• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biomass accumulation and nutrient uptake of 16 riparian woody plant species in Northeast China

    2014-09-06 11:13:30ShuaiYuWeiChenXingyuanHeZhouliLiuYanqingHuang
    Journal of Forestry Research 2014年4期

    Shuai Yu · Wei Chen · Xingyuan He · Zhouli Liu · Yanqing Huang

    ORIGINAL PAPER

    Biomass accumulation and nutrient uptake of 16 riparian woody plant species in Northeast China

    Shuai Yu · Wei Chen · Xingyuan He · Zhouli Liu · Yanqing Huang

    Received: 2014-01-05; Accepted: 2014-04-15

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    Our research focused on eutrophication control and species screening for riparian zone vegetation restoration in the upstream reach of the Hun River. We studied 16 hardwood plant species to investigate nutrient concentrations and nitrogen and phosphorus accumulations. After about 120 days of growth in pots, these 16 species varied in dry matter biomass, ranging from 15.13 to 637.16 g. Total nitrogen (TN) and total phosphorus (TP) concentrations and distribution in roots, stems and foliage differed both within and between tested species. Mean TN and TP accumulation ranged from 0.167 to 14.730 g per plant and from 0.016 to 1.20 g, respectively. All 16 species, but especially Lespedeza bicolor, Robinia pseudoacacia and Sorbaria sorbifolia had strong potential to remove TN and TP from soil and could be widely utilized for the restoration of destroyed riparian zones in northeast China.

    Nitrogen, phosphorous, ecological restoration, foliage

    Introduction

    Eutrophication is a widespread and increasing problem in water resources in many countries (Bennett et al. 2001). Agricultural non-point source pollution remains the greatest global contributor to eutrophication (Corwin et al. 1997; Dabrowski et al. 2002).The riparian zone receives and retains large amounts of nutrient inputs from farmland. These inputs can indirectly lead to eutrophication of rivers (Giese et al. 2003; McClain et al. 2003). Riparian zone vegetation, through interception and storage, plays an important role in protecting the river water from eutrophication (Lowrance et al. 1997; Hazlett et al. 2008; McBroom et al. 2008). Nitrogen concentration in runoff water can be reduced by 65%?100% after passing through a riparian zone forest (Spoelstra et al. 2010). Depending on the plant species, plant nutrient uptake has been shown to account for 3%?47% of nitrogen removal and 3%?60% of phosphorus removal from runoff water in the riparian zone (Cooke 1992; Tanner 1996; Kuusemets et al. 2001). The riparian zone forms an appropriate environment for nutrient removal (Lowrance et al. 1984; Lee et al. 2009). Previous studies have examined more than 50 aquatic plants (Borin and Salvato 2012) and herbs (Mcjannet et al. 1995; Yu et al. 2014). On an annual basis, forested riparian buffer strips have proven more effective at reducing nitrogen concentrations in streams than herbaceous buffers (Lowrance et al. 1984; Osborne and Kovacic 1993; Hefting et al. 2005). Poplar forest in the riparian zone proved more effective (99% retention of NO3?) than grass (84% retention of NO3?) during winter months (Haycock and Pinay 1993).

    Selecting suitable woody plants for restoration of polluted, damaged riparian zones is an effective and efficient measure for controlling non-point-source agricultural inputs of nutrients (Bedford et al. 1999). However, few studies directly compared the effect of various plant species under similar conditions for extended periods of time to identify those which most efficiently accumulate nitrogen and phosphorus. This is especially true in cold temperate regions.

    To fill the above information gap, we studied 16 native woody plants of 9 families to assess their performance in removing nitrogen and phosphorus from runoff water. We quantified Total nitrogen and total phosphorus concentrations, and biomass accumulations of the plants in different tissues. This research was undertaken to aid in predicting the response of species to eutrophication and providing statistical support for plant species screening for the restoration of eutrophicated riparian zones.

    Materials and methods

    Plant culture

    Based on species lists for riparian zone forests along the Hun River, we selected sixteen woody plant species of northeastern China for study: Syringa reticulate, Prunus padus, Robinia pseudoacacia, Pterocarya stenoptera, Juglans mandshuriea, Berberis dielsiana, Sambucus williamsii, Salix matsudana, Quercus mongolica, Rosa davurica, Euonymus alatus, Acer truncatum, Populus alba, Lespedeza bicolor, Ulmus pumila, and Sorbaria sorbifolia. The uniform plants (three-year-old seedlings) used in this study were bought from a nursery and cultivated in pots (five pots per species) with 8-kg un-contaminated soil (Meadow burozem soil, 6.82 pH, 2.53% organic carbon, 4.35% organic matter, 1.88 mg·g-1total nitrogen, 0.24 mg·g-1total phosphorus. After one month of growth in pots, a screening experiment was conducted from May to October 2012 at Shenyang Arboretums of Chinese Academy of Sciences (41°54? N,123°35? E). Plants were grown under nutrient controlled conditions with nutrient solution added.

    Nutrient solution was used to simulate the high nutrient input levels which typically occurred in agriculture runoff. The standard solution contained 56 mg·L-1of nitrogen (as NH4NO3) and 62 mg·L-1of phosphorus (as NaH2PO4·2H2O), a control group was set up (CK: 0 mg·L-1of nitrogen and 0 mg·L-1of phosphorus). The nutrient addition was applied once a week. The experiment was replicated three times.

    Nutrient analysis

    At the end of the growing season (October), the plant samples were harvested, washed and separated into roots, stem and foliage, heated in an oven at 90°C for 30 min and dried at 65°C to constant weight. Oven-dried materials were milled and passed through a 100-mesh (0.149 mm) nylon sieve (Huafeng, Zhejiang, China), and then stored in jars prior to laboratory analyses (Lu 1999).

