• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of typhoon-induced storm surgeon the coast of Jiangsu Province, China,based on coupled hydrodynamic and wave models

    2014-09-06 10:49:51XuSudongYinKaiHuangWenruiZhengWei
    關(guān)鍵詞:波流風暴潮波浪

    Xu Sudong Yin Kai Huang Wenrui Zheng Wei

    (1School of Transportation, Southeast University, Nanjing 210096, China)(2College of Civil Engineering, Tongji University, Shanghai 200092, China)(3Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA)

    ?

    Numerical simulation of typhoon-induced storm surgeon the coast of Jiangsu Province, China,based on coupled hydrodynamic and wave models

    Xu Sudong1Yin Kai1Huang Wenrui2,3Zheng Wei1

    (1School of Transportation, Southeast University, Nanjing 210096, China)(2College of Civil Engineering, Tongji University, Shanghai 200092, China)(3Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA)

    In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied. Using an unstructured mesh, a coupled model which combines the advanced circulation (ADCIRC) hydrodynamic model and simulating waves nearshore (SWAN) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province. The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region. Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary. By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.

    coast of Jiangsu Province; typhoon storm surge; advanced circulation (ADCIRC) hydrodynamic model; simulating waves nearshore (SWAN) model

    Storm surges are a serious natural hazard caused by tropical storm, which can raise the water level of inshore and coastal low-lying areas dramatically and result in coastal flooding. The water levels induced by typhoon storm surges often potentially cause significant loss of life and property. For example, one of the greatest recorded hurricanes in the United States was Hurricane Katrina, which produced the highest recorded storm surge (8.5 m) in recent history[1], and killed 1 833 people through widespread inundation[2]. In China, landfalling tropical typhoons caused direct economic losses of 28.7 billion Yuan and the toll was 472 people each year during the period 1983—2006, accounting for 0.38% of the annual total GDP[3]. Therefore, the potential storm surge induced by typhoon storm surges needs to be studied for engineering design and coastal flooding protection.

    There are two major approaches in predicting storm surges[4]. The first one is statistical prediction, which may be fast and simple, however this method is based on the statistics of past events, which makes it difficult to take future specifics into account. The second approach is hurricane storm surge simulation, which has been a powerful tool for predicting storm surges, designing protection systems, evaluating risk, and planning emergency evacuation[5]. Among many hydrodynamic models for storm surge simulations, ADCIRC is one of the widely used models applied to predict storm surges during typhoons[6].

    Recently, coupling of hydrodynamic and wave models has been developed in order to increase the accuracy of simulations. Funakoshi et al.[7]demonstrated a practical application of coupling a hydrodynamic model and a wave model for the calculation of storm tide elevations in the St. Johns River (Northeastern Florida), where two coupling procedures were considered, and the model results showed that wind-induced waves can lead to additional water level rises. Dietrich et al.[8]integrated a tightly-coupled ADCIRC+SWAN model, where the ADCIRC and SWAN shared the same mesh and parallel computing infrastructure, a hurricane storm surge simulated by this coupled model displayed high levels of accuracy and efficiency. Sebastian et al.[5]used the ADCIRC+SWAN model to assess the connection between the wind speed and landfall location of Hurricane Ike and storm surges at locations in and around Galveston Bay, and they concluded that the wind speeds increasing by 15% results in an approximately 23% (±3%) higher surge. Xu et al.[9]also successfully applied the ADCIRC and SWAN model to estimate extreme high water levels in different return periods in Colombo, Sri Lanka.

    Although the previous research has demonstrated the successful application of the ADCIRC+SWAN model in studying the effects of hurricanes in United States, it is necessary to apply the ADCIRC+SWAN model to study storm surges and waves on the coast of Jiangsu Province. In this paper, the ADCIRC+SWAN model is employed to simulate the potential surge setups generated by a typical typhoon and to analyze the effect of radiation stress on storm surges at different depths.

    1 Study Area

    Jiangsu Province is one of the most prosperous provinces of the People’s Republic of China and is located on the coast of the East China Sea. With the rapid economic development of Jiangsu Province, the potential danger from storm surges and high waves, disaster prevention and mitigation have been important concerns. The landfalling tropical typhoons caused direct economic losses of 0.74 billion Yuan and killed 7.4 people each year in Jiangsu Province during the period 1983—2006[3]. Therefore, the underestimation of the storm surge water levels and waves in coastal planning and development may cause disastrous consequences.

    On July 28, 2011, Typhoon Muifa (1109) formed into a tropical storm above the northwestern Pacific Ocean. It became a super typhoon twice during its movement toward Chinese mainland. Although Muifa bypassed Shanghai and moved further north instead of striking Jiangsu Province directly, it indeed wreaked havoc in the areas of Liaoning, Shanghai, and Zhejiang. According to Chinese weather websites[10], more than 3.6 million people suffered under the super typhoon, at least 600 houses collapsed and 4 800 houses were damaged, and the direct economic loss was 3.128 billion Yuan. Due to the menacing typhoon, a major sea bridge was closed in Shanghai. Part of the breakwater of a chemical plant located in Dalian collapsed. The typhoon information was provided by the NOAA website. The details of the historical typhoons including hourly typhoon tracking, central pressure as well as the maximum wind speed can be obtained from the NOAA website.

