• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloning and sequence analysis of nine novel MYB genes in Taxodiaceae plants

    2014-09-06 11:13:30YongquanLUQingJIAZaikangTONG
    Journal of Forestry Research 2014年4期

    Yong-quan LU · Qing JIA · Zai-kang TONG

    ORIGINAL PAPER

    Cloning and sequence analysis of nine novel MYB genes in Taxodiaceae plants

    Yong-quan LU · Qing JIA · Zai-kang TONG

    Received: 2013-12-20; Accepted: 2014-02-20

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    Myeloblastosis (MYB) is one of the largest transcribed factor families in plants. To gain an overall picture of the evolution of MYB genes in relict plants, we cloned nine novel MYB genes in Taxodiaceae plants (Taxodium distichum, Taxodium ascendens, Cryptomeria japonica var. Sinensis, Cryptomeria japonica cv. Araucarioides, Cryptomer Japonica, Metasequoia glyptostroboides, Cunninghamia lanceolata, Taiwania cryptomerioides and Glyptostrobus pensilis). The deduced amino acid sequences for MYBs showed that the nine MYB proteins contained two DNA binding domains. The first domain is from amino acid position 29 to 78, wherein three tryptophanes at 33, 53 and 73 were separated by 19 amino acids, respectively. The second domain is from amino acid position 82 to 127, wherein three tryptophanes at 86, 105 and 124 were separated by 18 amino acids, respectively, whereas the first tryptophane at amino acid position 86 is replaced by a phenylalanine. The characterization of these conserved domains at nine MYBs indicated that they all belong to the R2R3-MYB group. The secondary structure analysis showed that α-helix and β-turn are the major motifs of the predicted secondary structure of MYBs. The three dimensional model of each MYB protein showed that the structure is like clip, making it more flexible and mobile. The similarities between the nine MYB proteins in Taxodiaceae were calculated. The highest identical value of 99% is between CjsMYB, CjMYB and CjaMYB, whereas the lowest value of 82% is between TaMYB and ClMYB. According to the phylogenetic tree, the distances between different genera were relatively large whereas those within genera were relatively small. As expected, accessions of the same genus formed a subgroup before being grouped with other genera.

    Myeloblastosis, Taxodiaceae, clone, analysis, R2R3-MYB group

    Introduction

    MYB (v-myb avian myeloblastosis viral oncogene homolog), one of the largest transcribed factor families in plants, participate in plant growth development and metabolic regulation (Moyano et al. 1996). Specifically, MYB contributes to a cell’s secondary metabolic processes by taking part in regulating the transcribed activity of phenylalanine ammonia-lyase gene (PAL). MYB can regulate cell morphology by activating particular materials synthesis in epidermal cells (Wang et al. 2003). They participate in stress response by inducing the transcription of genes in the ABA pathway (Abe et al. 1997). In forestry plants, the MYB genes help regulate the formation of the tiny tube and xylem by controlling the expressions of the cinnamoyl-CoA reductase gene and cinnamyl alcohol dehydrogenase gene (Goicoechea et al. 2005). In addition, they control the formation of a cork layer by regulating the synthesis of lignin (Lopes et al. 2001; Patalaff et al. 2003).

    Plant MYB proteins were classified into three major types: R2R3-MYB, with two adjacent MYB repeats domain; R1R2R3-MYB, with three adjacent MYB repeats domain; and a heterogeneous group collectively referred to as the MYB-related proteins, which usually but not always contain a single MYB domain (Rosinski and Atchley 1998; Jin and Martin 1999; Stracke et al. 2001). MYB transcription factors usually contain an incompletion repeat area of 51?52 amino acids, which include several highly conserved amino acids. The first feature within this conserved domain is several tryptophanes separated by approximately 17?19 amino acids. This characteristic plays an important role during formation of hydrophobic groups in the protein spatial structure. Sometimes, the tryptophane in this position would be replaced by other aromatic amino acids or a hydrophobic amino acid. Especially in the R2R3-MYB in plants, which contain two MYB domains, the first tryptophane in the second domain is usually replaced by leucine, isoleucine, orphenylalanine. The second feature in this conserved domain is that some conserved amino acids exist flanking each tryptophane. For example, a cluster of acidic amino acids exist in the C terminal of the first tryptophane. Those conserved amino acids are required for the formation of a helix-helix-turn-helix structure, which is functionally important for the MYB transcription factors (Bilaud et al. 1996; Braun et al. 1999; Yu et al. 2000).

