizes are selected and their payload sizes are used as the early-stage flow features. Such features can be easily and rapidly extracted at the early flow stage, which makes them outstanding. The behavior patterns of different Internet applications are analyzed by visualizing the early-stage packet size values. Analysis results show that most Internet applications can reflect their own early packet size behavior patterns. Early packet sizes are assumed to carry enough information for effective traffic identification. Three classical machine learning classifiers, i.e.,the naive Bayesian classifier, naive Bayesian trees, and the radial basis function neural networks, are used to validate the effectiveness of the proposed assumption. The experimental results show that the early stage packet sizes can be used as features for traffic identification.

    pattern recognition; network measurement; traffic classification; traffic feature

    With the explosion of Internet traffic, an accurate traffic classification has become progressively important for network management (e.g., deploying quality-of-service-aware mechanisms, bandwidth budget management, and intrusion detection). Two effective classical techniques are used under traditional network conditions: port-based and payload-based methods. However, these traditional techniques are becoming ineffective for the modern Internet because of dynamic port numbers and encryption techniques. Machine learning techniques introduced by traffic classification research have proven to be promising techniques in recent years[1-4]. Machine learning-based traffic classification techniques are effective in modern traffic classification because they can identify traffic according to macro-patterns instead of micro-features, especially for cases that traditional techniques suffer from. Many supervised and unsupervised machine learning algorithms have been successfully applied in traffic classification in the past few years. Moore and his research group have made significant contributions in this area[5]. They first built a traffic classification data set in 2005 based on 248 statistical features. They used Bayesian analysis techniques[6]and Bayesian neural networks[7]in traffic classification, and achieved high identification accuracies. Este et al.[8]studied the information stability carried by traffic flow features at the packet level, including packet size, round-trip time (RTT), location and inter-arrival time (IAT). The packet size provides the most significant contribution in discriminating application protocols. They also proposed a support vector machine (SVM) based classification frame, which achieved high classification accuracies on three publicly released data sets[9]. Li et al.[10-11]also used SVM. Crotti et al.[12]proposed protocol fingerprinting, which was a novel statistical method[12]. Du et al.[13]used thek-nearest neighbors algorithm as the classifier integrated with a binary particle swarm optimization algorithm. They constructed a multistage traffic classifier[14]. Unsupervised learning techniques have also attracted much research attention. Bernaille et al.[15]stated that a supervised learning model should be based on a pre-labeled set of samples. They also stated that an unsupervised learning was appropriate for traffic classification because this type did not rely on pre-defined classes. Erman et al.[16]usedK-means and density-based spatial clustering of applications with noise clustering algorithms to find traffic patterns. They proposed a semi-supervised traffic classification model that found and mapped traffic clusters to applications by using ground truths[17]. Other machine learning techniques, such as the Gaussian mixed model[18]and flexible neural trees[19], were also applied in traffic classification.

    Early-stage traffic identification has drawn considerable interest from the research community in recent years[20]. Most traditional machine learning-based traffic classification techniques use an instance’s statistical features to identify traffic. In real cases, classifying Internet traffic when they have ended is useless. Therefore, many researchers have turned to finding effective models that are able to identify early-stage Internet traffic. In 2009, Este et al.[8]proved that early-stage packets of an Internet flow can carry enough information for traffic classification. They analyzed RTT, packet size, IAT, and packet direction of early-stage packets. Packet size was the most effective feature for early-stage classifications. In 2008, Huang et al.[21]studied the early-stage application characteristics and used them for effective classification. They recently extracted early-stage traffic features by analyzing the negotiation behaviors of different applications. They applied these features to machine learning-based classifiers with high performances[22]. Hullr et al.[23]proposed an automatic machine learning-based method that consumes limited computational and memory resources for early-stage P2P traffic identification. Dainotti et al.[24]constructed highly effective hybrid classifiers and applied a hybrid feature extraction method to early-stage traffic classification. Nguyen et al.[25]used statistical features from sub-flows for timely voice-over-Internet protocol traffic identification. A sub-flow is a small number of the most recent packets taken at any point in a flow’s lifetime. Hence, they made the early stage “timely.”

    In this study, the payload sizes of the eight earliest non-zero packets are used as the early-stage flow features. First, the packet payload size is directly extracted from its header without any extra computation. Secondly, the payload size is the most important packet-level feature with the lowest network environment correlation. Other packet-level features (e.g., RTT and IAT) heavily depend on the network environment. The application negotiation procedure is the main factor that determines the payload size.First, the behavior patterns of different Internet applications are analyzed by visualizing these early packet size values. This study employs two open Internet traffic traces, namely Auckland Ⅱ and UNIBS traffic traces. The phenomenon that most Internet applications show their own early-stage packet size behavior patterns is found. It is assumed that early packet sizes carry enough information for effective traffic identification. Three classical machine learning classifiers are applied to our validation experiments. The early stage packet sizes are used as effective traffic identification features.

    1 Data Sets

    Two open Internet traffic data sets are employed in this study: Auckland Ⅱ captured in New Zealand in 2000 and UNIBS captured in Italy in 2009. The two data sets are selected to analyze and validate the early-stage Internet traffic packet size features.

    1.1 Auckland traffic traces

    Auckland Ⅱ is a collection of long GPS-synchronized traces obtained by using a pair of DAG 2 cards at the University of Auckland. This data set is available in Ref.[26]. From November 1999 to July 2000, 85 trace files were captured. Most traces were targeted at 24-hour runs. However, hardware failures resulted in significantly shorter traces. Two trace files captured on Feb.14, 2000 (i.e., 20000214-185536-0.pcap and 20000214-185536-1.pcap) are selected. The traces included only the header bytes with a maximum amount of 64 bytes for each frame. The application payload was fully removed. All IP addresses were used with anonymity by using the Crypto-Pan AES encryption. The header traces were captured with a GPS-synchronized mechanism by using a DAG3.2E card connected to a 100 Mbit/s Ethernet hub that interconnects the University’s firewall to the border router.