    Since the observed datasets of wind speeds, water levels and wave heights during Typhoon 1109 are available for model verification and further study in this paper, Typhoon 1109 is selected to analyze the effects of radiation stress on storm surges.

    2 Numerical Model Description

    2.1 ADCIRC model

    The water surface elevations and vertically averaged velocities are computed by the fully nonlinear two-dimensional, depth-integrated option of the ADCIRC model[11]. The ADCIRC model has been widely used in coastal hydrodynamic modeling and has had many successful applications in coastal numerical modeling[6]. The governing equations are described in space using the linear finite element method and in time using the finite difference method. The basic governing continuity Eq.(1) and momentum Eqs.(2) to (3) of the model are expressed in Cartesian coordinates:

    (1)

    (2)

    (3)

    2.2 SWAN model

    The SWAN wave model developed by TU Delft was applied for the simulation of storm-induced wind-waves. The governing equation is expressed as[8]

    (4)

    2.3 Typhoon model

    As the main important input boundary conditions of storm surges and wave models, wind and atmospheric pressure are the main factors in creating the storm surge and waves[12]. The accuracy of the input wind field during a typhoon is crucial for the results of modeling storm surge and wave characteristics.

    The wind and pressure field for each node of the whole studied area is very important for the hydrodynamic model and can be calculated by wind and pressure formulae, such as the Fujita-Takahashi formula, the Myers formula, the Fujita formula, the McNair’s formula, and the Bier Ke formula and so on. According to previous studies in the Pacific region, the Fujita-Takahashi formula has had many successful applications and is the optimal model. In this study, the nested model of the Fujita formula and Takahashi formula is chosen as the typhoon numerical model to calculate its air pressure and wind field. Their distribution form can be expressed as follows:

    (5)

    (6)

    whereP(r) is the pressure at a radial distancerfrom the cyclone center;P∞is the ambient or environmental pressure;P0is the cyclone central pressure;ris the radius (distance from cyclone center);Ris the radius to the point of the maximum wind speed.

    When 0≤r≤2R,

    [(x-x0)sinθ+(y-y0)cosθ]

    (7)

    [(x-x0)cosθ-(y-y0)sinθ]

    (8)

    When 2R≤r≤∞,

    [(x-x0)sinθ+(y-y0)cosθ]

    (9)

    [(x-x0)cosθ-(y-y0)sinθ]

    (10)

    where Δp=p∞-p0,p∞is the atmospheric pressure at a remote point from the typhoon center andp0is the typhoon central pressure;ris the distance of the station to the central of the typhoon;Ris the typhoon parameter;C1andC2are empirical constants, which are 1.0 and 0.8, respectively;θis the inflow angle,θ=20°;ρais the air density;fis the Coriolis force parameter;VxandVyare the typhoon forward velocities inx,ydirection, respectively.

    For the calculation of the wind field, the maximum wind speed of radiusRis also a key factor. The following empirical formula has been selected for this study:

    R=28.52tanh[0.087 3(φ-28)]+0.2Vc+

    (11)

    whereφis the typhoon center latitude, (°);p0is the typhoon central pressure, hPa;Vcis the speed of the typhoon center, m/s.

    3 Model Setup and Verification

    3.1 Model setup

    The model domain is shown in Fig.1, which covers not only the major part of East China Sea but also the whole Bohai Sea and the Yellow Sea. There are two open sea boundaries, on the east side at 128°E and on the south side at 25°N. The landwards boundary of the Yangtze estuary is at Jiangyin. The same unstructured finite-element mesh and bathymetry of this studied domain are developed for both storm surge and wave simulation (see Fig.2). The grid resolution varies from about 50 km on the edges of the model to about 300 m in the Yangtze estuary near the studied area as shown in Fig.3. The total number of computational nodes and triangular elements are 31 402 and 59 590.

    Fig.1 Model domain and its bathymetry

    Fig.2 The model mesh of the studied domain

    Fig.3 The model mesh near Jiangsu province

    At the open sea boundary, water level conditions induced by astronomical tide have been adopted. The river banks and coastlines are considered as no-flow boundaries and zero-flux constraint boundaries. The ADCIRC model is discretized using a 1 s time step, and the time step for the SWAN model is 5 min. In order to realize the coupling procedure and investigate the effects of wave contributions on the overall storm tide water levels, SWAN provides updated wave field information (gradients of wave radiation stresses) to ADCIRC every 1 h and the ADCIRC model gives feedback concerning water levels and currents to SWAN every 1 h.

    3.2 Model verification

    To assess its modeling accuracy, the numerical model system was initially applied to reproduce the wind field, storm surge and waves. The stations for model verification are shown in Fig.4.