    In the past decade, the MYB genes have been extensively studied (Chen et al. 2006; Zhang et al. 2011; Du et al. 2012). The fact that these genes exist widely in eukaryotes suggests that they may be very ancient genes. However, only a few members of this family have been discovered in gymnosperms (Bedon et al. 2007). Despite recent large-scale gene discoveries for conifer trees such as pine and spruce (Kirst et al. 2003; Pavy et al. 2005), only a few regulatory gene families have been systematically studied in the gymnosperm class. One example is the Taxodiaceae family, which are relict plants from Cretaceous period. The family was an important component in forest vegetation of the northern hemisphere from the late Cretaceous to the mid-tertiary eras approximately 115 to 30 million years ago. In the Tertiary and Pleistocene, however, the family underwent a widespread reduction resulting in the present-day relictual genera with restricted distributions (Sehlabraum and Tsuehiay 1984). At present, the Taxodiaceae consists of 10 arborescent genera: seven of which are monotypic, and the remainder are olictypic genera consisting of only two or three species, resulting in a wide range of morphological characteristics (Wu 1998). Up to now, there are few MYB gene was cloned and the characteristics of MYB genes within Taxodiaceae family is still unambiguous. As an important transcript in stress response, when the Taxodiaceae family went through the great changes of climate in the Tertiary and Pleistocene, MYB should play a role to cope with weather changes. Therefore, to study the evolution of MYB genes within this family would be necessary.

    Materials and methods

    Plant materials

    Fresh leaves of nine Taxodiaceae accessions representing six genera were collected from Hangzhou Plant Garden, Zhejiang, China (Table 1). The natural distribution of these six genera are extremely scattered, forming interrupted or isolated distribution.

    Table 1: Accessions used for Amplified Consensus Genetic Marker analysis

    MYB genes clone

    RNAs were isolated from 500 mg of leaves from each accession, using the CTAB method with modification (Murray and Thompson 1980). They then were reversed into cDNA (coding DNA) as templates for PCR reactions. Primers of amplified consensus genetic markers targeted at the MYB gene (Lu et al. 2013) were used in the first PCR reaction.

    PCR was performed in 20 μL reactions containing 50 mg of template DNA; 0.5 mol/L of each target primer (see Table 2); 200 mol/L of each dNTP; 1.5 mmol/L of MgCl2; 1 unit of Pfu DNA polymerase; and 2 L of 10×PCR reaction buffer. A touchdown PCR program (Don et al. 1991) was used: five min at 95°C; 10 cycles of: 30 s at 95°C, 30 s at 58°C minus 0.3°C per cycle, one min. at 72°C; 20 cycles of: 30 s at 95°C, 30 s at 55°C, one min at 72°C; and seven min at 72°C for a final extension. The PCR products were cloned into a pGEMT-vector, and the positive clones were picked out. The T-vector then was identified by restriction endonuclease digestion.

    Table 2: Primers for target genes

    The correct clones were selected for sequencing. According to the sequencing results, 5' and 3' RACE (rapid amplification of cDNA ends) primers were designed (see Table 3). Following the RACE manual, the 5' and 3' fragments of MYB genes were obtained, respectively.

    We then designed primers to clone coding sequence (CDS) of MYB genes from nine accessions, respectively. The primers for gene cloning are in Table 3. All primers used were synthesized by the Nanjing Jinsirui Biological Engineering & Technology Company (Nanjing, China). Electrophoreses of PCR products were run on 1.0% agarose gel. The target products were purified and cloned into pGEM-T vector (Promega, USA) for sequencing (Sangon, Shanghai, China).

    Table 3: Primers for cloning genes

    Characterization of the deduced MYB protein

    Amino acid sequences of MYBs were deduced using DNAman software. The isoelctric points and the molecular weights of the deduced MYB polypeptides were calculated with the ProtParam tool (http://web.expasy.org/protparam). The conserved domains of MYBs were also predicted by SMART (http://smart.embl-heidelberg.de). Secondary structure of each MYB protein was checked in GOR (http://npsa-pbil.ibcp.fr). Finally, the three-dimensional model of each MYB was set up with 3D-pssm of ExPASy (http://en.wikipedia.org).

    Homologous analysis

    The nine MYBs from Taxodiaceae plants obtained in this study, as well as with MYBs from other plant species, including Hordeum vulgare, Triticum aestivum, Solanum lycopersicum, Lolium temulentum, Medicago truncatula and Arabidopsis thaliana, were alignment by Clustal X. Phylogenetic tree was constructed using Mega 5.

    Results

    Analysis of MYB sequence

    Among the sequences, the start codon and termination codon were all obtained in those nine MYB nucleotides, respectively. Database search with BlastN at NCBI (www.ncbi.nlm.nih.gov) showed that the nine MYB nucleotide sequences had a high similarity (> 70%) with other MYB genes from both gymnosperm and angiosperm plant species. Those results showed that the full coding sequences of nine MYB genes in Taxodiaceae plants were obtained, respectively (Fig. 1). The lengths of the nine MYB genes range from 1371?1392 bp (Fig. 2). The lengths of deduced amino acids range from 456 to 463 (Fig. 3). Further analysis showed that the deduced amino acid sequences of MYBs contained several variation sites. According to sequences of multiple alignments with Clustal X, serine deletion mutations were found at amino acid position 21 in MgMYB, GpMYB, ClMYB, and TcMYB, and continuous amino acid deletion at 256 in TcMYB. Serine insertion mutations were found at amino acid position 225 in TdMYB and TaMYB, at 190 in ClMYB, at 341 in ClMYB and TcMYB, respectively.

