• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preference-based multiobjective artificial bee colony algorithmfor optimization of superheated steam temperature control

    2014-09-06 10:49:51ZhouXiaShenJiongLiYiguo
    關鍵詞:熱汽決策者支配

    Zhou Xia Shen Jiong Li Yiguo

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2School of Mechanical and Electrical Engineering, Jinling Institute of Technology, Nanjing 211169, China)

    ?

    Preference-based multiobjective artificial bee colony algorithmfor optimization of superheated steam temperature control

    Zhou Xia1,2Shen Jiong1Li Yiguo1

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2School of Mechanical and Electrical Engineering, Jinling Institute of Technology, Nanjing 211169, China)

    In order to incorporate the decision maker’s preference into multiobjective optimization, a preference-based multiobjective artificial bee colony algorithm (PMABCA) is proposed. In the proposed algorithm, a novel reference point based preference expression method is addressed. The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance. An archive set is introduced for saving the nondominated solutions, and an improved crowding-distance operator is addressed to remove the extra solutions in the archive. The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously. The simulation results of the proportional-integral-derivative (PID) parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision.

    preference; multiobjective; artificial bee colony; superheated steam temperature control; optimization

    Superheated steam temperature plays an important role in the security and economy of power plants. It is well known that time delay makes it difficult to control. In order to solve the large time delay problem, a cascade control system is usually employed to control the superheated steam temperature[1-2]. The objective of the inner loop controller is to quickly respond to spray water flow disturbances, and it is usually designed as a proportional controller. The primary control object is characterized by hysteresis and nonlinearity, and a proportional-integral-derivative (PID) controller is usually employed[3]. Clearly, it is quite difficult to tune the PID gains because of the time delay and nonlinearities.

    The common performance indices used by the PID controllers are the rising timetr, the settling timets, the maximum overshootσ, the attenuation rateψ, and different error criteria[4], such as the integral of absolute value of error (IAE), integral of squared error(ISE), integral time multiplied by the absolute value of error (ITAE), integral time multiplied by the squared error (ITSE), etc. In recent literature, many experimental results have proved that there are conflicts among these objectives[5-6].

    Researchers used different algorithms to search for the design parameters of the PID controller[5-6]. However, few of them incorporate the decision maker (DM)’s preference into the optimization. Since most multiobjective optimization algorithms supply the DM with a large number of solutions, it appears that it is a difficult task to choose the final preferred alternative. In practice, the DM often has at least a vague idea about what type of solutions is preferred. Thus, instead of the boring entire frontier, the emphasis may be put on finding a preferred and smaller set of optimal solutions.

    Recently, the artificial bee colony (ABC) algorithm has been applied in many research studies due to its local and global search capability. The ABC algorithm which was developed by Karaboga, is based on the foraging behavior of honey bees[7]. In the ABC algorithm, every bee is regarded as an agent, and the swarm intelligence is employed in labor division, cooperation, and role conversion. The research results of Ref.[8] show that the ABC algorithm performs better than the genetic algorithm and the particle swarm algorithm in most cases. Taking both the DM’s preference and the efficiency of the ABC algorithm into consideration, a preference-based multiobjective artificial bee colony algorithm (PMABCA) is proposed in this paper.

    1 Multiobjective Optimization

    Generally, a multiobjective optimization problem can be described as

    minf(X)=(f1(X),f2(X),…,fm(X))

    (1)

    s.t.gp(X)≥0p=1,2,…,l

    hq(X)=0q=1,2,…,n

    whereX∈Ωis the decision vector;gp(X)≥0 andhq(X)=0 are the constraints;Ωis the feasible region.

    Nowadays, the most popular optimal concept used in multiobjective optimization is Pareto optimality. Its formal definitions can be described as follows[9]:

    Definition 1 ?Xi,Xj∈Ω, if ?k∈{1,2,…,m},fk(Xi)≤fk(Xj); together with?t∈{1,2,…,m},ft(Xi)

    Definition 2 ?Xi,Xj∈Ω, if ?k∈{1,2,…,m},fk(Xi)ft(Xj), we say thatXihas nothing to do withXj, marked asXi○Xj.

    Definition 3Xi∈Ωis said to be a Pareto optimal solution if?Xj∈Ω, s.t.Xj?Xi. DenoteX*as the Pareto optimal solutions,PS={X*X∈{X*}} is said to be the Pareto optimal front.

    2 A Novel Preference Expression Method

    In the past decades, various methods have been proposed for expressing the DM’s preferences[10-12]. Among them, the reference point method seems to be a natural way to express preference. When using the reference point approach in practice, the DM is asked to supply a reference point and a weight vector. The reference point guides the search toward the desired region while the weight vector provides more detailed information about each objective.

    Recently, the Euclidean distance measure-based reference point approach addressed by Deb has been widely used in preference-based multiobjective optimization algorithms, which is described as[13]

    (2)

    With the Euclidean distance measure, a number of solutions in the region of interest will be found. However, the difference between the objective of each candidate and the relative objective of the reference point is not considered in Eq.(2). For example, suppose that the chosen reference point is (10,10) and the chosen weight vector is (0.5,0.5); solutionSais equal to (6.1,4.8); solutionSbis equal to (7.5,4); it is clear that the weighted Euclidean distance fromSaandSbto the reference point are equal. So it cannot be estimated which one is better with Eq.(2). But if we examine each objective in detail, we can see that there are differences between them.

    From the above discussion, it is necessary to consider the distance from each objective to the relative objective of the reference point. Nevertheless, how to secularize the multiobjectives in an equation remains unresolved.