    The typhoon wind speed model is verified by comparing the observed wind velocity and model simulation during Typhoon 1109. As shown in Fig.5, model simulation result matches well with the observed dataset. The wind field and pressure field generated by the typhoon model are used as the forcing factor of the storm surge model and the wave model.

    Fig.4 Stations used for verification (DT—Datang; TYD—Taiyangdao; HS—Hengsha; XS—Xiangshui)

    (a)

    (b)

    Due to the lack of observed tidal level in the studied domain during Typhoon 1109, a time period from the tidal level hydrograph in 1997 is chosen for hydrodynamic model verification. The comparison shows that the model-predicted tidal level hydrograph is basically consistent with the observed dataset (see Fig.6).

    The wave height during Typhoon 1109 is also verified. Due to the underestimation of the wind velocity in the starting period, the model-predicted wave heights are smaller than those from the observed datasets (see Fig.7). In the peak period of wave height, the model predictions are relatively consistent with the observations.

    4 Effect of Radiation Stress on Storm Surges

    After a series of verifications, the model can be applied to simulate the storm surges and wave process on the coast of Jiangsu Province. Typhoon Muifa was generated around the northwestern Pacific Ocean. As Muifa moved northward, it created large waves that radiated outward and affected most of the East China Sea. As shown in Fig.8, the storm surge varies widely from deep water to nearshore estuaries and floodplains. It is apparent that storm surges are quite significant in nearshore areas since the bathymetry becomes shallow. In deep water, storm surge is merely around 0.5 m, and the peak surge occurred on the coast of Jiangsu Province, in the regions where the bathymetry is shallow. In the Yangtze estuary, storm surges reach 0.9 to 1.1 m, and the maximum value is more than 1.3 m. The water level induced by typhoon storm surges around coastal areas may result in coastal flooding, thus causing significant loss of life and property.

    Fig.6 Comparison between model-predicted and observed tidal levels at Hengsha station

    Fig.7 Comparison between model-predicted and observed wave height at Xiangshui station

    Fig.8 The wave-induced storm surge in the coast of Jiangsu province

    To analyze the effects of radiation stress on storm surges at different depths, a comparison is made between the wave-induced storm surge and storm surge without radiation stress. The radiation stress gradients are generated by the wave transformation drive set-up and currents. Wind-driven waves affect the vertical momentum mixing, which in turn affect the circulation. According to Fig.9, there is no obvious difference between storm surges whether with radiation stress in deep water, because in deep water the wave cannot break. However, behind the breaking zones, the wave-induced storm surge accounts for 0.06 to 0.1 m throughout much of the region. These contributions are significant when they occur near the Yangtze estuary. The difference can reach 0.1 to 0.18 m. Although overall the effect of radiation stress is not very significant where the slope of this area is not very steep, the storm surge increased by radiation stress can reach 10 cm high/wide in the Yangtze estuary. For some regions with steep slope, the effects must be more remarkable. Thus, radiation stress cannot be ignored when simulating storm surges. It is worth mentioning that the bathymetry in some areas of the Jiangsu coast may not be as accurate as those in the Yangtze estuary. Thus, the simulation accuracy of storm surges and wave heights needs to be improved by introducing more accurate local bathymetry.

    Fig.9 Changes in storm surge levels (model with radiation stress minus the model without radiation stress)

    5 Conclusion

    This paper applies the ADCIRC+SWAN model in order to analyze storm surge behavior on the coast of Jiangsu Province during Typhoon Muifa (1109). The highest surge during Typhoon Muifa occurred in the Yangtze estuary, where the value was up to 1.3 m. The storm surges along the coast of Jiangsu Province were about 1.1 m in contrast to the 0.5 m in deep water. The comparison analysis of the storm surge simulation with waves considered or does not show that radiation stress can increase water levels during the typhoon process. In deep water, the effects can be ignored, however, these become apparent when the wave moves into the breaking zones. The storm surge increased by radiation stress reaches 0.06 to 0.1 m throughout most of the studied regions in the Yangtze Estuary, and the increment may be up to 0.1 to 0.18 m.

    The results provided in this paper show that the effects of radiation stress are significant when predicting the storm surge. Thus, in the coast of Jiangsu Province, especially, the Yangtze estuary, the waves and circulation processes should be coupled. The model-predicted storm surge along the coast of Jiangsu Province can be employed in coastal protection and flood mitigation.

    [1]Kantha L. Classification of hurricanes: lessons from Katrina, Ike, Irene, Isaac and Sandy [J].OceanEngineering, 2013, 70: 124-128.

    [2]Knabb R D, Rhome J R, Brown D P. Tropical cyclone report: Hurricane Katrina, 23-30 August, 2005 [EB/OL]. (2005-12-20)[2014-08-17].http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf.

    [3]Zhang Q, Wu L G, Liu Q F. Tropical cyclone damages in China 1983—2006 [J].BulletinoftheAmericanMeteorologicalSociety, 2009, 90(4): 489-495.