    Fig. 1: PCR resules of 9 MYB genes

    Conserved domain analysis of the MYB protein

    MYB transcription factors usually contain an incompletion repeat area of 51?52 amino acids, which include several highly conservative amino acids. In our study, the deduced amino acid sequences for MYBs showed that each MYB protein contained two DNA binding domains (Chen and Wang 2002). The first domain is from amino acid position 29 to 78, wherein three tryptophanes (W) at 33, 53 and 73 were separated by 19 amino acids, respectively (Fig. 3). The second domain is from amino acid position 82 to 127, wherein three tryptophanes (W) at 86, 105 and 124 were separated by 18 amino acids, respectively, whereas the first tryptophane at position 86 is replaced by a phenylalanin (F). The characterization of these conserved domains at nine MYB indicates that they all belong to R2R3-MYB group.

    Fig. 2: Multiple alignment of 9 MYB genes

    Continued Fig. 2: Multiple alignment of 9 MYB genes

    Fig. 3: Multiple alignment of MYB protein. Note: Conserved domains are underlined.

    Prediction of MYB protein

    The secondary structures analysis showed that α-helix and β-turn are the major motifs of predicted secondary structure of MYBs (Table 4). The numbers of α-helix and β-turn among nine MYBs range from 7 to 10 and 19 to 25, respectively. The variations of secondary structure between the nine MYBs are resulted from the amino acid sequences variations. Mutation of serine (S) to phenylalanine (F) at amino acid position 64 in MgMYB, ClMYB,and GpMYB result in a β-turn insertion in these positions, respectively. Whereas, mutation of leucine (L) to serine (S) at position 78 in TaMYB, as well as alanine (A) to serine (S) at position 75 in CjsMYB, resulted in a α-helix deletion in these positions, respectively. Although some variations exist among the nine MYB proteins, their secondary structures are similar, which showed the conservation of MYBs in evolution. The three-dimensional model of each MYB protein was set up with 3D-pssm of ExPASy (Fig. 4). The two DNA binding domains of MYBs can be seen clearly. The structure of each MYB is like a clip, resulting in the MYB transcription factors having more flexibility and mobility when binding target DNA.

    Homologous analysis

    Database search with BlastP in NCBI and multi-alignment Clustal X 1.83 showed that the deduced MYB proteins had similarity (from 74% to 78%) with MYBs from other plant species (Fig. 5). The similarities among MYB proteins we obtained in Taxodiaceae were calculated. The highest identical value of 99% is between CjsMYB, CjMYB and CjaMYB, whereas the lowest value of 82% is between TaMYB and ClMYB. The hylogenetic tree was constructed with Mega5 (Fig. 6). According to the tree, the distances between different genera were relatively large whereas those within genera were relatively small. As expected, accessions of the same genus formed a subgroup before being grouped with other genera.

    Table 4: Results of sequence analysis

    Fig. 4: Predict the three-dimensional of MYB protein. Note: The number one to nine correspond to the accession number in Table 1.

    Fig. 5: Multiple alignment of MYB protein among different species: Hordeum vulgare (X87690.1), Triticum aestivum (AY615200.1), Solanum lycopersicum (NM_001247433.1), Lolium temulentum (AF114162.1), Medicago truncatula (XM_003589214.1), Arabidopsis thaliana (NM_118827.1); Numbers correspond to accessions in Table 1.

    Fig. 6: Phylogenetic tree of MYB protein

    Discussion

    To achieve an overall picture of this gene super-family in relict plants, we have gained nine accessions of R2R3-MYB genes in the Taxodiaceae family. In the past decade, the R2R3-MYB genes have been extensively studied. They were reported to be involved in many physiological and biochemical processes. The members in this group are numerous. Chen et al. (2006) identified 198 genes in the MYB superfamily from an analysis of the complete Arabidopsis genome sequence; among them, 126 (63.6%) are R2R3-MYB genes. However, bio-information on Taxodiaceae plants is limited and the genome of these plants remains unknown. We designed primers according to a reserved sequence of MYB domain and obtained MYB genes from nine accessions of the Taxodiaceae family. The nine MYB genes all belong to R2R3-MYB, which indicated that R2R3-MYB is the main type in these plants. The R2R3-MYB group of transcription factors is one of the largest regulatory gene families known in plants (Cedroni et al. 2003). The MYB domain is well conserved among plants, yeast and animals (Lipsick 1996). Therefore the origin and evolutionary history of members of this large gene family are of interest. Similarities in the nine MYB proteins obtained in Taxodiaceae also closely corresponded with MYBs from other plant species, implicating the evolutionary conservation of MYB gene. The conserved domains of R2R3-MYB in Taxodiaceae plants are exactly the same as the domains that are necessary for MYB functions. According to multiple sequences alignment of the nine MYB genes, the amino acids sequences of T. cryptomerioides and C. lanceolata showed more differences, mainly with insertion and deletion mutations. For example there are four continuous (SSSS) inserts at the amino acid position 17?20, and four amino acids (QNQW) insert mutations at positions 341?344. These variations made T. cryptomerioides and C. lanceolata cluster into one group and showed that the two species have very similar genetic relationship.