    If we weight the difference of every objective in an equation, the weight vector is difficult to set and it is somewhat subjective. A simple method of taking the degree of each objective into consideration is to calculate the largest weighted distance difference among all the preference objectives.

    In this paper, a novel reference point-based preference expression method is addressed, with which not only the weighted largest distance of each objective to the relative one of the reference point being calculated, but also the weighted preference distance to the reference point simultaneously being taken into consideration. The new preference distance is calculated as follows:

    1) Calculate the weighted largest difference of all preference objectives

    i,j∈1,2,…,p;i≠j;p≤m

    (3)

    wherepequals the number of objectives that the DM can express preference for, andwiis the weight coefficient. The more attention to the objective paid, the larger the coefficient value is.

    2) Calculate the weighted preference distance of each candidate

    (4)

    3) Calculate the preference distance of each candidate

    (5)

    If the value ofdp(x,r) is close to 0, it indicates that distances of the selected objectives to the reference point are similar to the corresponding dimension. In the proposed preference expression method, both the differences of each objective and the weighted preference distance to the reference point are considered. The solution near the reference point and the small deviations between the objectives are preferred.

    However, if we put the emphasis on objective-1 and set the weight coefficients as (0.75,0.25), we can obtaindp(a,r)>dp(b,r). In addition, if we put the emphasis on objective-2 and set the weight coefficients to be (0.25,0.75), we can obtaindp(a,r)

    3 Proposed PMABCA

    Similar to the basic ABC algorithm, the PMABCA consists of three groups of bees: employed bees, onlooker bees, and scouts. A possible solution for the optimization problem is defined as a food source, and the fitness value of the solution is defined as the nectar amount of the associated food source.

    In the PMABCA, the number of employed bees and the number of onlooker bees are equal, and they are both equal to the number of food sources. Initially, each employed bee produces a new food source from its surrounding food source site and exploits the better one. In this study, in order to avoid the searching process from being trapped in the local optima, the simulated binary crossover (SBX) operator and the polynomial mutation (PM) operator[14]are introduced into the exploitation. After exploitation of the employed bees, information is passed onto the onlooker bees, which select food sources according to the quality of each solution. The onlooker bees exploit the same as the employed bees. The third group of bees are the scouts who are sent into the searching area randomly to discover a new food source when one has been abandoned.

    In order to keep the nondominated solutions in the searching process, an external archive is introduced into the PMABCA. As both the preference and non-preference solutions are kept in the same archive, an improved crowding distance (CD) operator is addressed to determine the best spread-out of solutions in the archive. Fig.1 presents the flowchart of the proposed algorithm.

    3.1 Main operators of the PMABCA

    3.1.1 Parameters and food sources initialization

    There are three parameters to be initialized, i.e., the number of food sourcesNS, the number of cycles through which a food source cannot be improved further before it is assumed to be abandoned (limit), and a termination criterion.

    In the first step, besides setting the parameters of the algorithm, the PMABCA will generate the initial food sources by using a random approach. LetXi={xi1,xi2,…,xid} represent thei-th food source in the population, wheredis the problem dimension. Each food source is generated as follows:

    Fig.1 Flowchart of the PMABCA

    (6)

    3.1.2 Employed bees optimization

    At the stage of the employed bees’ optimization, each employed bee produces a new candidate food source in the neighborhood of its current position. After that, a greedy selection procedure is carried out to decide which one will be kept in the population. If the candidate solution can dominate the previous one, the employed bee will memorize the new position and forget the previous one. Otherwise, the employed bee discards the new solution and keeps the previous position in its memory.

    In order to generate good quality and diversity neighboring solutions, SBX and PM are introduced to generate promising solutions[14].

    3.1.3 Fitness assignment based on the preference distance

    After all the employed bees complete the local search process, they share the position information of the food sources with the onlookers. In the next step, each onlooker bee will choose a food source depending on its quality.

    With the Pareto-based methods, the relationships between the solutions are expressed by dominated or not[14]. First, the nondominated individuals in the whole population are selected as the first rank solutions and its rank is set as one. Next, the nondominated individuals among the remaining are selected as the second rank solutions and its rank is set as two and so on, until the population is zero.

    In the PMABCA, the quality of a food source is expressed by the fitness value; all the bees are sorted based on their nondominated rank and the preference distance. The fitness value of thei-th food source is calculated by using the following equation:

    (7)

    wherern,ianddp,irepresent the nondominated rank and the preference distance of thei-th food source, respectively.

    3.1.4 Onlooker bees optimization

    At this stage, each onlooker selects a food source based on the fitness value calculated before. After the food source is selected, each onlooker bee will perform the same local search approaches and greedy selection procedure as the employed bees.

    In the PMABCA, based on the fitness value calculated before, the probability for each food source advertised by the corresponding employed bee will be calculated as follows[7]:

    (8)

    whereTs(·) is the selection function.

    3.1.5 Scouts optimization

    If a food source cannot be further improved through a limit cycle, then the food source is assumed to be abandoned and the corresponding bee will become a scout[7]. Then the scout conducts a random search, and generates a new food source following the initialization of the population.

    3.1.6 Archive updating and preference upper limit renewal

    In the first run, nondominated solutions are added to the archive directly. After that, in the end of each iteration, the new generated nondominated solutions are compared to the solutions in the archive.The candidate solutions that are not dominated by the solutions of the archive are added to it. Then, the dominated solutions are removed from the archive.

    As the capacity of the archive is finite, if the archive is full of nondominated solutions, it is necessary to remove the extra ones. In the PMABCA, many preference solutions and a few other solutions are kept in the same archive. Hence, the traditional diversity maintenance strategy to keep the uniformity is not appropriate. In this paper, an improved CD operator is applied to remove the extra ones.