    [4]von Storch H. Storm surges: phenomena, forecasting and scenarios of change [J].ProcediaIUTAM, 2014, 10: 356-362.

    [5]Sebastian A, Proft J, Dietrich J C, et al. Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ADCIRC model [J].CoastalEngineering, 2014, 88: 171-181.

    [6]Xu S D, Huang W R. Integrated hydrodynamic modeling and frequency analysis for predicting 1% storm surge [J].JournalofCoastalResearch, 2008(52): 253-260.

    [7]Funakoshi Y, Hagen S C, Bacopoulos P. Coupling of hydrodynamic and wave models:case study for Hurricane Floyd (1999) hindcast[J].JournalofWaterway,Port,Coastal,andOceanEngineering, 2008, 134(6): 321-335.

    [8]Dietrich J C, Zijlema M, Westerink J J, et al. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations[J].CoastalEngineering, 2011, 58(1): 45-65.

    [9]Xu S D, Huang W R, Zhang G P, et al. Integrating Monte Carlo and hydrodynamic models for estimating extreme water levels by storm surge in Colombo, Sri Lanka [J].NaturalHazards, 2014, 71(1): 703-721.

    [10]Chang H. More than 3.6 million people suffered in Liaoning, Shanghai, Jiangsu, Zhejiang, Shandong during typhoon Muifa [EB/OL]. (2011-08-09)[2014-08-17]. http://news.weather.com.cn/1443798.shtml. (in Chinese)

    [11]Luettich R A, Westerink J J. Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44.XX [EB/OL]. (2004-08-12)[2014-08-17]. http://www.unc.edu/ims/adcirc/publications/2004/2004_Luettich.pdf.

    [12]Huang W R, Xu S D. Neural network and harmonic analysis for recovering missing extreme water-level data during Hurricanes in Florida [J].JournalofCoastalResearch, 2009, 25(2): 417-426.

    基于波流耦合模型的江蘇沿海風暴潮數(shù)值模擬

    徐宿東1殷 鍇1黃文銳2,3鄭 煒1

    (1東南大學交通學院, 南京 210096)(2同濟大學土木工程學院, 上海 200092)(3Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA)

    為了方便工程設(shè)計以及沿海防洪減災(zāi),對可能由臺風引起的風暴潮進行了研究.利用三角形非結(jié)構(gòu)網(wǎng)格建立ADCIRC水動力模型和SWAN波浪模型的耦合模型,并將其應(yīng)用于江蘇沿海風暴潮和波浪研究.風速、潮位和波高的驗證表明該ADCIRC+SWAN耦合模型可以很好地模擬研究區(qū)域的水位和波高.研究結(jié)果表明輻射應(yīng)力對風暴潮計算結(jié)果有影響,且在如江蘇沿海和長江口此類的淺水區(qū)域影響更為顯著.模型計算的水位結(jié)果在江蘇沿海得到工程應(yīng)用,例如風暴潮預(yù)警和極端水位預(yù)測.

    江蘇沿海;臺風風暴潮;ADCIRC模型;SWAN模型

    U698.91

    Received 2014-07-17.

    Biography:Xu Sudong (1980—), male, doctor, associate professor, sudongxu@seu.edu.cn.

    s:The National Natural Science Foundation of China (No.51209040,51279134), the Natural Science Foundation of Jiangsu Province (No.BK2012341), the Fundamental Research Funds for the Central Universities (No.SJLX_0087), the Research Fund of Nanjing Hydraulic Research Institute (No.Y213012).

    :.Xu Sudong, Yin Kai, Huang Wenrui, et al. Numerical simulation of typhoon-induced storm surge on the coast of Jiangsu Province, China, based on coupled hydrodynamic and wave models[J].Journal of Southeast University (English Edition),2014,30(4):489-494.

