• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved design of reconfigurable frequency response masking filters based on second-order cone programming

    2014-09-06 10:49:50WuChenXuXinzhouHuangChengweiZhaoLi
    關鍵詞:設計模式蘇州大學二階

    Wu Chen Xu Xinzhou Huang Chengwei Zhao Li

    (1Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China)(2School of Physical Science and Technology, Soochow University, Suzhou 215006, China)

    ?

    Improved design of reconfigurable frequency response masking filters based on second-order cone programming

    Wu Chen1Xu Xinzhou1Huang Chengwei2Zhao Li1

    (1Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China)(2School of Physical Science and Technology, Soochow University, Suzhou 215006, China)

    In order to improve the design results for the reconfigurable frequency response masking (FRM) filters, an improved design method based on second-order cone programming (SOCP) is proposed. Unlike traditional methods that separately design, the proposed method takes all the desired designing modes into consideration when designing all the subfilters. First, an initial solution is obtained by separately designing the subfilters, and then the initial solution is updated by iteratively solving a SOCP problem. The proposed method is evaluated on a design example, and simulation results demonstrate that jointly designing all the subfilters can obtain significantly lower minimax approximation errors compared to the conventional design method.

    frequency response masking (FRM) filter; optimal design; reconfigurability; second-order cone programming (SOCP)

    Recently, a new reconfigurable filter bank architecture based on frequency response masking (FRM) technique was proposed[1]. The FRM technique is well known for its low complexity in designing sharp transition-band finite impulse response (FIR) filters[2]. When incorporating reconfigurability into the FRM filters, low complexity and reconfigurability, which are the two key requirements of the filters used for multi-standard communication, can be satisfied. Hence, the reconfigurable FRM filters have been extensively used in software defined radio (SDR) channelization[1,3-4], cognitive radio handsets channel adaptation[5], and cognitive radio spectrum sensing[6].

    Previous work on reconfigurable FRM filters mainly focused on its applications and implementations. Their designing procedure generally involves two steps: First, obtaining the specifications of all the subfilters, and secondly, designing all the subfilters with precalculated specifications using the Parks-McClellan algorithm[7]. However, designing all the subfilters separately is an indirect method, which produces suboptimal solutions.

    For the optimal design of reconfigurable FRM filters, all the subfilters are expected to be designed directly according to the desired multi-mode. It has been demonstrated that, for the design of reconfigurable coefficient decimation FIR filters, taking all configuration modes into consideration can give better results[8]. However, as the cascade structure of the FRM filters, linear programming (LP) used in Ref.[8] will not be appropriate for the optimal design of reconfigurable FRM filters. In earlier work, the second-order cone programming (SOCP)[9]was employed for the optimal design of a basic single mode FRM filter[10-11]. So, in this paper, we propose an improved design method, which takes all the desired modes into consideration. The optimal design of reconfigurable FRM filters can be formulated as the SOCP problem. Given a reasonable initial design solution, an improved design can be obtained by iteratively solving the SOCP problem.

    1 Review of Reconfigurable FRM Filters

    1.1 Basic FRM filter

    FRM filters have been widely used for the synthesis of sharp transition-band filters with low complexity. The basic FRM filter structure is illustrated in Fig.1, which includes a modal filterHa(z) upsampled byM, a pair of masking filtersHma(z) andHmc(z), and a delay line[2]. Since the desired sharp transition-band filter is composed of several wide transition-band subfilters, the overall complexity can be reduced. The transfer function of the entire basic FRM filter is given by

    H(z)=Ha(zM)Hma(z)+[z-0.5M(Na-1)-Ha(zM)]Hmc(z)

    (1)

    Fig.1 Basic FRM filter structure

    where

    (2)

    If the length of the two masking filters are both even or both odd and (Na-1)Mis even, the FRM filter will have a linear phase response. Without loss of generality, the FRM filter can be treated as a zero-phase FIR filter, which can be expressed as