    Subsamples were digested for total nitrogen (TN) and total phosphorus (TP) measurement according to the sulfuric acid–hydrogen peroxide (H2SO4–H2O2) method (Son and Gower 1992). TN was quantified using the semi-micro Macro Kjeldahl method (Ruizheng Kjeldahl nitrogen analyzer KDY-600D, Shanghai, China). TP was quantified using the molybdenum antimony-ascorbic acid colorimetric method (MADAC) (SHIMADZU UV-1800 spectrophotometer, Japan).

    Statistical analyses

    Average values and standard errors (S.E.) were calculated by Microsoft Office Excel 2007 for all data. Statistical procedures used in this study were performed using SPSS (Version 16.0, SPSS Inc. 2007). Standard one-way analyses of variance (ANOVA) were used to test significance of differences among and between the sixteen tested species and between roots, stems and foliage, with respect to TN, TP and biomass. Duncan multiple range test was employed to show the variation in TN and TP between species. Spearman’s correlation analysis was used to determine the correlationships between tissues and nutrition. Significant and extremely significant differences were set as p <0.05 and p < 0.01, respectively. Hierarchical cluster analysis was used to classify plants into different groups based on the nutrient distribution in tissues. Origin 8.0 was used to draw figures.

    Results

    Total biomass

    At the end of the research, the total biomass per plant was compared between the 16 tested species (Fig. 1). After about 120 days of growth, total biomass/plant differed significantly by species and treatment (p <0.05, n=3, Fig.1). The biomass of CK ranged from 4.20 to 237.89 g in the order:Quercus mongolica <Ulmus pumila <Pterocarya stenoptera <Sambucus williamsii<Euonymus alatus < Berberis dielsiana <Prunus padus <Rosa davurica <Acer truncatum <Juglans mandshuriea < Syringa reticulate <Salix matsudana <Populus alba <Sorbaria sorbifolia < Robinia pseudoacacia <Lespedeza bicolor. The T1 (treatment) biomass per plant value ranged from 15.13 to 637.16 g in the following order: Pterocarya stenoptera < Quercus mongolica <Ulmus pumila <Berberis dielsiana <Sambucus williamsii< Prunus padus <Rosa davurica < Euonymus alatus < Acer truncatum<Juglans <mandshuriea < Syringa reticulate <Salix matsudana < Populus alba <Sorbaria sorbifolia <Lespedeza bicolor < Robinia pseudoacacia. T1 treatment resulted in greater biomass than CK. Robinia pseudoacacia and Lespedeza bicolor yielded more biomass than other species.

    Fig. 1: The CK and T1 biomass of 16 plant species. A, B, C indicate T1 the significance different at p <0. 05; a, b, c indicate CK the significance different at p <0.05. Error bars denote 1 SE (n=3). Syringa reticulate (Sr), Prunus padus (Pp), Robinia pseudoacacia (Rp), Pterocarya stenoptera (Ps), Juglans mandshuriea (Jm), Berberis dielsiana (Bd), Sambucus williamsii, Salix matsudana (Sm), Quercus mongolica (Qm), Rosa davurica (Rd), Euonymus alatus (Ea), Acer truncatum (At), Populus alba (Pa), Lespedeza bicolor (Lb), Ulmus pumila (Up) and Sorbaria sorbifolia (Ss).

    Variation in TN and TP concentration among tissues

    For all tested species, TN and TP concentrations varied between roots, stem and foliage (Fig. 2). TN (p <0.05) and TP (p <0.05) concentrations in foliage were significantly greater than in roots and stems. There was no consistent pattern in the distribution of N or P concentrations in stems and roots. The plant tissues in T1 treatment had higher N and P concentrations than that did CK. The foliage of Sambucus williamsii and Berberis dielsiana had the highest TN (35.56 mg·g-1) and TP (5.49 mg·g-1) concentrations. The average TN concentration in roots, stems and foliage was 12.11 mg·g-1, 12.96 mg·g-1and 22.46 mg·g-1; The TP concentration in roots, stems and foliage was 1.58 mg·g-1, 1.51 mg·g-1and 2.51 mg·g-1, respectively.

    Accumulation of TN and TP in plants

    According to the analysis of TN and TP accumulations in the plants, there were significant differences in the roots, stem, foliage and among species. As shown in Tables 1 and 2, mean TN accumulated in the whole plant ranged from 166.65 to 14729.73 mg (Quercus mongolica <Pterocarya stenoptera <Ulmus pumila< Rosa davurica <Prunus padus < Sambucus williamsii <Berberis dielsiana <Acer truncatum <Euonymus alatus <Juglans mandshuriea <Syringa reticulate <Salix matsudana<Populus alba <Sorbaria sorbifolia < Lespedeza bicolor <Robinia pseudoacacia) and TP ranged from 16.06 to 1203.54 mg (Quercus mongolica <Pterocarya stenoptera <Ulmus pumila<Euonymus alatus <Rosa davurica < Sambucus williamsii < Prunus padus <Berberis dielsiana <Acer truncatum <Salix matsudana < Populus alba <Juglans mandshuriea <Syringa reticulate <Sorbaria sorbifolia <Lespedeza bicolor <Robinia pseudoacacia). Species Rp showed by a wide margin the highest accumulated TN and TP. Spearman correlation analysis indicated that TN and TP accumulations in different tissues were positively correlated (Table 3). The Correlation coefficient ranged from 0.81 to 0.96.