    Abe H, Yamaguchi-Ssinozake K, Urao T, lwasaki T, Hosokawa D, Shinozaki K. 1997. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell, 9: 1859?1868.

    Bedon F, Grima-Pettenati J, John M. 2007. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biology, 7:17?33

    Bilaud T, Koering CE, Binet-Brasselet E, Ancelin K, Pollice A, Gasser SM, Gilson E. 1996. The telobox, a myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res, 24: 1294–1303.

    Braun EL, Grotewold E. 1999. Newly discovered plant c-myb2like genes rewrite the evolution of the plant myb gene family. Plant Physiol, 121: 21–24.

    Cedroni ML, Cronn RC, Adams KL, Wilkins TA, Wende JF. 2003. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Molecular Biology, 51: 313–325.

    Chen J, Wang ZY. 2002. Progress in the study of plant MYB transcription factors. Journal of Physiology and Molecular Biology, 28(2): 810–88. (in Chinese with English abstract)

    Chen YH, Yang XY, He K, Liu MH, Li JG, Gao ZF, Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL, Gu HY, Qu LJ. 2006. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 60: 107–124.

    Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. 1991. ‘Touchdown’PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res, 19: 4008–4008.

    Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, Tang YX. 2012. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology, 12: 106–127.

    Goicoechea M, Lacombe E, Legay S. 2005. EgMYB2-a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant Journal, 43(4): 553–567.

    Jin H, Martin C. 1999. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol, 41: 577–585.

    Kirst M, Johnson AF, Baucom C, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R. 2003. Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci USA, 100(12): 7383–7388.

    Lipsick JS. 1996. One billion years of Myb. Oncogene, 13: 223–235.

    Lopes M, Barros A, Neto C. 2001. Variability of cork from Portuguese Quercus suber studied by solidstate C-13-NMR and FTIR spectroscopies. Biopolymers, 62(5): 268–277.

    Lu YQ, Jia Q, Tong ZK. 2013. Amplified consensus genetic markers in Taxodiaceae based on Cryptomeria japonica ESTs data. Journal of Forestry Research, 24(3): 503–508.

    Moyano E, Martin EZ, Garcia JF, Martin C. 1996. Apparent redundancy in myb-gene function provides gearing for the control of flavonoid bio-synthesis in Antirrhinum flowers. Plant Cell, 8: 1519–1532.

    Murray MG, Thompson WF. 1980. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res, 8: 4321–4325

    Patalaff A, Mcinnis S, Courtenay A. 2003. Characterisation of a pine MYBthat regulates lignification. Plant Journal, 36(6): 743–754.

    Pavy N, Laroche J, Bousquet J, Mackay J. 2005. Large-scale statistical analysis of secondary xylem ESTs in pine. Plant Mol Biol, 57(2): 203–224.

    Rosinski JA, Atchley WR. 1998. Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J Mol Evol, 46: 74–83.

    Sehlabraum SE, Tsuehiay T. 1984. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Syst Evol, 147: 29–54.

    Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 4: 447–456.

    Wang XQ, Chen BJ, Yin LP. 2003. The plant MYB transcription factors. Biotechnology Information, 2: 22–25.

    Wu ZY. 1998. Flora of China, Volume 7: Taxodiaceae. Beijing: China Science Press,

    Yu EY, Kim SE, Kim JH, Ko JH, Cho MH, Chung IK. 2000. Sequence-specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. J Biol Chem, 275: 24208–24214.

    Zhang F, Liu X, Zuo KJ, Sun XF, Tang KX. 2011. Molecular cloning and expression analysis of a novel SANT/MYB gene from Gossypium barbadense. Mol Biol Rep, 38: 2329–2336.

    DOI 10.1007/s11676-014-0527-1

    Project funding: This work was funded by the Natural Science Foundation of China (30800879) and project 2009R50035 supported by Forest Seedling Industry Innovative Team of Zhejiang province in China.