    (3)

    where

    Given a up-sampling factorM, normalized passband edgeωpand stopband edgeωsof the desired filter, the passband and stopband edges of all the subfilters can be determined as follows[1-3]:

    m=

    (4a)

    ωap=ωpM-2mπ,ωas=ωsM-2mπ

    (4b)

    (4c)

    (4d)

    wheremdenotes the largest integer less thanωpM/(2π);ωapandωasare the passband and stopband edges of the modal filterHa(z);ωmapandωmcpare the passband edges andωmasandωmcsare the stopband edges of the two masking filtersHma(z) andHmc(z), respectively.

    The length of each of the subfilter can be obtained by

    (5)

    whereδpis the peak passband ripple;δsis the peak stopband ripple andωs-ωpis the normalized transition width[12].

    1.2 Reconfigurable FRM filter

    For reconfigurable FRM filters, reconfigurability is achieved by reusing the same coefficients of the modal filter with different up-sampling factors. When combining the FRM structure with reconfigurable architecture, low complexity and reconfigurability requirements can be satisfied simultaneously. Generally, there are two architectures of reconfigurable FRM filters, which are shown in Fig.2. The architecture shown in Fig.2(a) can realize a single filter at a given time with the model selector, which is mainly used in SDR handset applications[1,5]. Multiple output architecture is shown in Fig.2(b), which can simultaneously realize multiple channel filters for multimode communication applications[2,4,6]. However, the coefficients of all subfilters of the two architectures are calculated in the same way. The proposed method can be used for the design of both reconfigurable FRM filters.

    (a)

    (b)

    For reconfigurable FRM filters, the passband edgeωapand the stopband edgeωasof the modal filterHa(z) remain unchanged. Suppose that there arendesired output modes with passband edgesωp1,…,ωpnand stopband edgesωs1,…,ωsn, respectively. Then all the desired output modes can be achieved by using different up-sampling factorsMi, which can be obtained by

    ωap=ωp1M1-2π

    =…=ωpnMn-2π

    (6a)

    ωas=ωs1M1-2π

    =…=ωsnMn-2π

    (6b)

    After obtaining the different up-sampling factorsMiby sloving Eqs.(6), the complementary delays of different output modes can be obtained by (Na-1)Mi/2, and the passband and stopband edges of the two masking filters for different modes can be obtained using Eqs.(4c) and (4d). Then the length of all the subfilters can be calculated via Eq.(5). As all the subfilters involved in the reconfigurable FRM filters have a wide transition-band, the overall filter lengths can be short and consequently, the complexity can be reduced. Finally, the subfilters are designed using the conventional Parks-McClellan algorithm[7]after all their specifications have been obtained from previous work.

    2 Proposed Method

    Although previous designing methods can provide acceptable results in multi-mode communication applications[1-2,4-6], designing all the subfilters separately is an indirect method, which leads to the solutions being suboptimal[10]. We therefore consider improving the design results by directly taking all the desired output modes into account. This basic idea is motivated by Ref.[8] that taking all the desired modes into consideration can provide better results for the design of reconfigurable coefficient decimation FIR filters. However, due to the cascade structure of the FRM filters, the linear programming (LP) used in Ref.[8] will not be appropriate for the optimal design of reconfigurable FRM filters. Alternatively, we formulate the optimal design of reconfigurable FRM filters as a SOCP problem. Given a reasonable initial design solution, an improved design can be obtained by iteratively solving the SOCP problem.

    The problem of optimal designing of reconfigurable FRM filters taking all desired output modes into consideration with the weighted minimax error criterion can be formulated as follows:

    minη

    (7a)

    (7b)

    (8)

    andWi(ω) is the weighting function defined as

    (9)

    For solving the problem (7), we use an iterative method with each iteration carried out by a SOCP solver. Suppose that there is a reasonable solutionx0to start, and we are now in thek-th iteration. For a smoothHi(ω,x) in a vicinity ofxk, we can write

    (10)

    wheregi(ω,xk) is the gradient ofHi(ω,x)with respect toxafter evaluating atxkand it is defined as

    (11)

    Hence, provided the ‖δ‖ is small and the filter is in linear phase, withx=xk+δwe obtain

    (12)

    wheregik(ω)=Wi(ω)gi(ω,xk) andeik(ω)=Wi(ω)·[Hi(ω,xk)-Hdi(ω)].