    Deep packet inspection tools are invalid for obtaining ground truths because the application payloads are not recorded in Auckland Ⅱ. The only way to obtain the original application type is to use port numbers. In this study, only the transmission control protocol (TCP) case is used because the TCP is the predominant transport layer protocol. Each flow is assigned to the server port-identified class. Eight main packet types are selected from the Auckland Ⅱ traces and filter “mice flows” with no more than eight packets with payload. All selected types and their instance and total byte distributions are listed in Tab.1.

    Tab.1 Selected types of Auckland Ⅱ trace

    TypeNumberofinstancesTotalbytesftp251136241ftp-data4635260804http23721139421961imap19386455pop349898699smtp26021230528ssh237149502telnet3721171

    1.2 UNIBS traffic traces

    The UNIBS is another open traffic trace developed by Prof. F. Gringoli and his research team. This data set is available in Ref.[27]. They developed a useful system named GT[28]to apply ground truths of captured Internet traffic. The traces were collected from the University of Brescia campus network’s edge router for three consecutive working days (Sept.30, Oct.1, and Oct.2, 2009). These traces were composed of traffic generated by a set of 20 workstations that run the GT client daemon. Traffic is collected by running Tcpdump[29]on the faculty’s router. The router was a dual Xeon Linux box that connected the network to the Internet through a dedicated 100 Mbit/s uplink. In UNIBS, 99% are TCP flows. Hence, the research reuses the TCP flows in this data set. The UNIBS traces record each captured flow’s application information by using GT. The application ground truths are obtained by using both TCP port numbers and GT records. Eight main packet types are chosen in UNIBS (see Tab.2). Two popular P2P applications included in this data set (i.e., BitTorrent and eDonkey) are recorded by GT. Skype is also selected as an import Internet application. Flows with no more than eight packets of payload were filtered. Each type’s instance and total byte distributions are listed in Tab.2.

    Tab.2 Selected types of UNIBS traces

    TypeNumbersofinstancesTotalbytesbittorrent35716393487edonkey379241587http25729107342346imap327860226pop324734292419skype801805453smtp12043566ssh2339456

    2 Feature Analysis Using Visualization

    In this study, the paper analyzes the effectiveness of the early-stage packet size features by using the visualization method. The research selects the eight earliest non-zero payload packets for each TCP traffic instance in both the Auckland Ⅱ and UNIBS traces. The transport layer payload sizes of these packets are used as features. As stated in Section 1, the traffic samples whose number of non-zero payload size packets is less than eight were filtered as mice flow and were not taken into account. Four scatters for both the Auckland Ⅱ and UNIBS traces are drawn. The first one is the payload size view of packets 1 and 2. The second one is the payload size view of packets 3 and 4, and so forth. A logarithmic scale is used for both horizontal and vertical axes in these scatters. The horizontal axis represents the former packet’s payload size. The corresponding vertical axis represents that of the latter packet (e.g., the horizontal axis of Fig.1 represents the payload size of packet 1 and the vertical axis represents that of packet 2). We visualize the early-stage payload size features and preliminarily validate these features’ effectiveness by using the scale.

    The visualization results of Auckland Ⅱ traces are shown in Fig.1. All traffic samples are centralized in a few values for the first packet’s payload size (see Fig.1).

    (a)

    (b)

    (c)

    (d)

    The second packet also does not scatter on many values for the payload size. Hence, making a distinction between traffic types is relatively difficult. Therefore, the first and the second packets are unsuitable for traffic pattern recognition in this data set. Most types show their unique patterns in Figs.1(b) to (d). Most hypertext transfer protocol (HTTP) instances congregate on the top-right corner of these figures as the dominant traffic type. Most HTTP sessions carry relatively heavy payloads from the third packet. Many Internet applications are layered on the HTTP protocol (e.g., Internet streaming media and Web mail). This structure causes various HTTP traffic patterns. Some HTTP instance scatter is observed on different areas in Figs.1(b) to (d). Another important type in the Auckland traces is the simple mail transfer protocol (SMTP). In the same figures, SMTP show a different behavior pattern. Most SMTP instances cluster at the middle areas and they are represented by the cross area in each figure. The POP3 instances are fewer than that of the SMTP. Most POP3 instances cluster in Figs.1(b) and (c). However, POP3 does not create a clear cluster in Fig.1(d). POP3 does not have its clear pattern from packet 7.

    An interesting phenomenon, which we called the “12-byte size packet” phenomenon, is observed in Fig.1. Many packets have a payload size of 12 bytes despite their traffic types. We cannot explain why various traffic kinds generated excessive 12-byte size packets. The reasons behind this phenomenon are difficult to discover without the payload content information in the traffic trace.

    The UNIBS trace visualization results are shown in Fig.2. In general, various kinds of traffic in the UNIBS data set do not make clear clusters like those in the Auckland Ⅱ data set. The main traffic types are still easily distinguished from each other. Some characteristics that are easily observed from these figures are in accordance with Fig.2. First, packets 1 and 2 in Fig.2(a) show few payload size values. Furthermore, the traffic behavior patterns of packets 1 and 2 in the UNIBS trace are simpler than those in the Auckland Ⅱ trace. Secondly, HTTP also occupies the top-right corners of the views of packets 3 and 4, packets 5 and 6, and packets 7 and 8. The pattern is in accordance with the Auckland Ⅱ trace attribute. As P2P traffic types, BitTorrent and eDonkey have a considerable number of instances in the UNIBS trace. These two P2P applications do not show clear behavior patterns in the visualization views except in packets 5 and 6. Some BitTorrent and eDonkey instances mix with the HTTP instances in Figs.2(c) and (d). However, these instances clearly cluster together in Fig.2(b). The P2P traffic has its own early-stage packet payload size characteristics.