    The CD is first addressed by Deb[14]for keeping a uniformly spread-out of thePF. The CD value of thei-th individual is calculated as follows:

    and

    (9)

    In the PMABCA, the CD is improved and uses the following equation:

    (10)

    whereβis the upper limit for preference, andλis the coefficient for the preference solutions.

    The value ofλis set to be 4 after a large number of experiments. If more preference solutions are preferred, the value ofλcan be set to be greater than 4. In addition, the value ofβis set adaptively according to the medial value of the preference distance in the former archive. To be more specific,βis equal to thek-th value of the ascending sequence according to the preference value in each iteration, wherekis set to be 0.6na, andnais the size of the archive.

    3.1.7 Extra solutions removal in the archive

    In order to obtain a good distribution ofPF, the method proposed in Ref.[15] is adopted to remove the extra solutions. The extra ones with the smallest CD values are removed one by one, and the CD values for the remaining members of the set are updated after each removal.

    3.2 Verification and comparison of PMABCA

    In this section, the computational results obtained by the PMABCA is compared to the NSGAII[14]and the PMABCA_D, respectively. The running mechanism of the PMABCA_D is the same as that of the PMABCA. The only difference between them is a different preference expression method. Specifically, the PMABC_D adopts the weighted Euclidean distance measure addressed by Deb.

    The selected two test functionsP1andP2are given as follows[14,16]:

    (11)

    (12)

    The experiments are executed in a PC using Matlab, and the clock speed of the PC is 2.6 GHz. The population size and archive size of the three algorithms are all set to be 100 and 50, respectively. In order to compare the running time of these algorithms better, the iteration cycle is set to be 1 000. In the experiments, we performed 30 independent runs on each test problem. What is listed in Tab.1 is the average CPU execution time of the 30 runs.

    Tab.1 Running time of the three algorithms s

    It is clear that the PMABCA_D is the fastest, the PMABCA is slightly slower, and the NSGAII is the slowest. The PMABCA is somewhat slower than the PMABCA_D, which is mainly due to the new proposed preference distance calculation operator. The longest running time of the NSGAⅡ is most likely deduced by the mating selection operator, moreover, there are more individuals to be compared during the searching process.

    Fig.2 and Fig.3 are the comparisons of the experimental results. In problem P1, the reference point is set to be (0.5,1), and the coefficients are set to be (0.5,0.5). As for the problem P2, the reference point is set to be (3,4,3), and the coefficients are set to be (0.5,0.25,0.25).

    (a) (b) (c)

    (a) (b) (c)

    As shown in Fig.2 and Fig.3, both the PMABCA and the PMABCA_D converge on thePF, and there are more preference solutions than non-preference solutions. Comparing thePFof PMABCA to that of PMABCA_D, it is clear that the preference area in the PMABCA is more compact.

    4 Optimization of Superheated Steam Temperature Control

    4.1 PID controller of superheated steam temperature control system

    A simplified block diagram of the superheated steam temperature cascade control system which uses spray water injection as the deputy controller is shown in Fig.4[17]. The spray water injection control system, which is extracted to quickly respond, serves as a deputy controller; the superheated outlet steam temperature, which is characterized by hysteresis and nonlinearity, serves as the primary controller.

    In Fig.4,ris the set point of superheated steam temperature;Tais the intermediate steam temperature;Tis the superheated steam temperature;Wal(s) andWa2(s) are the deputy and the primary controller, respectively;Wol(s) andWo2(s) are the corresponding transfer func-tions, mA/℃;WHl(s) andWH2(s) are the corresponding measurement units. The transfer functions of the intermediate and superheated steam temperatures are shown as follows[18]:

    Fig.4 The boil superheated steam temperature cascade control system

    (13)

    (14)

    Since the deputy controller only approximately regulates the intermediate steam temperature, a fixed proportional controller is usually used in order to simplify the design of the controller,Wa1(s)=Kp1. The primary controller is employed to regulate the steam temperature to its set point precisely, and it is designed to be a PID controller,Wa2(s)=Kp2+Ki2/s+Kd2s. The deputy controller and the primary controller of the cascade control system can be adjusted respectively. The purpose of this paper is to search for the design parameters of the primary controller by the PMABCA.

    4.2 Principle of multiobjective PID parameter optimization

    In this paper, we adoptts,σ,ψand ITAE as the objectives of the primary controller optimization in the superheated steam temperature cascade control system. In order to decrease the relativity of the objectives and increase the influence of the steady-state error, the ITAE is redefined as

    (15)

    wheretsmeans the settling time with an error bound of 5%. The definition of the ITAE is changed, only considering the errors after the settling time. Since before thets, the ITAE is relative toσandψ. With Eq.(15), the relationships amongσ,ψand ITAE are weakened. With the multiobjective optimization model, the PID parameter optimization is described as

    min (ts, 100-ψ,σ, ITAE′)

    s.t.Kpmin≤Kp≤Kpmax,Kimin≤Ki≤Kimax,Kdmin≤Kd≤Kdmax

    (16)

    4.3 Simulation results

    Since predicting the ITAE value is somewhat difficult, the DM cannot properly express the preference for it. Whereas it is relatively simple to express preference via the parametersts,σandψ. Here the reference point is set to be 130, 10%, 95%, and there are no bias among all the objectives; i.e., the coefficients are set to be 1/3,1/3,1/3.