    10.3969/j.issn.1003-7985.2014.04.015

    10.3969/j.issn.1003-7985.2014.04.015

    猜你喜歡
    波流風暴潮波浪
    波流耦合下樁周珊瑚砂沖刷機理研究
    海洋通報(2022年5期)2022-11-30 12:04:02
    波浪谷和波浪巖
    2012年“蘇拉”和“達維”雙臺風影響的近海風暴潮過程
    海洋通報(2021年2期)2021-07-22 07:55:24
    波流聯(lián)合作用下海上輸油漂浮軟管動力響應(yīng)分析
    防范未來風暴潮災(zāi)害的綠色海堤藍圖
    科學(2020年4期)2020-11-26 08:27:00
    基于多變量LSTM神經(jīng)網(wǎng)絡(luò)模型的風暴潮臨近預(yù)報
    海洋通報(2020年6期)2020-03-19 02:10:18
    波浪谷隨想
    當代陜西(2020年24期)2020-02-01 07:06:46
    偶感
    去看神奇波浪谷
    槽道內(nèi)渦波流場展向渦的分布特征
    动漫黄色视频在线观看| 免费在线观看成人毛片| 有码 亚洲区| 久久婷婷人人爽人人干人人爱| 色噜噜av男人的天堂激情| 免费看a级黄色片| 好男人电影高清在线观看| 91久久精品电影网| 日本成人三级电影网站| 色老头精品视频在线观看| 国产亚洲精品一区二区www| 午夜久久久久精精品| 日韩欧美在线二视频| 欧美日韩亚洲国产一区二区在线观看| 老司机午夜十八禁免费视频| 亚洲成人久久爱视频| 日韩有码中文字幕| 亚洲成av人片免费观看| 嫁个100分男人电影在线观看| 日韩高清综合在线| 久久天躁狠狠躁夜夜2o2o| 99久久无色码亚洲精品果冻| 最近最新中文字幕大全免费视频| 69人妻影院| 天美传媒精品一区二区| 91在线精品国自产拍蜜月 | 亚洲精品乱码久久久v下载方式 | 大型黄色视频在线免费观看| 中文在线观看免费www的网站| 久久久久九九精品影院| 精品免费久久久久久久清纯| 欧美性猛交黑人性爽| 嫩草影院精品99| 性色av乱码一区二区三区2| 日日干狠狠操夜夜爽| 中国美女看黄片| 国产精华一区二区三区| 欧美日韩一级在线毛片| 精品熟女少妇八av免费久了| 黄色片一级片一级黄色片| 老司机午夜十八禁免费视频| 啪啪无遮挡十八禁网站| 久久久久久久精品吃奶| 亚洲aⅴ乱码一区二区在线播放| 女人十人毛片免费观看3o分钟| 18美女黄网站色大片免费观看| 亚洲成av人片免费观看| 女警被强在线播放| 国产精品亚洲av一区麻豆| 午夜福利成人在线免费观看| 午夜福利成人在线免费观看| 内地一区二区视频在线| 国产av一区在线观看免费| 淫妇啪啪啪对白视频| 波多野结衣巨乳人妻| 亚洲一区二区三区不卡视频| 国产精品一区二区三区四区免费观看 | 国产黄a三级三级三级人| 国产精品一区二区三区四区久久| 国产欧美日韩精品亚洲av| 久久久国产精品麻豆| 天美传媒精品一区二区| 色精品久久人妻99蜜桃| 在线观看免费午夜福利视频| 又爽又黄无遮挡网站| 精品日产1卡2卡| 黄色丝袜av网址大全| 国产又黄又爽又无遮挡在线| 天堂网av新在线| 看片在线看免费视频| 国产精品一区二区免费欧美| 最近在线观看免费完整版| 色吧在线观看| 日韩免费av在线播放| 9191精品国产免费久久| 免费在线观看亚洲国产| 一个人免费在线观看电影| 热99在线观看视频| 麻豆成人av在线观看| 久99久视频精品免费| 内射极品少妇av片p| 99精品在免费线老司机午夜| 欧美色视频一区免费| 成人特级黄色片久久久久久久| 午夜免费观看网址| 91久久精品电影网| 嫩草影院精品99| 精品人妻偷拍中文字幕| 午夜免费男女啪啪视频观看 | 欧美日韩国产亚洲二区| 成人永久免费在线观看视频| 国产伦一二天堂av在线观看| 岛国在线观看网站| 亚洲成人免费电影在线观看| 伊人久久大香线蕉亚洲五| 亚洲乱码一区二区免费版| 啦啦啦免费观看视频1| 久久久成人免费电影| 久久中文看片网| 久久中文看片网| 国产三级黄色录像| 舔av片在线| 国产精品 国内视频| 啪啪无遮挡十八禁网站| 99国产精品一区二区蜜桃av| 久久精品91无色码中文字幕| tocl精华| 亚洲人与动物交配视频| 精品无人区乱码1区二区| 99久国产av精品| av黄色大香蕉| 国产精品电影一区二区三区| 国产伦精品一区二区三区四那| 韩国av一区二区三区四区| 国产精品99久久久久久久久| 变态另类成人亚洲欧美熟女| 国产一区二区三区视频了| 久久欧美精品欧美久久欧美| 美女大奶头视频| 久久婷婷人人爽人人干人人爱| www.999成人在线观看| 亚洲精品国产精品久久久不卡| 欧美一区二区亚洲| 日本免费a在线| 欧美激情在线99| 最近最新免费中文字幕在线| 男人和女人高潮做爰伦理| av片东京热男人的天堂| 