    The online version is available at http://www.springerlink.com

    The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an 311300, China. Email: luyongquan@126.com

    Corresponding editor: Hu Yanbo

    黄色配什么色好看| 久久久久精品久久久久真实原创| 亚洲av国产av综合av卡| 自拍偷自拍亚洲精品老妇| 嫩草影院新地址| 中文精品一卡2卡3卡4更新| 日韩伦理黄色片| 精品久久久久久久久亚洲| 亚洲欧美精品专区久久| 国产 亚洲一区二区三区 | 久久久国产一区二区| 国产一区亚洲一区在线观看| 久久久久精品久久久久真实原创| 日本午夜av视频| 午夜日本视频在线| 亚洲av成人av| 国产精品熟女久久久久浪| 国产在线一区二区三区精| 欧美不卡视频在线免费观看| 久久久成人免费电影| 国产一区亚洲一区在线观看| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 国产熟女欧美一区二区| 国产伦精品一区二区三区视频9| 青青草视频在线视频观看| 一级黄片播放器| 看黄色毛片网站| 中文天堂在线官网| 亚洲精品国产成人久久av| 日韩在线高清观看一区二区三区| 国产成人精品久久久久久| 99久久精品热视频| 一级毛片我不卡| 亚洲av在线观看美女高潮| 女人久久www免费人成看片| 国产真实伦视频高清在线观看| 亚洲最大成人av| 国产黄色视频一区二区在线观看| 亚洲av中文字字幕乱码综合| 男女啪啪激烈高潮av片| 最近视频中文字幕2019在线8| 亚洲人与动物交配视频| 尾随美女入室| 日韩伦理黄色片| 日韩av在线大香蕉| 日日啪夜夜爽| 国产免费福利视频在线观看| 男女国产视频网站| 国产一级毛片在线| 国产男女超爽视频在线观看| 国产一区亚洲一区在线观看| 97精品久久久久久久久久精品| 联通29元200g的流量卡| 日本与韩国留学比较| 我要看日韩黄色一级片| 99久国产av精品| 不卡视频在线观看欧美| 久久99热这里只有精品18| 性插视频无遮挡在线免费观看| 晚上一个人看的免费电影| 国产探花极品一区二区| 又大又黄又爽视频免费| 一本久久精品| av专区在线播放| 男的添女的下面高潮视频| 九色成人免费人妻av| 国产老妇伦熟女老妇高清| 欧美一级a爱片免费观看看| 精品国产露脸久久av麻豆 | 韩国高清视频一区二区三区| 尾随美女入室| 国内揄拍国产精品人妻在线| 国产免费视频播放在线视频 | 亚洲国产欧美在线一区| 三级国产精品片| 91精品一卡2卡3卡4卡| 亚洲精品久久久久久婷婷小说| 综合色av麻豆| 一级av片app| 十八禁网站网址无遮挡 | 别揉我奶头 嗯啊视频| 欧美最新免费一区二区三区| 亚洲国产精品专区欧美| 最后的刺客免费高清国语| 亚洲美女搞黄在线观看| 国产精品一区二区在线观看99 | 在线 av 中文字幕| 久久久欧美国产精品| 久久久久久久久久人人人人人人| 美女主播在线视频| 国产高清有码在线观看视频| 美女cb高潮喷水在线观看| 高清毛片免费看| 网址你懂的国产日韩在线| 亚洲av成人精品一二三区| 亚洲欧美日韩卡通动漫| 亚洲不卡免费看| 国产精品一区二区三区四区免费观看| 久久久久久久久大av| 亚洲国产最新在线播放| 欧美潮喷喷水| 亚洲成人精品中文字幕电影| 亚洲国产最新在线播放| 大又大粗又爽又黄少妇毛片口| 永久免费av网站大全| 亚洲av福利一区| 人妻少妇偷人精品九色| 看免费成人av毛片| av免费在线看不卡| 秋霞在线观看毛片| 看十八女毛片水多多多| 2018国产大陆天天弄谢| 韩国高清视频一区二区三区| www.av在线官网国产| 婷婷六月久久综合丁香| 亚洲精品国产av成人精品| 亚洲av电影不卡..在线观看| 十八禁网站网址无遮挡 | 精品国内亚洲2022精品成人| 亚洲自拍偷在线| 亚洲内射少妇av| 老司机影院成人| 可以在线观看毛片的网站| 日韩人妻高清精品专区| 青青草视频在线视频观看| 国产精品久久久久久久久免| 亚洲第一区二区三区不卡| 亚洲熟妇中文字幕五十中出| 韩国高清视频一区二区三区| 亚洲成人av在线免费| 爱豆传媒免费全集在线观看| 国产人妻一区二区三区在| 国产激情偷乱视频一区二区| 婷婷色综合大香蕉| 六月丁香七月| 国产色婷婷99| 日本午夜av视频| 丰满少妇做爰视频| 小蜜桃在线观看免费完整版高清| 又大又黄又爽视频免费| 男人和女人高潮做爰伦理| 午夜免费观看性视频| 亚洲欧美日韩无卡精品| 