    The bound values ofKp,KiandKdare set according to Ref.[18], which are 2≤Kp≤4.5, 0.035≤Ki≤0.11, 30≤Kd≤45. The PID parameters are tuned based on the step response experiment.

    With the PMABCA, plenty of Pareto optimal solutions are achieved. Due to the limited space, only five groups of parameters are listed in Tab.2. Step responses curves of the first two selected groups of parameters are shown in Fig.5 with solid lines. As for comparison, the step responses curves of the top two groups parameters proposed in Ref.[17] are also shown in Fig.5 with dotted lines. It is clear that the simulation results of the PMABCA are more satisfactory than those of Ref.[17]. In addition, the preference distance values of each solution achieved by the PMABCA aid the DM in making a reasonable decision.

    Tab.2 Parameter and objective values of the selected ten groups

    Fig.5 Comparison of the step response curves

    5 Conclusion

    A novel preference expression method is addressed, and a new preference-based multiobjective ABC algorithm is proposed. With the PMABCA, instead of the well covered and uniformly distributed set of Pareto optimal solutions, a preferred set of solutions and some other non-preference solutions are found simultaneously. Experimental results on the benchmark test problems validate its effectiveness. The preferences for different objectives can be expressed in the calculated solutions. Consequently, the PMABCA is used for the PID controller parameter tuning in the superheated steam temperature cascade control system of a boiler. Simulation results show that the DM’s preference can be easily addressed. A set of solutions which can meet the preference will aid the DM in making a reasonable decision.

    [1]Sanchez-Lopez A, Arroyo-Figueroa G, Villavicencio-Ramirez A. Advanced control algorithms for steam temperature regulation of thermal power plants[J].InternationalJournalofElectricalPower&EnergySystems, 2004, 26(10): 779-785.

    [2]Zhang J H, Zhang F F, Ren M F, et al. Cascade control of superheated steam temperature with neuro-PID controller[J].ISATransactions, 2012, 51(6): 778-785.

    [3]Riggs J B, Curtner K, Foslien W. Comparison of two advanced steam temperature controllers for coal-fired boilers[J].Computers&ChemicalEngineering, 1995, 19(5): 541-550.

    [4]Naidu K, Mokhlis H, Bakar A H A. Multiobjective optimization using weighted sum Artificial Bee Colony algorithm for Load Frequency Control[J].InternationalJournalofElectricalPower&EnergySystems, 2014, 55: 657-667.

    [5]Hung M H, Shu A S, Ho S J, et al. A novel intelligent multiobjective simulated annealing algorithm for designing robust PID controllers[J].IEEETransactionsonSystems,Man,andCybernetics,PartA:SystemsandHumans, 2008, 38(2): 319-330.

    [6]Pedersen G K M, Yang Z. Multi-objective PID-controller tuning for a magnetic levitation system using NSGA-Ⅱ[C]//Proceedingsofthe8thAnnualConferenceonGeneticandEvolutionaryComputation. Seattle, USA, 2006: 1737-1744.

    [7]Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri, Turkey: Computer Engineering Department, Erciyes University, 2005.

    [8]Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm [J].AppliedSoftComputing, 2008, 8(1): 687-697.

    [9]Zhou X, Shen J, Sheng J X. An immune recognition based algorithm for finding non-dominated set in multi-objective optimization[C]//Pacific-AsiaWorkshoponComputationalIntelligenceandIndustrialApplication. Wuhan, China, 2008: 305-310.

    [10]Branke J, Deb K. Integrating user preferences into evolutionary multi-objective optimization[M]//KnowledgeIncorporationinEvolutionaryComputation. Berlin: Springer, 2005: 461-477.

    [11]Coello C A C. Handling preferences in evolutionary multiobjective optimization: a survey[C]//Proceedingsofthe2000CongressonEvolutionaryComputation. La Jolla, CA, USA, 2000, 1: 30-37.

    [12]Molina J, Santana L V, Hernández-Díaz A G, et al. g-dominance:Reference point based dominance for multiobjective metaheuristics[J].EuropeanJournalofOperationalResearch, 2009, 197(2): 685-692.

    [13]Deb K, Sundar J, Udaya Bhaskara Rao N, et al. Reference point based multi-objective optimization using evolutionary algorithms[J].InternationalJournalofComputationalIntelligenceResearch, 2006, 2(3): 273-286.

    [14]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J].TransactionsonEvolutionaryComputation, 2002, 6(2): 182-197.

    [15]Luo B, Zheng J, Xie J, et al. Dynamic crowding distance? A new diversity maintenance strategy for MOEAs[C]//ProceedingsoftheFourthInternationalConferenceonNaturalComputation. Jinan, China, 2008: 580-585.

    [16]Zitzler E, Laumanns M, Thiele L. Spea2: improving the strength Pareto evolutionary algorithm [R]. Zurich, Switzerland: Computer Engineering and Networks Laboratory(TIK), ETH Zurich, 2001.

    [17]Zhao L, Ju G, Lu J. An improved genetic algorithm in multi-objective optimization and its application[J].ProceedingsoftheCSEE, 2008, 28(2): 96-102. (in Chinese)

    [18]Li M, Shen J. Simulating study of adaptive GA-based PID parameter optimization for the control of superheated steam temperature[J].ProceedingsoftheCSEE, 2002, 22(8): 145-149. (in Chinese)

    基于偏好多目標蜂群算法的過熱汽溫控制系統(tǒng)優(yōu)化

    周 霞1,2沈 炯1李益國1

    (1東南大學能源與環(huán)境學院, 南京 210096)(2金陵科技學院機電工程學院, 南京 211169)

    為了將決策者的偏好綜合到多目標問題求解過程中,提出了一種偏好多目標蜂群優(yōu)化算法PMABCA.在PMABCA中,給出了一種新的偏好距離計算方法,基于非支配等級與偏好距離定義了適應度分配函數(shù),并引入了歸檔集用于非支配解的存儲.為了清除非支配集中多余的解,提出了改進的偏好擁擠距離算子.針對經(jīng)典函數(shù)優(yōu)化問題的計算結果表明,PMABCA可以在輸出完整Pareto前端的基礎上,確保輸出大量符合偏好的最優(yōu)解.將PMABCA應用于過熱汽溫控制系統(tǒng)PID參數(shù)優(yōu)化問題,仿真結果表明,新算法的結果更便于決策者做出合理決策.