    (a)

    (b)

    (c)

    (d)

    3 Classification Experiments

    The naive Bayesian classifier (NB), naive Bayesian classification trees (NBTree), and radial basis function neural networks (RBF) are applied for classification tests to validate the effectiveness of the early-stage packet size features in traffic classification. Five-folder crossover validation is used on both Auckland Ⅱ and UNIBS data sets. Each data set is uniformly split into five subsets. The first subset is used for the testing set. The other four subsets are used for the training set. The second subset is used for the testing set and so forth. Each time, the NB, NBTree, and RBF are applied, and their classification results are compared.

    3.1 Performance measures

    The confusion matrix is the classifier measurement basis in which rows denote the actual instance class and the columns denote the predicted class. A typical binary classification confusion matrix is shown in Fig.3. The true positive (TP) is the number of positive instances that are correctly classified. The false positive (FP) is the number of positive instances incorrectly classified as negative samples. The true negative (TN) is the number of correctly classified negative instances. The false negative is the number of negative instances incorrectly classified as positive samples. Many measure types are conducted based on the confusion matrix to evaluate the classifier performance. The following measures are mostly used for general classification tasks.

    Fig.3 Confusion matrix

    The true positive rate (TPR) is the ratio between the correctly classified positive instances and all actual positive instances:

    The false positive rate (FPR) is the ratio between the incorrectly classified negative instances and all actual negative instances:

    3.2 Results and analysis

    The five-folder crossover validation results on the Auckland Ⅱ data set are shown in Tab.3. The best value for each measure is marked in bold. From the classifiers’ point of view, the NBTree obtains the best performance among the three classifiers. The NBTree obtains the highest true positive rate (TPR) values for all classes except for the FTP data. All NBTree TPR values are greater than 0.9 except for Telnet. Most NB and RBF TPR values are greater than 0.85. All false positive rate (FPR) values in the table are low. The classifiers are able to accurately identify other samples for each traffic class. In most cases, the selected classifiers can effectively identify the traffic instances in the Auckland Ⅱ data set by using the early-stage packet size features. Both the NB and the RBF obtain very low TPR values for the FTP and Telnet classes. In addition, the NBTree obtains a relatively low TPR value for telnet. The sample distributions in Tab.1 show that 251 and 37 instances for FTP and Telnet accounted for 0.90% and 0.13%, respectively, of the entire data set. Therefore, the highly imbalanced Auckland Ⅱ class distribution is an important factor that causes the low identification performances for the FTP and Telnet. As the most predominant traffic type on the Internet, the HTTP should be accurately distinguished from other types. Tab.3 shows that all NB, NBTree, and RBF achieve high TPR and low FPR values for HTTP traffic instances. Therefore, the early-stage packet size features are able to carry enough information for HTTP traffic identification. This finding is in accordance with the analysis in Section 2.

    Tab.3 5-folder crossover validation results of Auckland Ⅱ data set

    ClassNBNBTreeRBFTPRFPRTPRFPRTPRFPRftp0.3230.0030.9400.0010.3270.000ftp-data0.9520.0090.9420.0000.9330.002http0.9680.0120.9980.0250.9910.035imap0.8500.0060.9170.0000.5390.004pop30.9060.0170.9580.0010.8760.007smtp0.8670.0070.9720.0020.9050.013ssh0.8860.0020.9620.0000.8860.001telnet0.1620.0070.6490.0000.1080.000Average0.9490.0110.9920.0210.9690.031

    The five-folder crossover validation results on the UNIBS data set are shown in Tab.4. The best value for each measure is marked in bold. The NBTree obtains the best class values for both TRP and FPR with no exception. Therefore, the NBTree is primarily concluded as a good classifier for Internet traffic identification. The NB does not perform well for the UNIBS data set. The NB obtains five TPR values, which are less than 0.8, especially for HTTP. The NB TPR value is 0.746, which is less than that of the NBTree and the RBF (0.999 and 0.992, respectively). The NBTree and RBF obtain TPR values greater than 0.99 and FPR values lower than 0.04. The early-stage packet size features are effectively used to identify HTTP traffics. All Skype TPR values are low. Traffic identification on Skype is difficult. The Skype instances do not show clear behavior patterns in the visualization views. The instances scatter on many areas in Figs.2(b) to (d). Therefore, the early-stage packet size features are not enough for Skype traffic identification. Other effective features should be used to identify Skype traffic.

    Tab.4 5-folder crossover validation results of UNIBS data set

    ClassNBNBTreeRBFTPRFPRTPRFPRTPRFPRbittor-rent0.7150.0100.9960.0020.9250.017edonkey0.6730.0400.8730.0020.0420.000http0.7460.0260.9990.0060.9920.038imap0.4980.0240.9760.0010.6910.002pop30.9820.0130.9940.0000.9820.008skype0.3950.1520.4070.0000.0000.000smtp0.9420.0010.9830.0000.9670.000ssh0.9570.0001.0000.0000.9570.000Average0.7570.0240.9950.0050.9670.032

    A set of comparison experiments were carried out among the early-stage payload size feature set, the early-stage hybrid feature set, and the long-term payload size feature set. These experiments are used to validate the effectiveness of the payload size features. The early-stage hybrid feature set contains the payload sizes, IAT, and RTT of the first eight packets. The long-term payload size feature set contains the payload sizes of the first 20 packets. The model building time is taken as an important performance measure.

    The comparison results are shown in Tab.5, where 8-ps represents the early-stage payload size feature set, 8ps+iat+rtt represents the early-stage hybrid feature set, and 20-ps represents the long-term payload size feature set. The best value for each measure is marked in bold. The 8-ps feature set obtains the best time performance for all classifiers and both data sets. The same feature achieves the best TPR and FPR performances for most cases. The 20-ps feature set result is somewhat unexpected. This feature set does not show advantages over the 8-ps feature set for most cases. The 8ps+iat+rtt feature set performs quite well in the comparison using the NB classifier, especially for the UNIBS data set.