毛片女人毛片| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 欧美xxxx黑人xx丫x性爽| 免费人成在线观看视频色| 久久99蜜桃精品久久| 日日摸夜夜添夜夜爱| 日本一本二区三区精品| 2022亚洲国产成人精品| 69av精品久久久久久| 99热这里只有是精品50| 日本色播在线视频| 亚洲四区av| 欧美日本视频| av又黄又爽大尺度在线免费看| 国产美女午夜福利| www.av在线官网国产| 国产 亚洲一区二区三区 | 中文乱码字字幕精品一区二区三区 | 日本-黄色视频高清免费观看| 2018国产大陆天天弄谢| 美女高潮的动态| 老司机影院毛片| 亚洲熟妇中文字幕五十中出| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线 | 亚洲怡红院男人天堂| 日本欧美国产在线视频| 黄色一级大片看看| 国产视频首页在线观看| 国产乱人偷精品视频| 永久免费av网站大全| 天美传媒精品一区二区| 成人欧美大片| 高清日韩中文字幕在线| 国产单亲对白刺激| 午夜福利网站1000一区二区三区| 超碰av人人做人人爽久久| 色尼玛亚洲综合影院| 午夜福利网站1000一区二区三区| 六月丁香七月| 久久久久久久久久成人| 又粗又硬又长又爽又黄的视频| 美女高潮的动态| 人体艺术视频欧美日本| 听说在线观看完整版免费高清| 晚上一个人看的免费电影| 日本-黄色视频高清免费观看| av在线天堂中文字幕| av线在线观看网站| 亚洲精品,欧美精品| 性色avwww在线观看| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站| 亚洲综合精品二区| 日本黄色片子视频| 精品不卡国产一区二区三区| 亚洲av一区综合| 国产乱人偷精品视频| 男人舔奶头视频| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 亚洲内射少妇av| 中文字幕免费在线视频6| 国产一级毛片七仙女欲春2| 视频中文字幕在线观看| 成人综合一区亚洲| 亚洲成人中文字幕在线播放| 97精品久久久久久久久久精品| 网址你懂的国产日韩在线| 久久久久久久午夜电影| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 内射极品少妇av片p| 国产男人的电影天堂91| 亚洲图色成人| 国产 一区精品| 毛片女人毛片| 国产高清不卡午夜福利| 不卡视频在线观看欧美| 又大又黄又爽视频免费| 午夜激情欧美在线| 天堂中文最新版在线下载 | 成人无遮挡网站| 在线播放无遮挡| 99久久中文字幕三级久久日本| 成年免费大片在线观看| 成人毛片a级毛片在线播放| 成人午夜高清在线视频| 免费看不卡的av| 久久久久久久久大av| 亚洲一区高清亚洲精品| 边亲边吃奶的免费视频| 大香蕉97超碰在线| 人人妻人人澡人人爽人人夜夜 | 国产 一区 欧美 日韩| 国产一区二区三区av在线| 老司机影院成人| 久久久久国产网址| 青春草亚洲视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩精品青青久久久久久| 插阴视频在线观看视频| 国产探花极品一区二区| 男女国产视频网站| 午夜精品一区二区三区免费看| 亚洲熟女精品中文字幕| 一级黄片播放器| 亚洲电影在线观看av| 亚洲av一区综合| 夜夜爽夜夜爽视频| av免费在线看不卡| 99热这里只有精品一区| 男女边摸边吃奶| 亚洲国产最新在线播放| 欧美人与善性xxx| 久久人人爽人人爽人人片va| 高清毛片免费看| 国产黄色免费在线视频| 国产美女午夜福利| 中文天堂在线官网| 久久久久网色| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 超碰97精品在线观看| 三级国产精品欧美在线观看| 一区二区三区乱码不卡18| 日本熟妇午夜| 欧美日韩视频高清一区二区三区二| 精品人妻一区二区三区麻豆| 美女主播在线视频| 欧美3d第一页| 久久精品人妻少妇| 毛片女人毛片| 免费观看在线日韩| 欧美xxxx黑人xx丫x性爽| 日韩国内少妇激情av| 亚洲国产欧美人成| 国产淫语在线视频| 777米奇影视久久| 熟妇人妻不卡中文字幕| 亚洲乱码一区二区免费版| 精品人妻熟女av久视频| 亚洲国产高清在线一区二区三| 久久97久久精品| 久久久久久久久中文| 欧美精品国产亚洲| 黄色欧美视频在线观看| 777米奇影视久久| 日韩欧美国产在线观看| 久久久久久伊人网av| 欧美极品一区二区三区四区| 亚洲熟女精品中文字幕| 免费看日本二区| 