老司机午夜福利在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片女人18水好多| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 国产成人福利小说| 国产国拍精品亚洲av在线观看 | 非洲黑人性xxxx精品又粗又长| 欧美日韩亚洲国产一区二区在线观看| 黑人欧美特级aaaaaa片| 久久久久久久久中文| h日本视频在线播放| 两个人的视频大全免费| 国产野战对白在线观看| 黄片小视频在线播放| 亚洲av电影在线进入| 欧美成人性av电影在线观看| 给我免费播放毛片高清在线观看| 日本撒尿小便嘘嘘汇集6| 色综合欧美亚洲国产小说| 国产激情欧美一区二区| 国产精品乱码一区二三区的特点| 三级男女做爰猛烈吃奶摸视频| 又粗又爽又猛毛片免费看| www日本黄色视频网| 国产精品一区二区三区四区久久| 国产一区二区三区在线臀色熟女| 舔av片在线| 亚洲五月婷婷丁香| 亚洲人成伊人成综合网2020| 欧美一级毛片孕妇| 中文字幕久久专区| 亚洲国产日韩欧美精品在线观看 | 18禁美女被吸乳视频| 高清毛片免费观看视频网站| 精品无人区乱码1区二区| 成人18禁在线播放| 日韩欧美在线乱码| 99久久九九国产精品国产免费| 999久久久精品免费观看国产| 99久久久亚洲精品蜜臀av| 五月伊人婷婷丁香| 床上黄色一级片| 久久天躁狠狠躁夜夜2o2o| bbb黄色大片| 99久久成人亚洲精品观看| 窝窝影院91人妻| 亚洲av二区三区四区| 国产高潮美女av| av国产免费在线观看| 国产三级黄色录像| 久久久久九九精品影院| 欧美日韩一级在线毛片| 亚洲国产精品久久男人天堂| 久久精品亚洲精品国产色婷小说| 亚洲av二区三区四区| 国产精品综合久久久久久久免费| 亚洲片人在线观看| 中文字幕熟女人妻在线| 一本久久中文字幕| 老司机午夜十八禁免费视频| 一级黄片播放器| 国产精华一区二区三区| 狂野欧美激情性xxxx| 国产精品电影一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 麻豆久久精品国产亚洲av| 国产主播在线观看一区二区| 色综合站精品国产| 午夜福利在线观看吧| 午夜激情福利司机影院| 尤物成人国产欧美一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美 国产精品| 国产高清激情床上av| 久久久精品欧美日韩精品| 国产精品嫩草影院av在线观看 | 国产欧美日韩精品一区二区| 好看av亚洲va欧美ⅴa在| 又紧又爽又黄一区二区| 男女午夜视频在线观看| 少妇的逼好多水| 中亚洲国语对白在线视频| 久久久国产成人精品二区| 精品久久久久久久久久免费视频| 亚洲色图av天堂| 亚洲av成人不卡在线观看播放网| 婷婷六月久久综合丁香| 免费大片18禁| 亚洲人成电影免费在线| 亚洲avbb在线观看| 日韩欧美在线乱码| 色哟哟哟哟哟哟| 国产免费av片在线观看野外av| 听说在线观看完整版免费高清| 免费搜索国产男女视频| 日本免费a在线| 欧美一区二区国产精品久久精品| 久久香蕉国产精品| 在线免费观看的www视频| 日本 av在线| 国产主播在线观看一区二区| 国产一区在线观看成人免费| 亚洲 国产 在线| 亚洲专区中文字幕在线| 日韩欧美国产一区二区入口| 免费在线观看影片大全网站| 亚洲国产高清在线一区二区三| 成人国产综合亚洲| 最好的美女福利视频网| 91麻豆精品激情在线观看国产| 日本a在线网址| 成年免费大片在线观看| 窝窝影院91人妻| 国产精品综合久久久久久久免费| 国产91精品成人一区二区三区| 91久久精品国产一区二区成人 | 又黄又粗又硬又大视频| 久久精品人妻少妇| 久久久久久久久久黄片| 亚洲aⅴ乱码一区二区在线播放| 中文字幕精品亚洲无线码一区| 天堂网av新在线| 成人特级黄色片久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕熟女人妻在线| 男人和女人高潮做爰伦理| 色av中文字幕| 国产精品亚洲美女久久久| 久久精品人妻少妇| 亚洲18禁久久av| 欧美成人一区二区免费高清观看| 亚洲一区高清亚洲精品| 色综合婷婷激情| 国产爱豆传媒在线观看| 久久精品国产清高在天天线| 亚洲五月天丁香| 久久久国产成人精品二区| 韩国av一区二区三区四区| 伊人久久大香线蕉亚洲五| 有码 亚洲区| 一级作爱视频免费观看| 天堂网av新在线| 999久久久精品免费观看国产| 精品国产三级普通话版| 香蕉丝袜av| 桃色一区二区三区在线观看| 亚洲中文日韩欧美视频| 国内少妇人妻偷人精品xxx网站| 国产黄a三级三级三级人| 别揉我奶头~嗯~啊~动态视频| 国产色爽女视频免费观看| 麻豆国产av国片精品| 久久久久久久午夜电影| 欧美日韩中文字幕国产精品一区二区三区| 床上黄色一级片| 国产精品精品国产色婷婷| 亚洲欧美一区二区三区黑人| 