    偏好;多目標;蜂群;過熱汽溫控制;優(yōu)化

    TK39; TP391

    Received 2014-06-26.

    Biographies:Zhou Xia (1976—), female, doctor, lecturer, zenia77@163.com; Shen Jiong (corresponding author), male, doctor, professor, shenj@seu.edu.cn.

    The National Natural Science Foundation of China (No.51306082, 51476027).

    :Zhou Xia, Shen Jiong, Li Yiguo. Preference-based multiobjective artificial bee colony algorithm for optimization of superheated steam temperature control[J].Journal of Southeast University (English Edition),2014,30(4):449-455.

    10.3969/j.issn.1003-7985.2014.04.009

    10.3969/j.issn.1003-7985.2014.04.009

    猜你喜歡
    熱汽決策者支配
    熱浪滾滾:新興市場決策者竭力應對通脹升溫 精讀
    英語文摘(2021年12期)2021-12-31 03:26:20
    被貧窮生活支配的恐懼
    意林(2021年9期)2021-05-28 20:26:14
    基于遺傳算法的模糊控制在過熱汽溫控制系統(tǒng)優(yōu)化中的應用
    電子制作(2019年16期)2019-09-27 09:34:44
    跟蹤導練(四)4
    “最關鍵”的施工力量——決策者、執(zhí)行者與實施者
    當代陜西(2018年9期)2018-08-29 01:20:56
    600MW亞臨界汽包爐再熱汽溫低的治理及應用
    電站輔機(2017年3期)2018-01-31 01:46:39
    基于決策空間變換最近鄰方法的Pareto支配性預測
    自動化學報(2017年2期)2017-04-04 05:14:34
    隨心支配的清邁美食探店記
    Coco薇(2016年8期)2016-10-09 00:02:56
    決策者聲望尋求行為、團隊努力與團隊績效
    軟科學(2014年8期)2015-01-20 15:36:56
    600MW超臨界直流爐過熱汽溫動態(tài)特性試驗與控制系統(tǒng)優(yōu)化
    自動化博覽(2014年9期)2014-02-28 22:33:27
    不卡视频在线观看欧美| 国产激情偷乱视频一区二区| 99久久九九国产精品国产免费| 久久精品人妻少妇| 亚洲国产欧洲综合997久久,| 欧美成人一区二区免费高清观看| 亚洲国产精品国产精品| 免费无遮挡裸体视频| 只有这里有精品99| 综合色av麻豆| 可以在线观看的亚洲视频| 真实男女啪啪啪动态图| 国产亚洲精品久久久久久毛片| 久久国产乱子免费精品| 校园人妻丝袜中文字幕| 女的被弄到高潮叫床怎么办| 两性午夜刺激爽爽歪歪视频在线观看| 97人妻精品一区二区三区麻豆| 日本-黄色视频高清免费观看| 蜜臀久久99精品久久宅男| 国产成人福利小说| 51国产日韩欧美| 亚洲av成人精品一区久久| 欧美最新免费一区二区三区| 99热网站在线观看| 六月丁香七月| 中文在线观看免费www的网站| 少妇高潮的动态图| 久久精品国产自在天天线| 国产精品女同一区二区软件| 成年免费大片在线观看| 国产成人一区二区在线| 日韩欧美精品v在线| 欧美性猛交╳xxx乱大交人| 亚洲国产色片| 中文字幕av在线有码专区| 99久久久亚洲精品蜜臀av| 亚洲av免费在线观看| 中国美女看黄片| 九九爱精品视频在线观看| 黄色配什么色好看| 精品久久久久久久久亚洲| 国产精品女同一区二区软件| 国产亚洲欧美98| 18+在线观看网站| 日日啪夜夜撸| or卡值多少钱| 国产单亲对白刺激| 免费无遮挡裸体视频| avwww免费| 两个人视频免费观看高清| 成人二区视频| 少妇高潮的动态图| 在线免费观看的www视频| 午夜老司机福利剧场| 亚洲美女搞黄在线观看| 国产精品一区二区在线观看99 | 国产大屁股一区二区在线视频| 看十八女毛片水多多多| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久亚洲中文字幕| 日韩欧美 国产精品| 亚洲国产欧美在线一区| 一进一出抽搐动态| 国产午夜精品论理片| 男人舔奶头视频| 国产一区二区亚洲精品在线观看| 婷婷色av中文字幕| 婷婷亚洲欧美| av又黄又爽大尺度在线免费看 | 狂野欧美白嫩少妇大欣赏| 欧美变态另类bdsm刘玥| 哪个播放器可以免费观看大片| 少妇裸体淫交视频免费看高清| 99热这里只有是精品在线观看| 日韩成人伦理影院| 免费看a级黄色片| 舔av片在线| 日韩一区二区三区影片| h日本视频在线播放| 亚洲欧美成人综合另类久久久 | 中文字幕免费在线视频6| 亚洲欧美日韩东京热| 亚洲成人中文字幕在线播放| 好男人视频免费观看在线| 亚洲国产精品久久男人天堂| 亚洲第一区二区三区不卡| 久久99精品国语久久久| 成人三级黄色视频| 97人妻精品一区二区三区麻豆| 自拍偷自拍亚洲精品老妇| 噜噜噜噜噜久久久久久91| 非洲黑人性xxxx精品又粗又长| 亚洲丝袜综合中文字幕| 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| 中文字幕制服av| 国产黄片美女视频| 亚洲av免费在线观看| 久久久色成人| 可以在线观看毛片的网站| ponron亚洲| 综合色av麻豆| 成熟少妇高潮喷水视频| 国产极品精品免费视频能看的| 五月玫瑰六月丁香| 国产日本99.