    Tab.5 5-folder crossover validation results using different feature sets on UNIBS data set

    ClassAucklandⅡUNIBS8-ps8ps+iat+rtt20-ps8-ps8ps+iat+rtt20-psNBTPR0.9490.09410.9400.7570.9040.774FPR0.0110.0120.0150.0240.0350.034time0.070.100.270.090.150.41NBTreeTPR0.9920.9920.9920.9950.9920.991FPR0.0210.0110.0080.0050.0100.004time13.9844.92282.7316.8169.15568.67RBFTPR0.9690.9750.9630.9670.9600.947FPR0.0310.0240.0320.0320.0550.094time289.39549.871013.49148.39321.07973.22

    4 Conclusion

    This paper studies Internet traffic identification using the early-stage packet payload size as features. By visualizing the early-stage packet payload size values, different Internet traffic types are found to have their own early-stage behavior schemas. Therefore, constructing effective Internet traffic identification models is possible by using the simple payload sizes of the early-stage packets. The existing early-stage traffic identification techniques use packet size and time features. Our method can easily and rapidly extract features because it uses the packet payload size only. Speed is important for real early-stage traffic identification. Hence, an identification model is required to extract features as fast as possible. Therefore, using the packet payload size as the traffic feature is a feasible and effective feature-extracting method. Three classical classifiers are applied to validate the effectiveness of the feature of the early-stage packet payload size. For most Auckland Ⅱ and UNIBS traffic trace types, the classifiers obtain high identification rates by using the simple payload size features.

    [1]Callado A, Kamienski C, Szabó G, et al. A survey on internet traffic identification[J].IEEECommunicationsSurveys&Tutorials, 2009, 11(3): 37-52.

    [2]Hu Bin, Shen Yi. Machine learning based network traffic classification: a survey[J].JournalofInformation&ComputationalScience, 2012, 9(11): 3161-4170.

    [3]Nguyen T T T, Armitage G. A survey of techniques for Internet traffic classification using machine learning[J].IEEECommunicationsSurveys&Tutorials, 2008, 10(4): 56-76.

    [4]Valenti S, Rossi D, Dainotti A, et al. Reviewing traffic classification[C]//DataTrafficMonitoringandAnalysis. Berlin: Springer, 2013: 123-147.

    [5]Moore A, Zuev D, Crogan M. Discriminators for use in flow-based classification[EB/OL].(2005-08-17)[2013-11-16].http://www.cl.cam.ac.uk/~awm22/publications/RR-05-13.pdf.

    [6]Moore A, Zuev D. Internet traffic classification using Bayesian analysis techniques[C]//Proceedingsofthe2005ACMSIGMETRICSInternationalConferenceonMeasurementandModelingofComputerSystems. New York: ACM, 2005: 50-60.

    [7]Auld T, Moore A, Gull S. Bayesian neural networks for Internet traffic classification[J].IEEETransactionsonNeuralNetwork, 2007, 18(1):223-239.

    [8]Este A, Gringoli F, Salgarelli L. On the stability of the information carried by traffic flow features at the packet level[J].ACMSIGCOMMComputerCommunicationReview, 2009, 39(3): 13-18.

    [9]Este A, Gringoli F, Salgarelli L. Support vector machines for TCP traffic classification[J].ComputerNetworks, 2009, 53(14): 2476-2490.

    [10]Li Z, Yuan R, Guan X. Accurate classification of the Internet traffic based on the SVM method[C]//IEEEInternationalConferenceonCommunications. Glasgow, USA, 2007:1373-1378.

    [11]Lu Gang, Zhang Hongli, Sha Xuefu, et al. Tcfom: a robust traffic classification framework based on oc-svm combined with mc-svm[C]//2010InternationalConferenceonCommunicationsandIntelligenceInformationSecurity. Nanning, China, 2010: 180-186.

    [12]Crotti M, Dusi M, Gringoli F, et al. Traffic classification through simple statistical fingerprinting[J].ACMSIGCOMMComputerCommunicationReview, 2007, 37(1): 5-16.

    [13]Du Min, Chen Xingshu, Tan Jun. Online Internet traffic identification algorithm based on multistage classifier[J].ChinaCommunications, 2013, 10(2): 89-97.

    [14]Du Min, Chen Xingshu, Tan Jun. A novel P2P traffic identification algorithm based on BPSO and weighted k-nearest-neighbor[J].ChinaCommunications, 2011, 8(2): 52-58.

    [15]Bernaille L, Teixeira R, Akodkenou I, et al. Traffic classification on the fly[J].ACMSIGCOMMComputerCommunicationReview, 2006, 36(2): 23-26.

    [16]Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms[C]//Proceedingsofthe2006SIGCOMMWorkshoponMiningNetworkData. New York: ACM, 2006: 281-286.

    [17]Erman J, Arlitt M, Mahanti A, et al. Offline/realtime traffic classification using semi-supervised learning[J].PerformanceEvaluation, 2007, 64(9): 1194-1213.

    [18]Qian F, Hu G, Yao X. Semi-supervised Internet network traffic classification using a Gaussian mixture model[J].IntJElectronCommun, 2008, 62(7):557-564.

    [19]Peng Lizhi, Zhang Hongli, Yang Bo, et al. Traffic identification using flexible neural trees[C]//2010 18thInternationalWorkshoponQualityofService. Beijing, China, 2010: 5542729-1-5542729-5.

    [20]Dainotti A, Pescape A, Claffy K C. Issues and future directions in traffic classification[J].IEEENetwork, 2012, 26(1):35-40.

    [21]Huang N, Jai G, Chao H. Early identifying application traffic with application characteristics[C]//IEEEInternationalConferenceonCommunications. Beijing, China, 2008: 5788-5792.

    [22]Huang N, Jai G, Chao H, et al. Application traffic classification at the early stage by characterizing application rounds[J].InformationSciences, 2013, 232:130-142.

    [24]Dainotti A, Pescape A, Sansone C. Early classification of network traffic through multi-classification[C]//LectureNotesinComputerScience. Berlin: Springer, 2011,6613:122-135.

    [25]Nguyen T T T, Armitage G, B ranch P, et al. Timely and continuous machine-learning-based classification for interactive IP traffic[J].IEEE/ACMTransactionsonNetworking, 2012, 20(6):1880-1894.