夜夜爽天天搞| 欧美日韩福利视频一区二区| 国产亚洲精品久久久com| 亚洲人成电影免费在线| 国产亚洲欧美98| 特大巨黑吊av在线直播| 国产av一区在线观看免费| 国产aⅴ精品一区二区三区波| 国产色婷婷99| 亚洲无线观看免费| 欧美日韩瑟瑟在线播放| 日本成人三级电影网站| 精品一区二区三区视频在线观看免费| 动漫黄色视频在线观看| 日韩欧美 国产精品| 男女下面进入的视频免费午夜| 宅男免费午夜| 淫秽高清视频在线观看| 久久午夜亚洲精品久久| 淫妇啪啪啪对白视频| 99国产极品粉嫩在线观看| 亚洲精品国产精品久久久不卡| 国产淫片久久久久久久久 | 最近在线观看免费完整版| 黑人欧美特级aaaaaa片| 12—13女人毛片做爰片一| 欧美一区二区国产精品久久精品| 少妇人妻精品综合一区二区 | 亚洲18禁久久av| 成人性生交大片免费视频hd| 中文字幕久久专区| 日韩欧美 国产精品| 久久久久久大精品| 国产亚洲欧美98| 内射极品少妇av片p| 丁香欧美五月| 久久久久久久精品吃奶| 欧美大码av| 不卡一级毛片| 久久久国产精品麻豆| 国产精品美女特级片免费视频播放器| 人妻丰满熟妇av一区二区三区| 一区二区三区高清视频在线| 久久久精品欧美日韩精品| 久久久国产成人精品二区| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 日韩欧美精品免费久久 | 级片在线观看| 黄色日韩在线| 香蕉av资源在线| 久久九九热精品免费| 免费在线观看日本一区| 12—13女人毛片做爰片一| 亚洲性夜色夜夜综合| 特大巨黑吊av在线直播| 黄色日韩在线| 岛国视频午夜一区免费看| 给我免费播放毛片高清在线观看| 国产探花在线观看一区二区| 日韩人妻高清精品专区| 国产精品女同一区二区软件 | 亚洲欧美日韩卡通动漫| 女人被狂操c到高潮| 欧美最新免费一区二区三区 | 热99在线观看视频| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 久久婷婷人人爽人人干人人爱| 久久午夜亚洲精品久久| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 亚洲人成网站高清观看| 好男人电影高清在线观看| 亚洲av一区综合| 日本在线视频免费播放| 不卡一级毛片| 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| 国产欧美日韩精品亚洲av| 欧美3d第一页| 欧美日韩综合久久久久久 | 男人和女人高潮做爰伦理| 少妇的逼水好多| 色噜噜av男人的天堂激情| 国产精品久久久久久人妻精品电影| 别揉我奶头~嗯~啊~动态视频| 亚洲avbb在线观看| 日韩欧美在线乱码| 色哟哟哟哟哟哟| 免费av毛片视频| 亚洲aⅴ乱码一区二区在线播放| 日本黄色片子视频| 窝窝影院91人妻| 久久精品91蜜桃| 精品国产美女av久久久久小说| 一个人观看的视频www高清免费观看| 无人区码免费观看不卡| 国产成人av激情在线播放| 久久香蕉精品热| 搡老岳熟女国产| 亚洲熟妇中文字幕五十中出| 一本久久中文字幕| 日韩欧美在线二视频| 999久久久精品免费观看国产| 精品免费久久久久久久清纯| 日韩大尺度精品在线看网址| eeuss影院久久| 99久久精品国产亚洲精品| 久久精品91蜜桃| 午夜亚洲福利在线播放| 国产伦精品一区二区三区四那| 午夜福利欧美成人| 中文字幕精品亚洲无线码一区| 一区二区三区激情视频| 亚洲国产精品成人综合色| 成人精品一区二区免费| 久久99热这里只有精品18| 三级毛片av免费| 亚洲人成网站在线播放欧美日韩| 琪琪午夜伦伦电影理论片6080| 一卡2卡三卡四卡精品乱码亚洲| 国产三级中文精品| 1024手机看黄色片| 久久精品国产亚洲av涩爱 | 欧美精品啪啪一区二区三区| 国产av不卡久久| 国产精品久久电影中文字幕| 精品一区二区三区视频在线观看免费| or卡值多少钱| 最新美女视频免费是黄的| 亚洲自拍偷在线| 久9热在线精品视频| 亚洲va日本ⅴa欧美va伊人久久| 有码 亚洲区| 老司机午夜福利在线观看视频| 91久久精品电影网| 精品免费久久久久久久清纯| av在线蜜桃| 在线观看av片永久免费下载| 一个人观看的视频www高清免费观看| 高潮久久久久久久久久久不卡| 啦啦啦免费观看视频1| 欧美日韩一级在线毛片| 波野结衣二区三区在线 | 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| 亚洲av成人av| 欧美日韩亚洲国产一区二区在线观看| 日本免费一区二区三区高清不卡| 久久亚洲真实| 国产免费男女视频| 国产成人福利小说| 九色国产91popny在线| 欧美在线黄色| 亚洲人与动物交配视频| 久久香蕉精品热| 91在线精品国自产拍蜜月 | 麻豆国产97在线/欧美| 欧洲精品卡2卡3卡4卡5卡区| 亚洲真实伦在线观看| 