    Fig. 2: Total Nitrogen and Total Phosphorus concentration (dry, wt) of plants. Syringa reticulate (Sr), Prunus padus (Pp), Robinia pseudoacacia (Rp), Pterocarya stenoptera (Ps), Juglans mandshuriea (Jm), Berberis dielsiana (Bd), Sambucus williamsii, Salix matsudana (Sm), Quercus mongolica (Qm), Rosa davurica (Rd), Euonymus alatus (Ea), Acer truncatum (At), Populus alba (Pa), Lespedeza bicolor (Lb), Ulmus pumila (Up) and Sorbaria sorbifolia (Ss).

    Table 1: Comparison of the TN accumulations (mg) in different tissues (roots, stem and foliage) of the sixteen tested tree species (means ± sd)

    Table 2: Comparison of the TP accumulations (mg) in different tissues (roots, stem and foliage) of the sixteen tested tree species (means ± sd)

    Distribution of TN and TP in tissues

    The accumulated quantities of TN in roots, stems and foliage accounted for 23?48%, 18?56% and 8?52%, respectively, of the total accumulations (Fig. 3). The proportions of TP in roots, stems, and foliage were 21?55%, 20?56% and 11?43%, respectively, of the total accumulations (Fig. 3).

    Table 3: Spearman correlation coefficient of TN and TP accumulations in different tissues.

    Based on the distribution of nutrient accumulations, the tested species were clustered into three distinct groups by Hierarchical cluster analysis (Fig. 4). The first group, including only two species, had a relatively higher proportion of nutrients (more than 50%) in stems; the second group included 9 species in which roots had the highest percentages of nutrients (about 45%). Foliage and stems shared almost the equal proportions. The third group, including 5 species, shared nearly equal percentages of nutrients in roots, stems and foliage. Species of the same families were clustered into the same groups (except Quercus mongolica).

    Fig. 3: Total nitrogen and total phosphorus distribution in roots, stem and foliage. Syringa reticulate (Sr), Prunus padus (Pp), Robinia pseudoacacia (Rp), Pterocarya stenoptera (Ps), Juglans mandshuriea (Jm), Berberis dielsiana (Bd), Sambucus williamsii, Salix matsudana (Sm), Quercus mongolica (Qm), Rosa davurica (Rd), Euonymus alatus (Ea), Acer truncatum (At), Populus alba (Pa), Lespedeza bicolor (Lb), Ulmus pumila (Up) and Sorbaria sorbifolia (Ss).

    Discussion

    Interspecific variation

    Biomass accumulations of nutrients varied by species (Fig. 1). These differences were largely determined by their physiology (i.e., net assimilation) and morphology (Ma et al. 2010), as many species have various mechanisms for adaptation, including ad-justments of growth rate, modifications of plant structure (Li et al. 2007). Plants with high biomass accumulate more nutrients in their tissues (Jiang et al. 2011). Robinia pseudoacacia and Lespedeza bicolor yielded the highest biomass and accumulated the highest quantities of nutritients. Kyambadde et al. (2004) and Iamchaturapatr et al. (2007) report that species like Robinia pseudoacacia and Lespedeza bicolor are more suitable for riparian zone restoration owing to higher N and P removal from water.

    Fig. 4: Euclidean distance clustering tree. Syringa reticulate (Sr), Prunus padus (Pp), Robinia pseudoacacia (Rp), Pterocarya stenoptera (Ps), Juglans mandshuriea (Jm), Berberis dielsiana (Bd), Sambucus williamsii, Salix matsudana (Sm), Quercus mongolica (Qm), Rosa davurica (Rd), Euonymus alatus (Ea), Acer truncatum (At), Populus alba (Pa), Lespedeza bicolor (Lb), Ulmus pumila (Up), and Sorbaria sorbifolia (Ss).

    Boyd (1970, 1978) observed large interspecific variation in nutrient concentrations in aquatic plants. In his study, it is unclear whether such differences were related to environmental nutrient levels or to the different absorption rates of the various species because the plants were collected from the field. However, in our study, plants were of the same age and were cultivated in the same environment conditions. In the absence of other factors such as disturbance, interspecific variation in tissue TN and TP was recorded in our study. This result was in accordance with research on 41 wetland plants reported by McJannet (1995).

    In our study, each species showed dramatically different TN and TP concentrations and accumulations between tissues (roots, stems and foliage). Nutritients were recorded at higher concentrations in foliage than in roots and stems. There were, however, no consistent differences in nutrient concentrations between roots and stems. This result was consistent with the results of Zhu et al. (2011). Li et al. (2013) reported nutrition distribution as foliage> stems> roots in 30 common plant species grown in the hydro-fluctuation belt of Baihua Reservoir in Guizhou province, China. This was because both the structure and function differ by tissue type. Leaves contain photosynthetic tissues whose metabolism is active, while roots and stems are storage tissues that transport water and nutrients. Stems and roots, which were primarily composed of cellulose, have lower nutrition demand (Shan et al. 2011).

    We recorded positive correlation between TN and TP. Niinemets and Kull (2003), however, found no correlation between TN and TP in plant species in a wooded meadow and a bog, probably because concentrations were similar in all species. In fact, both N and P can stimulate growth or other processes because TN supply affects how efficiently TP is acquired and used, and vice versa (Treseder and Vitousek 2001; Gusewell et al. 2003).