    [26]Waikato Internet Traffic Storage (WITS)[EB/OL]. (2006-06-17)[2012-10-13].http://www.wand.net.nz/wits.

    [27]UNIBS: Data sharing[EB/OL]. (2011-07-21)[2013-09-14].http://www.ing.unibs.it/ntw/tools/traces/.

    [28]Gringoli F, Salgarelli L, Dusi M, et al. GT: picking up the truth from the ground for internet traffic[J].ACMSIGCOMMComputerCommunicationReview, 2009, 39(5): 12-18.

    [29]Tcpdump/Libpcap[EB/OL]. (2013-11-20)[2013-12-16].http://www.tcpdump.org.

    基于有效載荷大小的早期網(wǎng)絡(luò)流量識(shí)別

    吳 同1韓 臻1王 偉1彭立志2

    (1北京交通大學(xué)計(jì)算機(jī)與信息技術(shù)學(xué)院, 北京 100044)(2濟(jì)南大學(xué)山東省網(wǎng)絡(luò)智能計(jì)算技術(shù)重點(diǎn)實(shí)驗(yàn)室, 濟(jì)南 250022)

    為快速將網(wǎng)絡(luò)應(yīng)用的流量進(jìn)行分類,以Auckland Ⅱ和UNIBS兩個(gè)數(shù)據(jù)集的網(wǎng)絡(luò)流量包為研究對(duì)象,選取網(wǎng)絡(luò)應(yīng)用程序流量中最初的8個(gè)有效載荷大小作為識(shí)別特征進(jìn)行研究.由于這類特征可在早期流量階段快速提取,因此效果顯著.通過(guò)將早期載荷大小可視化的方式,分析了不同網(wǎng)絡(luò)應(yīng)用的行為模式.分析結(jié)果表明,多數(shù)網(wǎng)絡(luò)應(yīng)用程序可通過(guò)早期有效載荷大小顯示出它們特有的行為模式,根據(jù)早期有效載荷大小的信息可對(duì)流量進(jìn)行有效識(shí)別.在此基礎(chǔ)上,選用3種典型的機(jī)器學(xué)習(xí)分類器, 即樸素的貝葉斯分類器、樸素的貝葉斯樹(shù)和徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)進(jìn)行驗(yàn)證分析.實(shí)驗(yàn)結(jié)果顯示,早期有效載荷大小可作為特征對(duì)流量進(jìn)行有效識(shí)別.

    模式識(shí)別;網(wǎng)絡(luò)測(cè)量;流量分類;流量特征

    TP393

    s:The Program for New Century Excellent Talents in University (No.NCET-11-0565), the Fundamental Research Funds for the Central Universities (No.K13JB00160, 2012JBZ010, 2011JBM217), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120009120010), the Program for Innovative Research Team in University of Ministry of Education of China (No.IRT201206), the Natural Science Foundation of Shandong Province (No.ZR2012FM010, ZR2011FZ001).

    :Wu Tong, Han Zhen, Wang Wei,et al.Early-stage Internet traffic identification based on packet payload size[J].Journal of Southeast University (English Edition),2014,30(3):289-295.

    10.3969/j.issn.1003-7985.2014.03.006

    10.3969/j.issn.1003-7985.2014.03.006

    Received 2013-12-26.

    Biography:Wu Tong(1979—),male,doctor,lecturer, wutong@bjtu.edu.cn.