    From (10) and (12), it follows that an approximation solution of (7) in thek-th iteration can be obtained by solving the following SOCP problem:

    mincTμ

    (13a)

    s.t. ‖Gik(ω)μ+eik(ω)‖≤cTμω∈Ωi,?i

    (13b)

    ‖Bμ‖≤b

    (13c)

    The general procedure of the proposed design method is listed as follows:

    1) Choose an appropriate mode filter with specifications ofωapandωas.

    2) Solve Eq.(6) to obtain the up-sampling factorMiof thei-th desired mode, and then obtain the specifications of each pair of masking filters using Eq.(4).

    3) Obtain the length of all the subfilters using Eq.(5).

    4) Design all the subfilters with precalculated specifications using the Parks-McClellan algorithm[7]for the initial solutionx0,k=0.

    3 Design Example

    The design example selected for this paper was adopted from Ref.[1], which is used for the SDR channelizer. The specifications of the modal filter areωap=0.4π,ωas=0.5π andNa=39. The specifications of all masking filters and the desired filters are shown in Tab.1. The weighting factors are selected as unity weights in both the passband and stopband. For each mode, 512 points in total are uniformly placed in the desired frequency bands of interest. The value of boundbin constraint (13c) should be proportional to the dimension of vectorx[10]. In this paper, we setbto be 0.5 and the tolerance value to be 0.000 5. We use the SeDuMi toolbox[13]to solve the SOCP problem (13).

    Tab.1 Specifications of subfilters and the desired filters

    The magnitude responses and the passband ripples of both the proposed design method as well as the conventional method used in previous work are shown in Fig.3 and Fig.4, respectively. As can be clearly seen, the proposed method can produce filters with lower minimax approximation errors. The maximum passband ripples and the minimum stopband attenuation of the two design methods for each mode are shown in Tab.2. It is observed that the proposed method significantly outperforms the previous design method. Hence, as can be expected, the proposed method can give improved performance in multi-mode communication applications.

    Tab.2 Maximum passband ripples and minimum stopband attenuation dB

    (a)

    (b)

    (c)

    (d)

    (a)

    (b)

    (c)

    (d)

    4 Conclusion

    An optimal approach for the design of reconfigurable frequency response filters is proposed, which takes all desired designing modes into consideration. The proposed method mainly involves two steps: first an initial solution by separately designing the subfilters is obtained from previous work, and then the initial solutions are improved by iteratively solving a second-order cone programming (SOCP) problem. The simulation results demonstrate that the proposed method can obtain significantly lower minimax approximation errors compared to the conventional design method. The proposed method is expected to improve the performance of reconfigurable FRM filters in multi-mode communication applications.

    [1]Mahesh R, Vinod A P. Reconfigurable frequency response masking filters for software radio channelization [J].IEEETransactionsonCircuitsandSystemsⅡ:ExpressBriefs, 2008, 55(3): 274-278.

    [2]Lim Y C. Frequency-response masking approach for the synthesis of sharp linear phase digital filters [J].IEEETransactionsonCircuitsandSystems, 1986, 33(4): 357-364.

    [3]Mahesh R, Vinod A P. Reconfigurable low area complexity filter bank architecture based on frequency response masking for nonuniform channelization in software radio receivers [J].IEEETransactionsonAerospaceandElectronicSystems, 2011, 47(2): 1241-1255.

    [4]Mahesh R, Vinod A P, Lai E M-K, et al. Filter bank channelizer for multi-standard software defined radio receivers [J].JournalofSignalProcessingSystems, 2011, 62(2): 157-171.