    The function of riparian zone plants in nutrition removal

    TN and TP concentration of the 16 woody plants ranged from 8.38 to 35.56 mg·g-1and from 0.87 to 5.49 mg·g-1, respectively. TN and TP were accumulated to quantities ranging from 111.6 to 14729.73 mg and 16.06 to 1203.54 mg, respectively. Of the 16 woody plants, Lespedeza bicolor, Robinia pseudoacacia, and Sorbaria sorbifolia had absorbed most TN and TP from soil and stored most in tissues. These three species are recommended as preferred restoration plants for the main purpose of TN and TP removal in the riparian zone. Of course, the above results showed only the absorption and storage ability of the tested plant species. In other words, the data in Table 2 and Table 3 were just a part of the total removal effect by the whole riparian ecosystem. The riparian plant community provides a suitable environment for TN and TP removal (Wu et al. 2011). Other mechanisms, such as rhizosphere microbial activity and physical processes, could also contribute to the removal of most pollutants (Brix 1987; Gottschall et al. 2007). Consequently, the nutrient treatment and removal capacities of woody plants examined this study would, if grown in the wild, undoubtedly far exceed the results presented here. Due to the complexity of riparian ecosystems, more research is needed to learn more about the processes and mechanisms in natural situations.

    Acknowledgement

    We would like to thank Prof. Dali Tao, from Institute of Applied Ecology, Chinese Academy of Sciences, and Zhu Hong, the Editor of Journal of Forestry Research and Dr. Thomas D. Dahmer, the language editor of Journal of Forestry Research for their comments and suggestions on this manuscript.

    Bedford BL, Walbridge MR, Aldous A. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology, 80(7): 2151?2169.

    Bennett EM, Carpenter SR, Caraco NF. 2001. Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience, 51(3): 227?234.

    Borin M, Salvato M. 2012. Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecol Eng, 46: 34?42.

    Boyd CE. 1970. Chemical Analyses of Some Vascular Aquatic Plants. Archiv Fur Hydrobiologie, 67(1): 78?85.

    Boyd CE. 1978. Chemical composition of wetland plants. Freshwater Wetlands: Ecological Processes and Management Potential. New York: New York Academic Press, pp. 155?167

    Brix H. 1987. Treatment of wastewater in the rhizosphere of wetland plants-the root-zone method. Wat Sci Tech, 19(1/2): 107?118.

    Cooke JG. 1992. Phosphorus Removal Processes in a Wetland after a Decade of Receiving a Sewage Effluent. Journal of environmental quality, 21(4): 733?739.

    Corwin DL, Vaughan PJ, Loague K. 1997. Monitoring nonpoint source pollutants in the vadose zone with GIS. Environ Sci Technol, 31(8): 2157?2175.

    Dabrowski JM, Peall SKC, Van Niekerk A, Reinecke AJ, Day JA, Schulz R. 2002. Predicting runoff-induced pesticide input in agricultural sub-catchment surface waters: linking catchment variables and contamination. Water Research, 36(20): 4975?4984.

    Giese LAB, Aust WM, Kolka RK, Trettin CC. 2003. Biomass and carbon pools of disturbed riparian forests. Forest Ecol Manag, 180(1-3): 493?508.

    Gottschall N, Boutin C, Crolla A, Kinsley C, Champagne P. 2007. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol Eng, 29(2): 154?163.

    Gusewell S, Bollens U, Ryser P, Klotzli F. 2003. Contrasting effects of nitrogen, phosphorus and water regime on first- and second-year growth of 16 wetland plant species. Functional Ecology, 17(6): 754?765.

    Haycock NE, Pinay G. 1993. Groundwater Nitrate Dynamics in Grass and Poplar Vegetated Riparian Buffer Strips during the Winter. Journal of environmental quality, 22(2): 273?278.

    Hazlett P, Broad K, Gordon A, Sibley P, Buttle J, Larmer D. 2008. The importance of catchment slope to soil water N and C concentrations in riparian zones: implications for riparian buffer width. Can J Forest Res, 38(1): 16?30.

    Hefting MM, Clement JC, Bienkowski P, Dowrick D, Guenat C, Butturini A, Topa S, Pinay G, Verhoeven JTA. 2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecol Eng, 24(5): 465?482.

    Iamchaturapatr J, Yi SW, Rhee JS. 2007. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecol Eng, 29(3): 287?293.

    Jiang FY, Chen X, Luo AC. 2011. A comparative study on the growth and nitrogen and phosphorus uptake characteristics of 15 wetland species. Chem Ecol, 27(3): 263?272.

    Kuusemets V, Mander U, Lohmus K, Ivask M. 2001. Nitrogen and phosphorus variation in shallow groundwater and assimilation in plants in complex riparian buffer zones. Water Sci Technol, 44(11?12): 615?622.

    Kyambadde J, Kansiime F, Gumaelius L, Dalhammar G. 2004. A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Research, 38(2): 475?485.

    Lee CG, Fletcher TD, Sun GZ. 2009. Nitrogen removal in constructed wetland systems. Eng Life Sci, 9(1): 11?22.

    Li M, Wu YJ, Yu ZL, Sheng GP, Yu HQ. 2007. Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica Forsk.) with ion implantation. Water Research, 41(14): 3152?3158.

    Li XF, Li QH, Qin HL, Chen FF, Liu SP, Gao TJ, Ou T. 2013. Distribution characteristics of N, P and K contents in 30 common plants from the hydro-fluctuation belt of Baihua Reservoir. Acta Scientiae Circumstantiae, 33(4): 1089?1097. (In Chinese)

    Lowrance R, Altier LS, Newbold JD, Schnabel RR, Groffman PM, Denver JM, Correll DL, Gilliam JW, Robinson JL, Brinsfield RB, Staver KW, Lucas W, Todd AH. 1997. Water quality functions of Riparian forest buffers in Chesapeake Bay watersheds. Environ Manage, 21(5): 687?712.

    Lowrance R, Todd R, Fail J, Hendrickson O, Leonard R, Asmussen L. 1984. Riparian Forests as Nutrient Filters in Agricultural Watersheds. Bioscience, 34(6): 374?377.