    猜你喜歡
    網(wǎng)絡(luò)應(yīng)用有效載荷網(wǎng)絡(luò)流量
    基于多元高斯分布的網(wǎng)絡(luò)流量異常識(shí)別方法
    理念牽引 機(jī)制創(chuàng)新 人才驅(qū)動(dòng) 做有效載荷創(chuàng)新發(fā)展領(lǐng)跑者
    基于神經(jīng)網(wǎng)絡(luò)的P2P流量識(shí)別方法
    面向有效載荷數(shù)字化研制的標(biāo)準(zhǔn)化工作轉(zhuǎn)型初探
    衛(wèi)星有效載荷研制流程的策劃與推進(jìn)
    交通領(lǐng)域中面向D2D的5G通信網(wǎng)絡(luò)應(yīng)用探析
    基于數(shù)字電子技術(shù)的通信網(wǎng)絡(luò)應(yīng)用研究
    AVB網(wǎng)絡(luò)流量整形幀模型端到端延遲計(jì)算
    大氣環(huán)境質(zhì)量評(píng)價(jià)工作中基于MATLAB的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用探究
    電子制作(2016年11期)2016-11-07 08:43:38
    新媒體視閾下青少年網(wǎng)絡(luò)應(yīng)用行為探析
    聲屏世界(2015年5期)2015-02-28 15:19:45
    国产亚洲5aaaaa淫片| 亚洲怡红院男人天堂| 2018国产大陆天天弄谢| 日本欧美国产在线视频| 乱码一卡2卡4卡精品| 免费看不卡的av| 在线天堂最新版资源| 最新中文字幕久久久久| 美女xxoo啪啪120秒动态图| 国产 精品1| 中文字幕人妻熟人妻熟丝袜美| 黄色配什么色好看| 22中文网久久字幕| 91aial.com中文字幕在线观看| 日本vs欧美在线观看视频 | 日韩中文字幕视频在线看片| 免费高清在线观看视频在线观看| 欧美精品人与动牲交sv欧美| 大片电影免费在线观看免费| 国产精品嫩草影院av在线观看| 自线自在国产av| 欧美高清成人免费视频www| 日本免费在线观看一区| 国产一区亚洲一区在线观看| 国产老妇伦熟女老妇高清| 国产日韩欧美亚洲二区| 国产av精品麻豆| 少妇丰满av| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 免费人成在线观看视频色| 夜夜看夜夜爽夜夜摸| 九九久久精品国产亚洲av麻豆| 久久6这里有精品| 另类精品久久| 国产精品99久久久久久久久| 观看av在线不卡| 免费大片18禁| 亚洲精品中文字幕在线视频 | 亚洲一级一片aⅴ在线观看| videossex国产| 蜜桃久久精品国产亚洲av| 国产一区二区三区综合在线观看 | 日韩欧美 国产精品| 亚洲精品色激情综合| 亚洲综合精品二区| 国产色爽女视频免费观看| 国产熟女欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲5aaaaa淫片| 国产视频首页在线观看| 久热久热在线精品观看| 久久久久久久久久久免费av| 国产成人免费观看mmmm| 在现免费观看毛片| 国产午夜精品一二区理论片| 中文欧美无线码| 成人漫画全彩无遮挡| 久久精品国产亚洲网站| 高清视频免费观看一区二区| 日韩中字成人| 嫩草影院入口| 国产高清三级在线| 亚洲av欧美aⅴ国产| √禁漫天堂资源中文www| 亚洲国产精品成人久久小说| 国产精品人妻久久久久久| 男女啪啪激烈高潮av片| 久久久久人妻精品一区果冻| 啦啦啦啦在线视频资源| 久久久久国产网址| 久久久久久久久大av| 亚洲欧美日韩卡通动漫| 爱豆传媒免费全集在线观看| 深夜a级毛片| 日韩av免费高清视频| a级毛片在线看网站| 亚洲精品日韩av片在线观看| 哪个播放器可以免费观看大片| 日韩大片免费观看网站| 婷婷色麻豆天堂久久| 在线看a的网站| 国产 一区精品| 亚洲精品色激情综合| 精品久久久久久久久av| 激情五月婷婷亚洲| 91精品国产九色| 人人妻人人看人人澡| 久久鲁丝午夜福利片| 国产精品福利在线免费观看| 成人无遮挡网站| 晚上一个人看的免费电影| 日日啪夜夜爽| 久久精品国产a三级三级三级| 黄色一级大片看看| 亚洲一级一片aⅴ在线观看| 高清欧美精品videossex| 国产日韩欧美在线精品| 国产精品一区二区性色av| 少妇的逼好多水| 久久精品夜色国产| 久久av网站| 欧美日韩在线观看h| 嫩草影院新地址| 国产欧美日韩一区二区三区在线 | 观看av在线不卡| 卡戴珊不雅视频在线播放| 亚洲精品乱码久久久v下载方式| 亚洲成人av在线免费| 99久久中文字幕三级久久日本| 我要看黄色一级片免费的| 免费少妇av软件| 中文天堂在线官网| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 深夜a级毛片| 国产成人a∨麻豆精品| 日日啪夜夜爽| 日日啪夜夜撸| 亚洲成人手机| 少妇的逼水好多| 国产精品偷伦视频观看了| 久久精品久久精品一区二区三区| 99久久人妻综合| 亚洲欧美一区二区三区黑人 | 免费大片黄手机在线观看| 免费播放大片免费观看视频在线观看| 男人和女人高潮做爰伦理| 在线观看免费视频网站a站| 国产亚洲5aaaaa淫片| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 亚洲av国产av综合av卡| 亚洲婷婷狠狠爱综合网| 亚洲第一av免费看| a级毛片在线看网站| 少妇人妻一区二区三区视频| 又粗又硬又长又爽又黄的视频| 国产黄色免费在线视频| 制服丝袜香蕉在线| 亚洲熟女精品中文字幕| av国产久精品久网站免费入址| 亚洲不卡免费看| 一级毛片黄色毛片免费观看视频| 多毛熟女@视频| 国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 久久久国产一区二区| 建设人人有责人人尽责人人享有的| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 三级国产精品片| 日韩熟女老妇一区二区性免费视频| 一本色道久久久久久精品综合| 校园人妻丝袜中文字幕| 免费av中文字幕在线| 亚洲欧洲日产国产| 国产成人免费观看mmmm| 国产欧美另类精品又又久久亚洲欧美| 少妇人妻久久综合中文| 多毛熟女@视频| 一区二区三区免费毛片| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 日本黄色日本黄色录像| 亚洲av成人精品一二三区| 在现免费观看毛片| 国产精品.