免费观看| 中文资源天堂在线| 亚洲精品成人久久久久久| 亚洲七黄色美女视频| 成人亚洲精品av一区二区| 三级男女做爰猛烈吃奶摸视频| 美女国产视频在线观看| 成人性生交大片免费视频hd| 欧美变态另类bdsm刘玥| 成人国产麻豆网| 亚洲婷婷狠狠爱综合网| 国产av麻豆久久久久久久| 99久久久亚洲精品蜜臀av| 91久久精品国产一区二区三区| 久久人人爽人人片av| 国产伦一二天堂av在线观看| 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 99久久精品一区二区三区| 国产三级在线视频| 亚洲av熟女| 色尼玛亚洲综合影院| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影| 亚洲av电影不卡..在线观看| 白带黄色成豆腐渣| 成年女人永久免费观看视频| 亚洲av不卡在线观看| 免费看光身美女| 精品一区二区免费观看| 亚洲欧美日韩高清专用| 国产在线男女| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 麻豆一二三区av精品| 亚洲欧美精品专区久久| 亚洲婷婷狠狠爱综合网| 18+在线观看网站| eeuss影院久久| 高清毛片免费观看视频网站| 亚洲成av人片在线播放无| 深夜a级毛片| 卡戴珊不雅视频在线播放| 国产大屁股一区二区在线视频| 午夜福利高清视频| 欧美性猛交╳xxx乱大交人| 99久国产av精品| 一级黄色大片毛片| 中国国产av一级| 成年av动漫网址| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 精品日产1卡2卡| 亚洲成人av在线免费| 天堂√8在线中文| 美女高潮的动态| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 午夜爱爱视频在线播放| 大香蕉久久网| 男女边吃奶边做爰视频| 午夜福利成人在线免费观看| 日韩人妻高清精品专区| 91久久精品国产一区二区三区| 午夜爱爱视频在线播放| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 亚洲av免费高清在线观看| 99久久精品一区二区三区| 99国产极品粉嫩在线观看| а√天堂www在线а√下载| 亚洲第一电影网av| 亚洲一区二区三区色噜噜| 久久久久久大精品| 校园春色视频在线观看| 国内精品美女久久久久久| 国国产精品蜜臀av免费| 99热全是精品| 岛国毛片在线播放| 日韩制服骚丝袜av| 久久久国产成人免费| 久久亚洲国产成人精品v| 深夜a级毛片| 一本久久精品| 亚洲不卡免费看| av.在线天堂| 中文精品一卡2卡3卡4更新| 亚洲人与动物交配视频| 日韩国内少妇激情av| 搡女人真爽免费视频火全软件| 国产精华一区二区三区| 中文字幕av在线有码专区| 哪个播放器可以免费观看大片| 在线观看午夜福利视频| 亚洲av中文字字幕乱码综合| 村上凉子中文字幕在线| 国产精华一区二区三区| 国产探花极品一区二区| 免费电影在线观看免费观看| 欧美3d第一页| 日本-黄色视频高清免费观看| 偷拍熟女少妇极品色| 日本在线视频免费播放| 亚洲精品久久久久久婷婷小说 | 99riav亚洲国产免费| 国产在线男女| 99久久精品热视频| 午夜免费激情av| 又黄又爽又刺激的免费视频.| av在线亚洲专区| 欧美在线一区亚洲| 成人无遮挡网站| 99久久人妻综合| 中文资源天堂在线| 亚洲精品乱码久久久久久按摩| 看免费成人av毛片| 精品人妻视频免费看| 久久久精品欧美日韩精品| 国产成人aa在线观看| 亚洲图色成人| 欧美日韩国产亚洲二区| 男人舔奶头视频| 亚洲最大成人av| 99久国产av精品国产电影| 精品99又大又爽又粗少妇毛片| 一个人看的www免费观看视频| 日韩三级伦理在线观看| 久99久视频精品免费| 亚洲无线观看免费| www日本黄色视频网| 男女视频在线观看网站免费| 久久精品国产亚洲网站| 国产在线男女| 亚洲欧美日韩无卡精品| 国产国拍精品亚洲av在线观看| 可以在线观看的亚洲视频| 欧美人与善性xxx| avwww免费| 97热精品久久久久久| 女的被弄到高潮叫床怎么办| 不卡视频在线观看欧美| 草草在线视频免费看| 日韩高清综合在线| 最近最新中文字幕大全电影3| 熟女电影av网| 变态另类丝袜制服| 99热全是精品| 国产成人一区二区在线| 亚洲成人精品中文字幕电影| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦啦在线视频资源| 国产综合懂色| 高清午夜精品一区二区三区 | 色综合站精品国产| 国产精品一区www在线观看| 小蜜桃在线观看免费完整版高清| 