    Lu R. 1999. Soil agrochemical analysis. Beijing: China Agricultural Science and Technology Press, p. 296?300. (In Chinese)

    Ma PL, Pu JY, Zhao CY, Wang WT. 2010. Influence of light and temperature factors on biomass accumulation of winter wheat in field. The Journal of Applied Ecology, 21(5): 1270?1276. (In Chinese)

    McBroom MW, Beasley RS, Chang M, Ice GG. 2008. Water quality effects of clearcut harvesting and forest fertilization with best management practices. Journal of Environmental Quality, 37(1): 114?124.

    McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6(4): 301?312.

    Mcjannet CL, Keddy PA, Pick FR. 1995. Nitrogen and Phosphorus Tissue Concentrations in 41 Wetland Plants - a Comparison across Habitats and Functional-Groups. Functional Ecology, 9(2): 231?238.

    Niinemets U, Kull K. 2003. Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecologica-International Journal of Ecology, 24(4): 209?219.

    Osborne LL, Kovacic DA. 1993. Riparian Vegetated Buffer Strips in Water-Quality Restoration and Stream Management. Freshwater Biol, 29(2): 243?258.

    Shan BQ, Ao L, Hu CM, Song JY. 2011. Effectiveness of vegetation on phosphorus removal from reclaimed water by a subsurface flow wetland in a coastal area. J Environ Sci-China, 23(10): 1594?1599.

    Son Y, Gower ST. 1992. Nitrogen and phosphorus distribution for five plantation species in southwestern Wisconsin. Forest Ecol Manag, 53(1–4): 175?193.

    Spoelstra J, Schiff SL, Semkin RG, Jeffries DS, Elgood RJ. 2010. Nitrate attenuation in a small temperate wetland following forest harvest. Forest Ecol Manag, 259(12): 2333?2341.

    Tanner CC. 1996. Plants for constructed wetland treatment systems - A comparison of the growth and nutrient uptake of eight emergent species. Ecol Eng, 7(1): 59?83.

    Treseder KK, Vitousek PM. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82(4): 946?954.

    Wu HM, Zhang JA, Li PZ, Zhang JY, Xie HJ, Zhang B. 2011. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol Eng, 37(4): 560-568.

    Yu S, Chen W, He X, Liu Z, Song H, Ye Y, Huang Y, Jia L. 2014. A comparative study on nitrogen and phosphorus concentration characteristics of twelve riparian zone species from upstream of Hunhe River. CLEAN–Soil, Air, Water, 42 (4): 408–414.

    Zhu LD, Li ZH, Ketola T. 2011. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area. Ecol Eng, 37(10): 1460?1466.

    DOI 10.1007/s11676-014-0524-4

    Project funding: This work was funded by the major National Science and Technology project ‘‘Water Pollution Control and Management’’(2012ZX07202008) of China and the National Science and Technology Pillar Program (2012BAC05B05).

    The online version is available at http:// www.springerlink.com

    Shuai Yu1,2, Wei Chen1, Xingyuan He()1, Zhouli Liu1

    Yanqing Huang11State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China;2University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China.