久久久| 亚洲国产欧美在线一区| 久久99热6这里只有精品| 黄色一级大片看看| 国国产精品蜜臀av免费| 成人二区视频| 人妻夜夜爽99麻豆av| 亚洲精品国产色婷婷电影| 国产爽快片一区二区三区| 高清黄色对白视频在线免费看 | 高清视频免费观看一区二区| 亚洲av.av天堂| av女优亚洲男人天堂| 18+在线观看网站| 成人国产麻豆网| 久久国内精品自在自线图片| 九草在线视频观看| 久久ye,这里只有精品| 亚洲国产成人一精品久久久| 亚洲av中文av极速乱| 嫩草影院入口| 午夜免费观看性视频| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| 黄色日韩在线| 美女xxoo啪啪120秒动态图| av在线app专区| 久久久亚洲精品成人影院| 日韩成人av中文字幕在线观看| av在线app专区| 日日啪夜夜撸| 卡戴珊不雅视频在线播放| 老女人水多毛片| 男女啪啪激烈高潮av片| 日韩欧美精品免费久久| 伊人久久精品亚洲午夜| 一级毛片电影观看| 亚洲av在线观看美女高潮| 日本欧美视频一区| 只有这里有精品99| 亚洲av免费高清在线观看| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 久久精品国产亚洲网站| 国产成人精品无人区| 嫩草影院新地址| 成人综合一区亚洲| 极品人妻少妇av视频| 亚洲欧美一区二区三区国产| 久久人妻熟女aⅴ| 午夜免费鲁丝| 久热这里只有精品99| 3wmmmm亚洲av在线观看| 久久99热6这里只有精品| 高清午夜精品一区二区三区| av在线播放精品| 国产色婷婷99| 国产一区二区在线观看av| 韩国av在线不卡| 在线天堂最新版资源| 天堂8中文在线网| av在线老鸭窝| 午夜av观看不卡| 99久国产av精品国产电影| 在线精品无人区一区二区三| 伦理电影免费视频| 日本欧美视频一区| 桃花免费在线播放| 欧美成人午夜免费资源| 亚洲av国产av综合av卡| 男人爽女人下面视频在线观看| 亚洲欧美日韩东京热| 国产亚洲91精品色在线| av线在线观看网站| 日韩中字成人| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 大片免费播放器 马上看| 久久久欧美国产精品| 美女国产视频在线观看| 热99国产精品久久久久久7| 国产一区有黄有色的免费视频| 春色校园在线视频观看| 午夜影院在线不卡| 久久女婷五月综合色啪小说| 日韩中文字幕视频在线看片| 亚洲av免费高清在线观看| 日韩欧美一区视频在线观看 | 少妇人妻一区二区三区视频| 啦啦啦中文免费视频观看日本| 亚洲国产欧美日韩在线播放 | 爱豆传媒免费全集在线观看| 国模一区二区三区四区视频| 三上悠亚av全集在线观看 | 国产精品女同一区二区软件| 男人狂女人下面高潮的视频| 国产成人freesex在线| 欧美日韩视频精品一区| 国产高清国产精品国产三级| 久久久久网色| 国产一区有黄有色的免费视频| 在线天堂最新版资源| 极品人妻少妇av视频| 亚洲四区av| 人妻制服诱惑在线中文字幕| 18禁在线播放成人免费| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 久久精品国产亚洲av天美| 国产精品成人在线| 免费黄色在线免费观看| 亚洲精品aⅴ在线观看| 国模一区二区三区四区视频| 亚洲成色77777| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看 | kizo精华| 男女国产视频网站| 亚洲丝袜综合中文字幕| 大码成人一级视频| 国产日韩欧美在线精品| 亚州av有码| 99热这里只有精品一区| 观看av在线不卡| a级毛色黄片| 国内少妇人妻偷人精品xxx网站| 午夜老司机福利剧场| 看免费成人av毛片| 综合色丁香网| 精品少妇黑人巨大在线播放| 色视频在线一区二区三区| 国产伦精品一区二区三区四那| 一本色道久久久久久精品综合| 蜜桃久久精品国产亚洲av| 亚洲精品,欧美精品| 国产精品99久久99久久久不卡 | 亚洲av福利一区| 乱人伦中国视频| 日韩中字成人| 午夜精品国产一区二区电影| 精品国产乱码久久久久久小说| a级毛色黄片| 久久久亚洲精品成人影院| 一本一本综合久久| 性高湖久久久久久久久免费观看| 国产免费视频播放在线视频| 成年人免费黄色播放视频 | av专区在线播放| xxx大片免费视频| 国产在线一区二区三区精| 看非洲黑人一级黄片| 建设人人有责人人尽责人人享有的| 久久热精品热| 乱系列少妇在线播放| 免费观看在线日韩| 国产精品嫩草影院av在线观看| 国产熟女欧美一区二区| 一本大道久久a久久精品| 老司机影院毛片| 黄色毛片三级朝国网站 | 亚洲精品国产av成人精品| 国产精品一区二区在线观看99| 在线观看美女被高潮喷水网站| 蜜桃在线观看..| 2018国产大陆天天弄谢| 美女中出高潮动态图| 五月玫瑰六月丁香| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美性感艳星| 精品人妻一区二区三区麻豆| 亚洲激情五月婷婷啪啪| 偷拍熟女少妇极品色| 国产成人aa在线观看| 内射极品少妇av片p| 国产成人免费观看mmmm| 下体分泌物呈黄色| 久久亚洲国产成人精品v| 精品国产乱码久久久久久小说| 亚洲综合精品二区| 国产伦精品一区二区三区四那| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 十八禁高潮呻吟视频 | 国产亚洲精品久久久com| 精品亚洲成国产av| 欧美日韩一区二区视频在线观看视频在线| 高清av免费在线| 国产视频内射| 老司机影院毛片| 中国三级夫妇交换| 免费看日本二区| 国产免费一级a男人的天堂| 国产亚洲91精品色在线| 久久久国产欧美日韩av| 亚洲av男天堂| 日本欧美视频一区| 午夜久久久在线观看| 欧美精品高潮呻吟av久久| 各种免费的搞黄视频| 亚洲国产毛片av蜜桃av| 中国三级夫妇交换| 日韩电影二区| 国国产精品蜜臀av免费| 熟女av电影| 丰满迷人的少妇在线观看| 免费看不卡的av| a级毛片免费高清观看在线播放| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 国产淫语在线视频| 国产亚洲最大av| 人妻 亚洲 视频| 18禁裸乳无遮挡动漫免费视频| 亚洲美女搞黄在线观看| 精品一区二区免费观看| 国产日韩欧美在线精品| 欧美另类一区| 欧美人与善性xxx| 亚洲国产精品一区三区| 免费大片黄手机在线观看| 久久国产亚洲av麻豆专区| 九草在线视频观看| 99久久综合免费| 欧美最新免费一区二区三区| 国产av国产精品国产| 