国产极品天堂在线| 最近2019中文字幕mv第一页| 国产女主播在线喷水免费视频网站 | 日韩成人伦理影院| 91久久精品国产一区二区三区| 欧美97在线视频| 亚洲伊人久久精品综合| 国产精品蜜桃在线观看| 国产 一区精品| 久久精品国产亚洲网站| 午夜日本视频在线| 国产中年淑女户外野战色| 一区二区三区高清视频在线| 老司机影院成人| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| 中文字幕av在线有码专区| 国产精品人妻久久久影院| 99久久人妻综合| 日本午夜av视频| 美女高潮的动态| 国产精品国产三级专区第一集| 在线免费十八禁| 国产免费福利视频在线观看| 好男人在线观看高清免费视频| 色网站视频免费| 日韩av在线大香蕉| 九草在线视频观看| 午夜福利视频精品| 国产精品一区二区在线观看99 | 欧美人与善性xxx| 国产高清国产精品国产三级 | 国产色爽女视频免费观看| 日韩制服骚丝袜av| 精品久久久久久久久久久久久| 26uuu在线亚洲综合色| 国产一级毛片在线| 国产一区二区在线观看日韩| 内地一区二区视频在线| 少妇丰满av| 极品教师在线视频| 五月伊人婷婷丁香| 蜜桃久久精品国产亚洲av| 26uuu在线亚洲综合色| 欧美 日韩 精品 国产| av播播在线观看一区| 三级毛片av免费| 欧美精品一区二区大全| 最近的中文字幕免费完整| 一区二区三区高清视频在线| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 男人爽女人下面视频在线观看| 亚洲欧美一区二区三区黑人 | 国产亚洲5aaaaa淫片| 狂野欧美白嫩少妇大欣赏| 国产乱人视频| 99热全是精品| 国产 一区精品| 男人狂女人下面高潮的视频| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 日韩精品有码人妻一区| av黄色大香蕉| av又黄又爽大尺度在线免费看| a级毛色黄片| 亚洲av在线观看美女高潮| 国内揄拍国产精品人妻在线| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 成人欧美大片| 舔av片在线| 97超碰精品成人国产| 我要看日韩黄色一级片| 十八禁网站网址无遮挡 | 高清午夜精品一区二区三区| 国产精品熟女久久久久浪| 我的老师免费观看完整版| 男人爽女人下面视频在线观看| 国产免费一级a男人的天堂| 日本欧美国产在线视频| 国产高潮美女av| 最近2019中文字幕mv第一页| 日本与韩国留学比较| 婷婷色av中文字幕| 久久久久精品久久久久真实原创| 又爽又黄a免费视频| 国产精品久久久久久精品电影| 精品久久久久久久久久久久久| 高清日韩中文字幕在线| 青春草视频在线免费观看| 床上黄色一级片| 80岁老熟妇乱子伦牲交| 偷拍熟女少妇极品色| 亚洲性久久影院| 免费观看性生交大片5| 黄色一级大片看看| 插阴视频在线观看视频| 午夜福利网站1000一区二区三区| 99热6这里只有精品| 久久99蜜桃精品久久| 婷婷色av中文字幕| 91av网一区二区| 亚洲成人久久爱视频| 国产精品久久久久久久电影| 亚洲精品日本国产第一区| 久久久久久久久久人人人人人人| 一区二区三区四区激情视频| 国产精品.久久久| 大片免费播放器 马上看| 色网站视频免费| 99久国产av精品国产电影| 纵有疾风起免费观看全集完整版 | 国产精品久久久久久久电影| 久99久视频精品免费| 男人舔奶头视频| 干丝袜人妻中文字幕| 哪个播放器可以免费观看大片| 精品久久久久久成人av| 亚洲av免费在线观看| 成人欧美大片| 欧美日韩视频高清一区二区三区二| 看免费成人av毛片| 亚洲欧美清纯卡通| 午夜福利高清视频| 亚洲成人一二三区av| 在线观看一区二区三区| 成人综合一区亚洲| 国产精品爽爽va在线观看网站| 欧美激情国产日韩精品一区| 亚洲高清免费不卡视频| 欧美xxⅹ黑人| 人妻系列 视频| 美女主播在线视频| 国产高清三级在线| 日韩强制内射视频| 人妻制服诱惑在线中文字幕| 国产在视频线精品| 精品人妻偷拍中文字幕| 91精品国产九色| 99久久精品热视频| 久久精品熟女亚洲av麻豆精品 | 成年女人在线观看亚洲视频 | 国产一级毛片在线| 国产成人免费观看mmmm| 日韩一区二区视频免费看| 搡老乐熟女国产| 十八禁网站网址无遮挡 | 亚洲精品自拍成人| 中文字幕亚洲精品专区| 亚洲精品乱久久久久久| 亚洲精品一二三| 成人午夜高清在线视频| 日本-黄色视频高清免费观看| 人妻少妇偷人精品九色| 免费观看a级毛片全部| 伊人久久国产一区二区| 国国产精品蜜臀av免费| 