    E-mail: hexy@iae.ac.cn;oncehere88@gmail.com

    Corresponding editor: Zhu Hong

    最黄视频免费看| 美女国产高潮福利片在线看| 日韩一区二区三区影片| 亚洲国产精品国产精品| 成人综合一区亚洲| 久久这里有精品视频免费| 高清在线视频一区二区三区| 成人综合一区亚洲| 国产av精品麻豆| 久热这里只有精品99| 欧美 日韩 精品 国产| 中文字幕免费在线视频6| 国产日韩欧美在线精品| 看免费成人av毛片| 欧美激情极品国产一区二区三区 | 亚洲色图 男人天堂 中文字幕 | 成人手机av| 精品国产一区二区久久| 精品人妻熟女毛片av久久网站| 欧美日本中文国产一区发布| 男女免费视频国产| 又大又黄又爽视频免费| 寂寞人妻少妇视频99o| 少妇人妻精品综合一区二区| 国产亚洲精品第一综合不卡 | 久久婷婷青草| 亚洲国产精品999| 80岁老熟妇乱子伦牲交| av有码第一页| 亚洲人成77777在线视频| a级毛片在线看网站| 天天躁夜夜躁狠狠久久av| 少妇被粗大猛烈的视频| 欧美少妇被猛烈插入视频| 久久99热这里只频精品6学生| 美女内射精品一级片tv| a级毛色黄片| 亚洲国产精品成人久久小说| 中文乱码字字幕精品一区二区三区| 亚洲av电影在线观看一区二区三区| 99久久综合免费| 丝袜脚勾引网站| 久久99热这里只频精品6学生| 老司机影院成人| 青青草视频在线视频观看| 国产成人a∨麻豆精品| 99热6这里只有精品| 日本黄色片子视频| 午夜免费观看性视频| 中国美白少妇内射xxxbb| 国产有黄有色有爽视频| 精品国产乱码久久久久久小说| 九色成人免费人妻av| 丝袜美足系列| 飞空精品影院首页| 久久亚洲国产成人精品v| 成人亚洲精品一区在线观看| 如日韩欧美国产精品一区二区三区 | 18禁在线无遮挡免费观看视频| 美女福利国产在线| 香蕉精品网在线| 日本欧美视频一区| 色94色欧美一区二区| 久久久国产精品麻豆| 亚洲精品久久久久久婷婷小说| 美女大奶头黄色视频| 亚洲欧洲国产日韩| 午夜免费鲁丝| 性色av一级| 美女国产高潮福利片在线看| 亚洲av在线观看美女高潮| 在线播放无遮挡| 搡女人真爽免费视频火全软件| 最新的欧美精品一区二区| 亚洲熟女精品中文字幕| 黑人欧美特级aaaaaa片| 最近的中文字幕免费完整| 久久综合国产亚洲精品| 国产片特级美女逼逼视频| 久久国产亚洲av麻豆专区| 下体分泌物呈黄色| 91成人精品电影| 亚洲不卡免费看| 精品亚洲乱码少妇综合久久| 少妇高潮的动态图| 一级,二级,三级黄色视频| 99热网站在线观看| 在线观看国产h片| a 毛片基地| 国产一区有黄有色的免费视频| 精品人妻在线不人妻| 国产熟女欧美一区二区| 伦理电影大哥的女人| 美女大奶头黄色视频| 国产精品国产三级国产av玫瑰| 美女xxoo啪啪120秒动态图| 美女国产高潮福利片在线看| 青春草视频在线免费观看| 日韩一区二区视频免费看| 日本-黄色视频高清免费观看| 日韩精品有码人妻一区| 亚洲国产精品一区三区| 久久久精品区二区三区| 高清视频免费观看一区二区| 日韩一本色道免费dvd| 一本色道久久久久久精品综合| 亚洲欧美日韩卡通动漫| 在线免费观看不下载黄p国产| 一级爰片在线观看| 色94色欧美一区二区| 国产午夜精品久久久久久一区二区三区| 日韩中文字幕视频在线看片| 观看美女的网站| 水蜜桃什么品种好| kizo精华| 中文欧美无线码| 一级毛片电影观看| 午夜激情福利司机影院| av有码第一页| 精品久久蜜臀av无| 一级黄片播放器| 国产伦理片在线播放av一区| 少妇人妻久久综合中文| 高清欧美精品videossex| 国产成人精品一,二区| 寂寞人妻少妇视频99o| 日韩大片免费观看网站| 精品一区二区三区视频在线| 18+在线观看网站| 男的添女的下面高潮视频| 国产精品国产三级国产av玫瑰| 亚洲高清免费不卡视频| 熟妇人妻不卡中文字幕| 女人久久www免费人成看片| 国产极品天堂在线| 一级片'在线观看视频| 丝袜美足系列| 内地一区二区视频在线| 在线观看免费视频网站a站| 人体艺术视频欧美日本| 亚洲综合色惰| 人妻人人澡人人爽人人| 老女人水多毛片| 国产有黄有色有爽视频| 777米奇影视久久| 高清欧美精品videossex| 国产乱人偷精品视频| 岛国毛片在线播放| 3wmmmm亚洲av在线观看| 亚洲国产最新在线播放| 日日啪夜夜爽| 国产av精品麻豆| 日日撸夜夜添| 国内精品宾馆在线| 在线观看一区二区三区激情| 欧美激情国产日韩精品一区| 午夜av观看不卡| 久久久国产一区二区| 国产片特级美女逼逼视频| 中文字幕人妻熟人妻熟丝袜美| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 久久综合国产亚洲精品| 久久久久久久国产电影| 高清午夜精品一区二区三区| 国产男女内射视频| 久久人人爽人人片av| 久热这里只有精品99| 欧美三级亚洲精品| 伦理电影免费视频| 日本av手机在线免费观看| 一本一本综合久久| 精品一区二区三卡| 久久久午夜欧美精品| 久久影院123| 狂野欧美白嫩少妇大欣赏| 久久婷婷青草| 欧美精品一区二区大全| 99九九线精品视频在线观看视频| 在线亚洲精品国产二区图片欧美 | 极品人妻少妇av视频| 成人无遮挡网站| 丁香六月天网| 日本黄色日本黄色录像| 看非洲黑人一级黄片| 免费观看性生交大片5| 亚洲美女搞黄在线观看| 人妻一区二区av| 亚洲美女黄色视频免费看| 久久青草综合色| 亚洲精品国产av蜜桃| 久久狼人影院| 一级,二级,三级黄色视频| 国产精品一区二区在线不卡| 欧美亚洲日本最大视频资源| 久久久久久久久久人人人人人人| 日韩制服骚丝袜av| 欧美 亚洲 国产 日韩一| 91精品一卡2卡3卡4卡| 亚洲精品自拍成人| 最后的刺客免费高清国语| 久久久国产欧美日韩av| 日韩人妻高清精品专区| 一级毛片电影观看| 亚洲人成网站在线播| 成人免费观看视频高清| 国产精品人妻久久久影院| 