国产精品无大码| 日韩av在线大香蕉| 老师上课跳d突然被开到最大视频| 国产精品综合久久久久久久免费| 99在线人妻在线中文字幕| 亚洲婷婷狠狠爱综合网| 内地一区二区视频在线| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 色哟哟·www| 久久午夜福利片| 国产视频内射| 色5月婷婷丁香| 少妇被粗大猛烈的视频| 在线观看午夜福利视频| 国产乱人偷精品视频| 22中文网久久字幕| 亚洲18禁久久av| 精品欧美国产一区二区三| 99精品在免费线老司机午夜| 91久久精品电影网| 亚洲自偷自拍三级| 99在线视频只有这里精品首页| 日韩大尺度精品在线看网址| 国产免费一级a男人的天堂| 国产黄a三级三级三级人| 一级黄片播放器| 91狼人影院| 91aial.com中文字幕在线观看| 日韩成人av中文字幕在线观看| 日韩 亚洲 欧美在线| 久久亚洲国产成人精品v| 国产av在哪里看| 国产一区二区三区在线臀色熟女| 热99re8久久精品国产| 国产午夜精品一二区理论片| av在线蜜桃| 天堂√8在线中文| 少妇人妻精品综合一区二区 | 亚洲在久久综合| 欧美一区二区精品小视频在线| 中文精品一卡2卡3卡4更新| 中文字幕精品亚洲无线码一区| 中文字幕制服av| 亚洲最大成人中文| 国产精品一及| 韩国av在线不卡| 欧美激情久久久久久爽电影| 看非洲黑人一级黄片| 最新中文字幕久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆久久精品国产亚洲av| 免费看美女性在线毛片视频| 亚洲在线观看片| 26uuu在线亚洲综合色| 夜夜爽天天搞| 真实男女啪啪啪动态图| 亚洲欧美精品自产自拍| 床上黄色一级片| 亚洲欧美中文字幕日韩二区| 中文字幕av在线有码专区| 神马国产精品三级电影在线观看| 亚洲av熟女| 国内精品久久久久精免费| 国产av在哪里看| 一个人观看的视频www高清免费观看| 亚洲国产精品久久男人天堂| 两个人的视频大全免费| 久久久久久久午夜电影| 日本在线视频免费播放| 午夜福利在线在线| 九九热线精品视视频播放| 国产成人影院久久av| 国产精品不卡视频一区二区| 国产亚洲5aaaaa淫片| 欧美zozozo另类| 国产在线精品亚洲第一网站| 成人特级黄色片久久久久久久| 18禁在线播放成人免费| 午夜久久久久精精品| 午夜福利高清视频| 亚洲av熟女| 真实男女啪啪啪动态图| 色哟哟哟哟哟哟| 亚洲最大成人av| 精品久久久久久久久久久久久| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 婷婷精品国产亚洲av| 免费观看人在逋| 99久久精品一区二区三区| 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 大型黄色视频在线免费观看| 18禁在线无遮挡免费观看视频| 亚洲国产日韩欧美精品在线观看| 99久久中文字幕三级久久日本| 欧美极品一区二区三区四区| av在线观看视频网站免费| 久久久国产成人免费| 在线观看66精品国产| 一区二区三区四区激情视频 | 一边亲一边摸免费视频| 一本精品99久久精品77| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 人人妻人人看人人澡| 欧美+亚洲+日韩+国产| 成年女人永久免费观看视频| 国产精品久久电影中文字幕| 日韩人妻高清精品专区| 成人午夜高清在线视频| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 亚洲无线在线观看| 校园人妻丝袜中文字幕| 男人狂女人下面高潮的视频| 亚洲色图av天堂| 亚州av有码| 夜夜夜夜夜久久久久| 欧美区成人在线视频| 爱豆传媒免费全集在线观看| 中文字幕精品亚洲无线码一区| 伊人久久精品亚洲午夜| 99久久精品热视频| 麻豆成人午夜福利视频| 亚洲欧美成人精品一区二区| 亚洲国产精品sss在线观看| 成人无遮挡网站| 国产精品永久免费网站| 三级国产精品欧美在线观看| 97在线视频观看| 99久国产av精品| 尾随美女入室| 99久久中文字幕三级久久日本| 麻豆乱淫一区二区| 少妇熟女aⅴ在线视频| 国产精品国产三级国产av玫瑰| 禁无遮挡网站| 久久久久免费精品人妻一区二区| 亚洲欧美成人综合另类久久久 | 99久久无色码亚洲精品果冻| 色5月婷婷丁香| 99热网站在线观看| 欧美xxxx性猛交bbbb| 不卡一级毛片| 丝袜美腿在线中文| 国产色婷婷99| 亚洲精品日韩av片在线观看| 国产老妇伦熟女老妇高清| 中文资源天堂在线| 日日撸夜夜添| 日韩亚洲欧美综合| 午夜免费男女啪啪视频观看| 亚洲av.av天堂| 韩国av在线不卡| 国产高清不卡午夜福利| 国产黄色小视频在线观看| 国产成人午夜福利电影在线观看| 丰满人妻一区二区三区视频av| 精品日产1卡2卡| 国产精品久久久久久亚洲av鲁大| 午夜精品在线福利| 国语自产精品视频在线第100页| 亚洲最大成人av| 久久久a久久爽久久v久久| 精华霜和精华液先用哪个| 国产片特级美女逼逼视频| 人体艺术视频欧美日本| 国产一区二区在线av高清观看| 国产乱人偷精品视频| 午夜a级毛片| 韩国av在线不卡| 国内精品美女久久久久久| 亚洲精品久久国产高清桃花| 久久久久国产网址| 69人妻影院| 美女被艹到高潮喷水动态| 国产精品一及| 九九爱精品视频在线观看| 日本色播在线视频| 国产视频内射| 两个人的视频大全免费| 好男人视频免费观看在线| .