国产精品一区二区三区四区免费观看| 亚洲成人手机| 亚洲欧美一区二区三区黑人 | 中文欧美无线码| 妹子高潮喷水视频| 99热国产这里只有精品6| 三上悠亚av全集在线观看 | 日韩精品免费视频一区二区三区 | 亚洲av中文av极速乱| 在线免费观看不下载黄p国产| 亚洲精品亚洲一区二区| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看 | 18+在线观看网站| 少妇人妻 视频| 国产老妇伦熟女老妇高清| 免费大片黄手机在线观看| 男女边吃奶边做爰视频| 久久久久久久久久久丰满| 最新的欧美精品一区二区| 国产精品嫩草影院av在线观看| 看免费成人av毛片| 男女边吃奶边做爰视频| 久久精品国产亚洲av天美| 国产精品成人在线| 中文乱码字字幕精品一区二区三区| 国产在线免费精品| 国产亚洲91精品色在线| 中文字幕免费在线视频6| 天天操日日干夜夜撸| av国产久精品久网站免费入址| 熟女av电影| 国产成人精品婷婷| 老熟女久久久| 人人妻人人澡人人看| 亚洲精品一区蜜桃| 桃花免费在线播放| 欧美97在线视频| av一本久久久久| 人人妻人人看人人澡| 偷拍熟女少妇极品色| 黄色一级大片看看| 欧美日韩国产mv在线观看视频| 夜夜看夜夜爽夜夜摸| 国产精品一区www在线观看| a级毛片在线看网站| 啦啦啦啦在线视频资源| 成人国产麻豆网| 老熟女久久久| 免费久久久久久久精品成人欧美视频 | 亚洲,欧美,日韩| 久久综合国产亚洲精品| 黄色一级大片看看| 国产亚洲精品久久久com| 亚洲国产精品一区二区三区在线| 曰老女人黄片| av在线观看视频网站免费| 亚洲精品中文字幕在线视频 | 色视频www国产| 日本与韩国留学比较| 一级av片app| 一区二区av电影网| 一级爰片在线观看| 亚洲欧洲日产国产| 日本黄色日本黄色录像| 国产免费视频播放在线视频| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| 亚洲精品国产av蜜桃| 亚洲国产精品专区欧美| 人妻 亚洲 视频| 99九九线精品视频在线观看视频| 成人美女网站在线观看视频| 欧美日韩在线观看h| 亚洲av综合色区一区| 视频区图区小说| 国产日韩欧美亚洲二区| 亚洲精品国产成人久久av| 日本黄色日本黄色录像| 免费观看的影片在线观看| 在线观看av片永久免费下载| 久久久久久久大尺度免费视频| 26uuu在线亚洲综合色| 精品亚洲成国产av| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| 老司机影院成人| 国产精品偷伦视频观看了| 国产深夜福利视频在线观看| 亚洲欧美成人精品一区二区| 国产淫语在线视频| 亚洲精品视频女| 色视频www国产| 国产黄片美女视频| 老司机影院成人| 中文欧美无线码| 久久精品国产亚洲av天美| 高清av免费在线| 99re6热这里在线精品视频| 国精品久久久久久国模美| 免费观看在线日韩| 国产中年淑女户外野战色| av免费观看日本| 久久精品国产a三级三级三级| 精品午夜福利在线看| 国产又色又爽无遮挡免| 国产成人a∨麻豆精品| 三级国产精品欧美在线观看| 在线观看www视频免费| 久久久久久久久大av| 日韩一区二区视频免费看| av在线播放精品| 免费观看av网站的网址| 狂野欧美白嫩少妇大欣赏| 观看av在线不卡| 久久国产精品男人的天堂亚洲 | 男女啪啪激烈高潮av片| 午夜精品国产一区二区电影| 久久久国产一区二区| 伦精品一区二区三区| 插阴视频在线观看视频| 婷婷色麻豆天堂久久| 狠狠精品人妻久久久久久综合| 亚州av有码| 久久亚洲国产成人精品v| 国模一区二区三区四区视频| 男女啪啪激烈高潮av片| 久久精品国产亚洲av天美| 免费久久久久久久精品成人欧美视频 | 伊人久久国产一区二区| 多毛熟女@视频| 九草在线视频观看| 久久久久精品性色| 观看av在线不卡| 青春草视频在线免费观看| 欧美日韩视频高清一区二区三区二| 性高湖久久久久久久久免费观看| 欧美精品亚洲一区二区| 69精品国产乱码久久久| 免费人成在线观看视频色| 久久99热这里只频精品6学生| 大话2 男鬼变身卡| 亚洲精品456在线播放app| 精品午夜福利在线看| 亚洲,欧美,日韩| 亚洲四区av| 国产午夜精品久久久久久一区二区三区| 高清在线视频一区二区三区| 久久久久人妻精品一区果冻| 黄色日韩在线| 国产日韩欧美视频二区| 亚洲综合色惰| 午夜福利,免费看| 一本久久精品| 午夜av观看不卡| 一级爰片在线观看| 国产av国产精品国产| 国产精品一区二区性色av| 一级av片app| 高清av免费在线| 九草在线视频观看| 狂野欧美激情性bbbbbb| 亚洲美女黄色视频免费看| 亚洲第一av免费看| av国产精品久久久久影院| 在线看a的网站| 亚洲国产欧美日韩在线播放 | 久久久久久久久久成人| 久久国内精品自在自线图片| 免费观看a级毛片全部| 日韩视频在线欧美| 在线观看免费高清a一片| 男的添女的下面高潮视频| 欧美成人午夜免费资源| 成人特级av手机在线观看| 99精国产麻豆久久婷婷| 99热这里只有是精品在线观看| 99久久中文字幕三级久久日本| 国产精品99久久久久久久久| 99久久精品国产国产毛片| 69精品国产乱码久久久| 精品一区二区三卡| 美女福利国产在线| 久久久亚洲精品成人影院| 丝瓜视频免费看黄片| 九色成人免费人妻av| 国产精品一区二区在线观看99| 少妇人妻精品综合一区二区| 国产精品秋霞免费鲁丝片| 亚洲国产精品999| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 日韩精品免费视频一区二区三区 | 国产午夜精品一二区理论片| 亚洲精品国产成人久久av| 人妻一区二区av| 亚洲色图综合在线观看| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 成年美女黄网站色视频大全免费 | 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 婷婷色av中文字幕| 国产熟女午夜一区二区三区 | 久久久国产欧美日韩av| 国产男人的电影天堂91| 中国美白少妇内射xxxbb| 国产黄片视频在线免费观看| 精品酒店卫生间| 最后的刺客免费高清国语| 亚洲欧美一区二区三区黑人 | 在线观看一区二区三区激情| 欧美国产精品一级二级三级 | 最近的中文字幕免费完整| 日日撸夜夜添| 国产探花极品一区二区| 国产 精品1| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩东京热| 一级黄片播放器| 亚洲精品色激情综合|