日韩免费高清中文字幕av| 亚洲精品一区蜜桃| 天天操日日干夜夜撸| 国产成人精品婷婷| 国产一级毛片在线| 国产有黄有色有爽视频| 色哟哟·www| 三级国产精品片| 欧美日本中文国产一区发布| 精品午夜福利在线看| 九色亚洲精品在线播放| 久久久久久久大尺度免费视频| 夫妻性生交免费视频一级片| 精品久久久久久久久av| 国产精品99久久99久久久不卡 | 国产熟女午夜一区二区三区 | 乱码一卡2卡4卡精品| 狠狠婷婷综合久久久久久88av| 777米奇影视久久| 青春草国产在线视频| 十八禁网站网址无遮挡| 99久久中文字幕三级久久日本| 色婷婷久久久亚洲欧美| 亚洲国产精品999| 少妇被粗大猛烈的视频| 久久久久精品性色| 欧美激情极品国产一区二区三区 | 国产精品无大码| 亚洲,一卡二卡三卡| 久久精品国产鲁丝片午夜精品| 午夜福利在线观看免费完整高清在| 久久午夜综合久久蜜桃| 另类精品久久| 久久久久久久久久人人人人人人| 国产av国产精品国产| 成人午夜精彩视频在线观看| 在线观看三级黄色| 久久精品国产亚洲av天美| 国产极品天堂在线| 欧美精品亚洲一区二区| 三级国产精品欧美在线观看| 99九九在线精品视频| 亚洲无线观看免费| 免费av中文字幕在线| 国产在线一区二区三区精| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 十八禁网站网址无遮挡| 一级二级三级毛片免费看| 亚洲av成人精品一区久久| 亚洲熟女精品中文字幕| 久久99热6这里只有精品| 在线天堂最新版资源| 天堂8中文在线网| 欧美一级a爱片免费观看看| 日韩中字成人| 九色亚洲精品在线播放| 午夜福利网站1000一区二区三区| 性色avwww在线观看| 亚洲,欧美,日韩| 一级片'在线观看视频| 老熟女久久久| 国产国语露脸激情在线看| 免费黄色在线免费观看| 国产成人精品无人区| 美女福利国产在线| 九草在线视频观看| 免费大片18禁| 欧美老熟妇乱子伦牲交| a级毛片免费高清观看在线播放| 丝袜喷水一区| 一级毛片 在线播放| 中文字幕制服av| 久久久午夜欧美精品| 色婷婷久久久亚洲欧美| 成年美女黄网站色视频大全免费 | 亚洲欧美一区二区三区黑人 | 人人妻人人添人人爽欧美一区卜| 97超碰精品成人国产| 国产欧美另类精品又又久久亚洲欧美| 99久久人妻综合| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区| 老司机影院毛片| 天堂8中文在线网| 国产av一区二区精品久久| 日韩三级伦理在线观看| 精品亚洲成a人片在线观看| 国产 一区精品| 少妇 在线观看| 免费观看av网站的网址| 美女cb高潮喷水在线观看| videosex国产| 国产精品久久久久久av不卡| 久久久久久久久久成人| 成人18禁高潮啪啪吃奶动态图 | 亚洲综合色惰| 久久精品国产a三级三级三级| 午夜av观看不卡| 一边摸一边做爽爽视频免费| 久久久午夜欧美精品| 国产老妇伦熟女老妇高清| 亚洲人成77777在线视频| 国精品久久久久久国模美| kizo精华| 夫妻午夜视频| 欧美变态另类bdsm刘玥| 国产亚洲午夜精品一区二区久久| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 少妇精品久久久久久久| 我的女老师完整版在线观看| 国产亚洲av片在线观看秒播厂| 搡女人真爽免费视频火全软件| 久热久热在线精品观看| 精品久久久久久久久亚洲| 久久99热6这里只有精品| 91午夜精品亚洲一区二区三区| 国产老妇伦熟女老妇高清| 在线天堂最新版资源| 18禁在线无遮挡免费观看视频| 日韩,欧美,国产一区二区三区| 在线观看国产h片| 精品一区二区三卡| 有码 亚洲区| 欧美一级a爱片免费观看看| 一级毛片 在线播放| av线在线观看网站| 亚洲怡红院男人天堂| 狠狠精品人妻久久久久久综合| 国产黄频视频在线观看| 超碰97精品在线观看| 只有这里有精品99| 国产精品一二三区在线看| 婷婷色麻豆天堂久久| 久久久久精品性色| 91午夜精品亚洲一区二区三区| 曰老女人黄片| 久久热精品热| 在现免费观看毛片| 男的添女的下面高潮视频| 在线 av 中文字幕| 久久99一区二区三区| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频| 国产视频首页在线观看| 日韩在线高清观看一区二区三区| 黑人欧美特级aaaaaa片| 国产在线视频一区二区| 日日摸夜夜添夜夜爱| 免费大片黄手机在线观看| 亚洲精品久久午夜乱码| 伦理电影大哥的女人| 91久久精品国产一区二区成人| 岛国毛片在线播放| 国产亚洲精品久久久com| 插逼视频在线观看| 老司机亚洲免费影院| 大话2 男鬼变身卡| 国产片特级美女逼逼视频| 高清黄色对白视频在线免费看| 老司机亚洲免费影院| 日本黄大片高清| 一本一本综合久久| 久久热精品热| 国产视频内射| 五月伊人婷婷丁香| 九九爱精品视频在线观看| 又大又黄又爽视频免费| av在线app专区| 精品一区二区免费观看| 中文字幕人妻熟人妻熟丝袜美| 99久久中文字幕三级久久日本| 午夜福利视频在线观看免费| 自拍欧美九色日韩亚洲蝌蚪91| 久久久a久久爽久久v久久| 十分钟在线观看高清视频www| 亚洲少妇的诱惑av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人午夜免费资源| 成人国语在线视频| 国产色婷婷99| 一级毛片电影观看| 国产午夜精品一二区理论片| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| videosex国产| 亚洲成人手机| 亚洲国产精品999| 在线观看美女被高潮喷水网站| 免费看光身美女| 久久国产亚洲av麻豆专区| 人人妻人人澡人人爽人人夜夜| 热re99久久国产66热| 欧美日韩综合久久久久久| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| 