国产精品久久| 能在线免费看毛片的网站| 在线观看免费视频日本深夜| 久久午夜福利片| www.av在线官网国产| 最近视频中文字幕2019在线8| 国产av麻豆久久久久久久| 波多野结衣高清作品| 精品人妻一区二区三区麻豆| 国产免费一级a男人的天堂| 日日干狠狠操夜夜爽| 国产精品乱码一区二三区的特点| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3| 亚洲成人中文字幕在线播放| 麻豆国产av国片精品| 亚洲精华国产精华液的使用体验 | 国产精品蜜桃在线观看 | 亚洲四区av| 国产一级毛片七仙女欲春2| 99久国产av精品国产电影| 91精品一卡2卡3卡4卡| 国产成人91sexporn| 日本在线视频免费播放| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 九九在线视频观看精品| 亚洲婷婷狠狠爱综合网| 在线a可以看的网站| 亚洲av熟女| 91精品一卡2卡3卡4卡| 亚洲精品国产成人久久av| 免费观看精品视频网站| 在线免费观看的www视频| 老司机福利观看| 久久久久久九九精品二区国产| 一本久久中文字幕| 亚洲国产精品合色在线| 一级毛片久久久久久久久女| av专区在线播放| 国产男人的电影天堂91| 亚洲三级黄色毛片| 黑人高潮一二区| 国产 一区 欧美 日韩| 国产伦精品一区二区三区视频9| 国产一级毛片在线| 五月伊人婷婷丁香| 国产精品久久电影中文字幕| 欧美bdsm另类| 免费看av在线观看网站| 日日啪夜夜撸| 午夜激情福利司机影院| 亚洲精品自拍成人| 亚洲一区高清亚洲精品| 亚洲精品自拍成人| 午夜爱爱视频在线播放| 日韩av不卡免费在线播放| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线| 久久6这里有精品| 国产精品乱码一区二三区的特点| 偷拍熟女少妇极品色| 亚洲精华国产精华液的使用体验 | 国产又黄又爽又无遮挡在线| 中文欧美无线码| 男人狂女人下面高潮的视频| 国产真实伦视频高清在线观看| 乱系列少妇在线播放| 一进一出抽搐gif免费好疼| 最近的中文字幕免费完整| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 波多野结衣巨乳人妻| 免费不卡的大黄色大毛片视频在线观看 | 国产日本99.免费观看| 日韩精品青青久久久久久| 乱系列少妇在线播放| 边亲边吃奶的免费视频| 国产成人aa在线观看| 最好的美女福利视频网| 夜夜夜夜夜久久久久| av天堂在线播放| 成人二区视频| www日本黄色视频网| 欧美高清性xxxxhd video| 床上黄色一级片| 国产精品国产高清国产av| 国产淫片久久久久久久久| 中文欧美无线码| 一卡2卡三卡四卡精品乱码亚洲| 热99在线观看视频| 日韩欧美国产在线观看| 中文精品一卡2卡3卡4更新| 国产在线精品亚洲第一网站| 99久久中文字幕三级久久日本| 久久久a久久爽久久v久久| 99热只有精品国产| 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| 精品人妻一区二区三区麻豆| 国产精品久久久久久精品电影| 国产精品麻豆人妻色哟哟久久 | av在线亚洲专区| av在线播放精品| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播放欧美日韩| 在现免费观看毛片| 不卡一级毛片| 好男人在线观看高清免费视频| 免费av不卡在线播放| 午夜免费激情av| 99久久久亚洲精品蜜臀av| 午夜爱爱视频在线播放| 日本五十路高清| 国产精品伦人一区二区| 久久精品国产自在天天线| 国产乱人偷精品视频| 免费电影在线观看免费观看| 国产探花在线观看一区二区| 久久久久久国产a免费观看| 日韩一区二区视频免费看| 激情 狠狠 欧美| 国产精品国产高清国产av| 六月丁香七月| 你懂的网址亚洲精品在线观看 | 欧美丝袜亚洲另类| 村上凉子中文字幕在线| 啦啦啦啦在线视频资源| 久久99蜜桃精品久久| 中出人妻视频一区二区| 精品一区二区免费观看| av在线老鸭窝| 国产精品三级大全| 欧美日韩国产亚洲二区| 最近中文字幕高清免费大全6| 白带黄色成豆腐渣| 日韩欧美精品免费久久| 日本-黄色视频高清免费观看| 亚洲欧美中文字幕日韩二区| 久久久午夜欧美精品| 秋霞在线观看毛片| 久久99蜜桃精品久久| 人妻久久中文字幕网| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂 | 中出人妻视频一区二区| 久久精品国产自在天天线| 久久精品国产鲁丝片午夜精品| 亚洲精品色激情综合| av专区在线播放| 99九九线精品视频在线观看视频| 国产毛片a区久久久久| 国产精华一区二区三区| 国产三级中文精品| 人妻久久中文字幕网| 亚洲av免费在线观看| 亚洲欧美成人精品一区二区| 国产成人a∨麻豆精品| 男的添女的下面高潮视频| 国产中年淑女户外野战色| 久久99精品国语久久久| 欧美丝袜亚洲另类| av国产免费在线观看| 久久人妻av系列| 久久精品综合一区二区三区| 久久亚洲国产成人精品v| а√天堂www在线а√下载| av福利片在线观看|