    [5]Smitha K G, Vinod A P. A new low power reconfigurable decimation-interpolation and masking based filter architecture for channel adaptation in cognitive radio handsets [J].PhysicalCommunication, 2009, 2(1/2): 47-57.

    [6]Mahesh R, Vinod A P, Moy C, et al. J. A low complexity reconfigurable filter bank architecture for spectrum sensing in cognitive radios[C]//Proceedingsofthe3rdInternationalConferenceonCognitiveRadioOrientedWirelessNetworksandCommunications. Singapore, 2008: 4562506-1-4562506-6.

    [7]Parks T, McClellan J. Chebyshev approximation for nonrecursive digital filters with linear phase [J].IEEETransactionsonCircuitTheory, 1972, 19(2): 189-194.

    [8]Sheikh Z U, Gustafsson O. Linear programming design of coefficient decimation FIR filters [J].IEEETransactionsonCircuitsandSystemsⅡ:ExpressBriefs, 2012, 59(1): 60-64.

    [9]Boyd S, Vandenberghe L.Convexoptimization[M]. Cambridge, UK: Cambridge University Press, 2009.

    [10]Lu W S, Hinamoto T. Optimal design of FIR frequency-response-masking filters using second-order cone programming [C]//Proceedingsofthe2003InternationalSymposiumonCircuits,andSystems. Bangkok, Thailand, 2003: 878-881.

    [11]Lu W S, Hinamoto T. Optimal design of IIR frequency-response-masking filters using second-order cone programming [J].IEEETransactionsonCircuitsandSystemsⅠ:FundamentalTheoryandApplications, 2003, 50(11): 1401-1412.

    [12]Bellanger M G. On computational complexity in digital filters [C]//ProceedingsoftheEuropeanConferenceonCircuitTheoryandDesign. Hague, Holland, 1981: 8-63.

    [13]Sturm J F. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones [J].OptimizationMethodsandSoftware, 1999, 11(1/2/3/4): 625-653.

    基于二階錐優(yōu)化的改進可重構頻罩濾波器設計

    吳 塵1徐新洲1黃程韋2趙 力1

    (1東南大學水聲信號處理教育部重點實驗室,南京210096)(2蘇州大學物理科學與技術學院,蘇州215006)

    為了提高可重構頻罩濾波器的設計結果,提出了一種基于二階錐優(yōu)化的改進設計方法.不同于傳統(tǒng)的將所有子濾波器分開設計的方法,該方法將所有期望的設計模式納入到設計目標中來聯(lián)合設計所有子濾波器.首先,單獨設計所有子濾波器以獲得一個初始結果;然后,迭代求解一個二階錐優(yōu)化問題,以更新初始結果.通過一個設計實例來驗證所提出算法的有效性.仿真結果表明,相比于傳統(tǒng)的設計方法,將所有子濾波器聯(lián)合設計能夠顯著降低minimax準則的設計誤差.

    頻罩濾波器;最優(yōu)設計;可重構;二階錐優(yōu)化

    TN911.72

    Received 2014-02-28.

    Biographies:Wu Chen(1987—),male,graduate; Zhao Li(corresponding author), male, doctor, professor, zhaoli@seu.edu.cn.

    s:The National Natural Science Foundation of China (No.61231002, 61273266, 61375028), the Ph.D. Programs Foundation of Ministry of Education of China (No.20110092130004).

    :Wu Chen, Xu Xinzhou, Huang Chengwei, et al.Improved design of reconfigurable frequency response masking filters based on second-order cone programming[J].Journal of Southeast University (English Edition),2014,30(4):422-427.