五月天丁香电影| 天天躁夜夜躁狠狠久久av| 国产黄色视频一区二区在线观看| 午夜日本视频在线| 婷婷色av中文字幕| 亚洲精品视频女| 少妇熟女欧美另类| 亚洲精品日韩av片在线观看| 亚洲av在线观看美女高潮| 日韩大片免费观看网站| 日韩欧美一区视频在线观看| av天堂久久9| 精品少妇黑人巨大在线播放| av在线播放精品| 国产成人精品在线电影| 在现免费观看毛片| 这个男人来自地球电影免费观看 | 一级毛片 在线播放| 在线观看一区二区三区激情| av一本久久久久| 日韩成人伦理影院| 国产av国产精品国产| 老司机影院毛片| 亚洲四区av| 久久免费观看电影| 丝袜在线中文字幕| 亚洲av.av天堂| 日韩视频在线欧美| 欧美性感艳星| 久久久久久久久久久免费av| 一本大道久久a久久精品| 边亲边吃奶的免费视频| 久久精品久久久久久久性| 国产午夜精品久久久久久一区二区三区| 久久久久久久大尺度免费视频| 极品人妻少妇av视频| 精品久久久噜噜| √禁漫天堂资源中文www| 色5月婷婷丁香| 一二三四中文在线观看免费高清| 精品国产一区二区三区久久久樱花| 久久久久国产精品人妻一区二区| 天天躁夜夜躁狠狠久久av| 国产69精品久久久久777片| av免费观看日本| 97在线人人人人妻| 日韩av免费高清视频| 国产精品国产av在线观看| 综合色丁香网| 色网站视频免费| 亚洲av免费高清在线观看| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 亚洲国产av新网站| 欧美97在线视频| 中国国产av一级| 五月开心婷婷网| 午夜福利影视在线免费观看| 亚洲精品自拍成人| 18禁观看日本| 久久人人爽人人爽人人片va| 人人妻人人爽人人添夜夜欢视频| av国产久精品久网站免费入址| 午夜福利网站1000一区二区三区| 妹子高潮喷水视频| 日本wwww免费看| 一级爰片在线观看| 欧美另类一区| 亚洲中文av在线| 热99国产精品久久久久久7| 亚洲精品自拍成人| 内地一区二区视频在线| 少妇的逼好多水| 亚洲国产精品999| 丝袜美足系列| 久久久亚洲精品成人影院| 飞空精品影院首页| 国产精品人妻久久久影院| kizo精华| 一区二区三区免费毛片| 久久久亚洲精品成人影院| 国产精品久久久久久久久免| 欧美一级毛片孕妇| 日韩欧美三级三区| 香蕉久久夜色| 超色免费av| av天堂在线播放| 熟女少妇亚洲综合色aaa.| 亚洲成av片中文字幕在线观看| 热re99久久国产66热| 天天操日日干夜夜撸| 蜜桃国产av成人99| 亚洲免费av在线视频| 80岁老熟妇乱子伦牲交| 美女福利国产在线| 电影成人av| 亚洲国产成人一精品久久久| 亚洲第一欧美日韩一区二区三区 | 欧美另类亚洲清纯唯美| 亚洲熟妇熟女久久| 亚洲一区中文字幕在线| 午夜精品久久久久久毛片777| 丁香六月天网| 国产日韩一区二区三区精品不卡| 大陆偷拍与自拍| 又紧又爽又黄一区二区| 国产一区二区在线观看av| 人妻 亚洲 视频| 色视频在线一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美激情在线| 99久久国产精品久久久| 久久精品国产亚洲av香蕉五月 | 亚洲欧美激情在线| 日本wwww免费看| 国产免费av片在线观看野外av| 午夜福利视频精品| 亚洲av欧美aⅴ国产| 中文字幕制服av| 91麻豆av在线| 天堂动漫精品| 一本久久精品| 一边摸一边抽搐一进一小说 | 搡老岳熟女国产| 久久久国产一区二区| 一进一出好大好爽视频| 黑人操中国人逼视频| 纵有疾风起免费观看全集完整版| 亚洲色图av天堂| 又大又爽又粗| 十八禁高潮呻吟视频| 成人影院久久| 午夜福利在线免费观看网站| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| a级片在线免费高清观看视频| 香蕉久久夜色| 久久午夜亚洲精品久久| 免费少妇av软件| xxxhd国产人妻xxx| 亚洲国产精品一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 午夜久久久在线观看| 国产免费现黄频在线看| 精品少妇一区二区三区视频日本电影| 操美女的视频在线观看| 人人妻人人爽人人添夜夜欢视频| 国产精品熟女久久久久浪| 久久香蕉激情| 午夜福利乱码中文字幕| 亚洲国产欧美网| 欧美日韩成人在线一区二区| 国产一区有黄有色的免费视频| 怎么达到女性高潮| 欧美精品一区二区大全| 老熟女久久久| 两个人看的免费小视频| 男女免费视频国产| 男人舔女人的私密视频| 国产精品欧美亚洲77777| 国产一区二区三区在线臀色熟女 | 9热在线视频观看99| 99久久国产精品久久久| kizo精华| 欧美人与性动交α欧美软件| 美女主播在线视频| 国产av一区二区精品久久| 丰满少妇做爰视频| 日本av免费视频播放| 男女无遮挡免费网站观看| 中文字幕高清在线视频| 欧美日韩成人在线一区二区| 亚洲第一av免费看| 99国产精品99久久久久| 亚洲人成电影观看| 搡老岳熟女国产| 午夜免费鲁丝| 纵有疾风起免费观看全集完整版| 丝瓜视频免费看黄片| 久久国产精品人妻蜜桃| 亚洲七黄色美女视频| 大型黄色视频在线免费观看| 国产人伦9x9x在线观看| 18禁美女被吸乳视频| 天天躁夜夜躁狠狠躁躁| 久久午夜综合久久蜜桃| 亚洲七黄色美女视频| 亚洲 国产 在线| 成人18禁高潮啪啪吃奶动态图| 91av网站免费观看| 久久久久久人人人人人| 多毛熟女@视频| 99精国产麻豆久久婷婷| 蜜桃国产av成人99| 国产精品 欧美亚洲| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩亚洲高清精品| 正在播放国产对白刺激| 亚洲七黄色美女视频| 国产深夜福利视频在线观看| 久久久久久久久免费视频了| cao死你这个sao货| 免费看a级黄色片| 国产99久久九九免费精品| 久久久久国内视频| 欧美在线黄色| 精品卡一卡二卡四卡免费| 两性夫妻黄色片|