成年人黄色毛片网站| 岛国在线观看网站| 国产一区二区激情短视频| 欧美中文综合在线视频| 国产野战对白在线观看| 精品熟女少妇八av免费久了| 手机成人av网站| 舔av片在线| xxx96com| 午夜a级毛片| 操出白浆在线播放| 一级黄色大片毛片| 一夜夜www| 亚洲中文日韩欧美视频| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片 | 99久久综合精品五月天人人| 日韩欧美 国产精品| 日韩高清综合在线| 国内精品一区二区在线观看| 中文字幕熟女人妻在线| 日韩大尺度精品在线看网址| 日本 av在线| 在线天堂最新版资源| 日本a在线网址| 看黄色毛片网站| 亚洲熟妇熟女久久| 久久久国产成人精品二区| 国产乱人视频| 久9热在线精品视频| 一个人看的www免费观看视频| 观看美女的网站| 人人妻人人看人人澡| 十八禁网站免费在线| av黄色大香蕉| 中文字幕人成人乱码亚洲影| 在线免费观看不下载黄p国产 | 一级黄片播放器| 一进一出抽搐gif免费好疼| 禁无遮挡网站| 99视频精品全部免费 在线| 丝袜美腿在线中文| 国产伦一二天堂av在线观看| a级毛片a级免费在线| 日日夜夜操网爽| 天堂动漫精品| 久久久久精品国产欧美久久久| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 日韩人妻高清精品专区| 国产欧美日韩一区二区精品| 变态另类成人亚洲欧美熟女| 丝袜美腿在线中文| 特级一级黄色大片| 欧美性感艳星| 一级毛片高清免费大全| 亚洲熟妇中文字幕五十中出| 国产成人a区在线观看| 五月玫瑰六月丁香| 最新美女视频免费是黄的| 九九久久精品国产亚洲av麻豆| 99久久综合精品五月天人人| 午夜影院日韩av| 国产日本99.免费观看| 成人国产一区最新在线观看| 黄片大片在线免费观看| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 老司机福利观看| 国内精品美女久久久久久| 亚洲无线在线观看| 国产精品电影一区二区三区| 天堂动漫精品| 天堂网av新在线| 天堂动漫精品| 国产色婷婷99| www.999成人在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 香蕉久久夜色| 欧美一区二区国产精品久久精品| 成人欧美大片| 欧美日韩中文字幕国产精品一区二区三区| 丁香六月欧美| 亚洲无线在线观看| 色综合婷婷激情| 极品教师在线免费播放| 看黄色毛片网站| 嫩草影院精品99| 免费看光身美女| 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院| а√天堂www在线а√下载| 国产免费男女视频| av视频在线观看入口| 日韩精品中文字幕看吧| 免费搜索国产男女视频| 网址你懂的国产日韩在线| 丝袜美腿在线中文| 国产熟女xx| 亚洲av成人av| 两人在一起打扑克的视频| 久久精品国产亚洲av涩爱 | 九色成人免费人妻av| 狂野欧美激情性xxxx| 两个人的视频大全免费| 免费观看人在逋| 亚洲国产精品久久男人天堂| av中文乱码字幕在线| 很黄的视频免费| 婷婷精品国产亚洲av在线| 很黄的视频免费| 精品人妻1区二区| 最新在线观看一区二区三区| 无遮挡黄片免费观看| 久久草成人影院| 久久精品国产自在天天线| 欧美成人免费av一区二区三区| 色噜噜av男人的天堂激情| 国产久久久一区二区三区| 国产免费av片在线观看野外av| 日本三级黄在线观看| 久久精品国产清高在天天线| 男女那种视频在线观看| 一二三四社区在线视频社区8| 日日摸夜夜添夜夜添小说| a级毛片a级免费在线| 搡老熟女国产l中国老女人| 天美传媒精品一区二区| 免费无遮挡裸体视频| 亚洲黑人精品在线| 麻豆成人av在线观看| 男人的好看免费观看在线视频| 三级国产精品欧美在线观看| 亚洲人成电影免费在线| 人人妻,人人澡人人爽秒播| 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 日本三级黄在线观看| 在线免费观看的www视频| 99精品在免费线老司机午夜| 久久久久久久午夜电影| 国产熟女xx| 久久久久久久精品吃奶| 亚洲av二区三区四区| 久久性视频一级片| 精品人妻偷拍中文字幕| 在线看三级毛片| 五月伊人婷婷丁香| 日本三级黄在线观看| 国产精品免费一区二区三区在线| av专区在线播放| 日韩欧美免费精品| 成人国产综合亚洲| 国模一区二区三区四区视频| 老汉色∧v一级毛片| 国产中年淑女户外野战色| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产| 欧美一级a爱片免费观看看| 午夜福利免费观看在线| 又黄又粗又硬又大视频| 久久天躁狠狠躁夜夜2o2o| 亚洲电影在线观看av| 在线观看日韩欧美| 亚洲真实伦在线观看|