亚洲欧美日韩东京热| 18禁裸乳无遮挡免费网站照片| 亚洲精品aⅴ在线观看| 韩国av在线不卡| 国产一区二区在线观看日韩| 国产一区有黄有色的免费视频 | 免费观看精品视频网站| 欧美日韩视频高清一区二区三区二| 国产黄片美女视频| 成人性生交大片免费视频hd| 国产熟女欧美一区二区| 成人av在线播放网站| 久久99蜜桃精品久久| 久久精品国产亚洲av天美| 久久人人爽人人爽人人片va| 99re6热这里在线精品视频| 97热精品久久久久久| 纵有疾风起免费观看全集完整版 | 男女啪啪激烈高潮av片| 亚洲精品国产av蜜桃| 在线免费观看的www视频| 小蜜桃在线观看免费完整版高清| 亚洲aⅴ乱码一区二区在线播放| 国产午夜福利久久久久久| 人妻系列 视频| 国产精品av视频在线免费观看| 亚洲三级黄色毛片| 超碰av人人做人人爽久久| 欧美日韩综合久久久久久| 最近2019中文字幕mv第一页| 久久久久精品久久久久真实原创| 国产淫语在线视频| 一区二区三区四区激情视频| 三级国产精品欧美在线观看| 国产精品伦人一区二区| 最近最新中文字幕免费大全7| 日韩欧美一区视频在线观看 | 国产免费福利视频在线观看| 成人鲁丝片一二三区免费| 久久久成人免费电影| 天堂av国产一区二区熟女人妻| 久久97久久精品| 亚洲欧美一区二区三区黑人 | 亚洲av福利一区| 亚洲无线观看免费| 亚洲精品国产av成人精品| 国产极品天堂在线| 精品人妻一区二区三区麻豆| 舔av片在线| 国产老妇女一区| 亚洲国产色片| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 最近中文字幕高清免费大全6| 永久网站在线| 国产v大片淫在线免费观看| 国产精品国产三级国产av玫瑰| 18+在线观看网站| 一区二区三区免费毛片| 午夜福利在线在线| 日日啪夜夜爽| 乱人视频在线观看| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲网站| 我的女老师完整版在线观看| 中文资源天堂在线| 最后的刺客免费高清国语| 汤姆久久久久久久影院中文字幕 | 看非洲黑人一级黄片| 大又大粗又爽又黄少妇毛片口| 久久精品久久精品一区二区三区| 国产女主播在线喷水免费视频网站 | 男的添女的下面高潮视频| 成人亚洲精品av一区二区| 又粗又硬又长又爽又黄的视频| 亚洲最大成人中文| 成人性生交大片免费视频hd| 亚洲美女视频黄频| 久久久欧美国产精品| 欧美日韩国产mv在线观看视频 | 两个人的视频大全免费| 晚上一个人看的免费电影| 国产av不卡久久| 国内精品一区二区在线观看| 亚洲成人久久爱视频| 草草在线视频免费看| 午夜免费观看性视频| 欧美成人a在线观看| 男人舔奶头视频| 天堂影院成人在线观看| 中国国产av一级| 亚洲成人av在线免费| 久久99热6这里只有精品| 亚州av有码| 天天一区二区日本电影三级| 亚洲欧美中文字幕日韩二区| 男人舔女人下体高潮全视频| av专区在线播放| 好男人视频免费观看在线| 亚洲av中文av极速乱| 国产亚洲av片在线观看秒播厂 | 久久久久久久久中文| 能在线免费看毛片的网站| 亚洲欧美精品专区久久| 中文字幕久久专区| 一个人观看的视频www高清免费观看| 亚洲激情五月婷婷啪啪| 老师上课跳d突然被开到最大视频| 青青草视频在线视频观看| 国产精品一区二区性色av| 亚洲人成网站在线播| 亚洲精品国产成人久久av| 国产有黄有色有爽视频| 女人被狂操c到高潮| 高清av免费在线| 国产精品一区二区在线观看99 | 久久热精品热| 直男gayav资源| 最近视频中文字幕2019在线8| 免费观看av网站的网址| 特大巨黑吊av在线直播| 综合色av麻豆| 免费观看av网站的网址| 欧美极品一区二区三区四区| 狂野欧美激情性xxxx在线观看| 人体艺术视频欧美日本| 国产精品久久久久久久久免| 夫妻午夜视频| 熟女电影av网| 18禁动态无遮挡网站| 麻豆国产97在线/欧美| 老司机影院毛片| 婷婷色av中文字幕| 亚洲欧洲日产国产| 精品不卡国产一区二区三区| 嘟嘟电影网在线观看| 一级a做视频免费观看| 成人亚洲欧美一区二区av| 国产精品伦人一区二区| 久久精品综合一区二区三区| 欧美区成人在线视频| 91精品国产九色| 综合色av麻豆| 国内精品美女久久久久久| 丝瓜视频免费看黄片| 国产综合精华液| 久久热精品热| 男女那种视频在线观看| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久久久按摩| 男女那种视频在线观看| 91精品伊人久久大香线蕉| 日韩精品青青久久久久久| 天堂网av新在线|