    10.3969/j.issn.1003-7985.2014.04.004

    10.3969/j.issn.1003-7985.2014.04.004

    猜你喜歡
    設計模式蘇州大學二階
    仿生設計模式的創(chuàng)新應用探索
    玩具世界(2023年6期)2024-01-29 12:14:36
    國家藝術基金“基礎美術教育百年文獻展”首站在蘇州大學開幕
    美育學刊(2023年2期)2023-04-21 12:10:26
    “1+1”作業(yè)設計模式的實踐探索
    蘇州大學藏《吳中葉氏族譜》考述
    尋根(2022年2期)2022-04-17 11:01:38
    一類二階迭代泛函微分方程的周期解
    Shifting of the Agent of Disciplinary Power in J. M.Coetzee’s Foe
    一類二階中立隨機偏微分方程的吸引集和擬不變集
    二階線性微分方程的解法
    交通機電工程設計模式創(chuàng)新探討
    一類二階中立隨機偏微分方程的吸引集和擬不變集
    色综合色国产| 久久亚洲真实| 日韩精品青青久久久久久| 国产精品国产高清国产av| 在线观看免费视频日本深夜| av在线观看视频网站免费| 亚洲美女黄片视频| 亚洲国产欧美人成| www.www免费av| 熟女人妻精品中文字幕| 国产色婷婷99| 小说图片视频综合网站| 亚洲美女视频黄频| 国内毛片毛片毛片毛片毛片| 亚洲四区av| 日本黄色片子视频| 亚洲人成网站高清观看| 黄色日韩在线| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影| 色尼玛亚洲综合影院| 男女视频在线观看网站免费| 国产黄a三级三级三级人| 黄色女人牲交| 成人三级黄色视频| 午夜免费成人在线视频| 老熟妇仑乱视频hdxx| 波野结衣二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲无线观看免费| 免费人成在线观看视频色| 国产探花在线观看一区二区| 精品一区二区三区视频在线观看免费| 香蕉av资源在线| 69av精品久久久久久| 亚洲成a人片在线一区二区| 日韩一区二区视频免费看| 亚洲电影在线观看av| 亚洲中文字幕日韩| 在线播放无遮挡| 99久久无色码亚洲精品果冻| 99国产精品一区二区蜜桃av| 毛片一级片免费看久久久久 | 欧美性猛交黑人性爽| 国产精品爽爽va在线观看网站| 国产一区二区亚洲精品在线观看| 床上黄色一级片| 露出奶头的视频| 免费大片18禁| 一级毛片久久久久久久久女| 观看美女的网站| 日日干狠狠操夜夜爽| 极品教师在线免费播放| 国产精品,欧美在线| 欧美三级亚洲精品| 国产熟女欧美一区二区| 女同久久另类99精品国产91| 伦理电影大哥的女人| 91狼人影院| 亚洲午夜理论影院| 免费av观看视频| 看黄色毛片网站| 美女被艹到高潮喷水动态| 国产精品永久免费网站| 精品国内亚洲2022精品成人| 成人毛片a级毛片在线播放| 亚洲av免费在线观看| 性色avwww在线观看| 久久精品国产鲁丝片午夜精品 | 久久6这里有精品| 女的被弄到高潮叫床怎么办 | 日韩高清综合在线| 久久久久久久亚洲中文字幕| 悠悠久久av| 欧美精品国产亚洲| 成人性生交大片免费视频hd| 午夜免费男女啪啪视频观看 | 亚洲最大成人av| 热99re8久久精品国产| 内地一区二区视频在线| 女同久久另类99精品国产91| 免费高清视频大片| bbb黄色大片| 国产伦精品一区二区三区四那| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 能在线免费观看的黄片| 在线观看舔阴道视频| 2021天堂中文幕一二区在线观| 中文字幕熟女人妻在线| 99久国产av精品| 熟妇人妻久久中文字幕3abv| 午夜a级毛片| 性插视频无遮挡在线免费观看| 日本在线视频免费播放| 亚洲电影在线观看av| 一进一出好大好爽视频| 亚洲av免费高清在线观看| 亚洲在线自拍视频| 亚洲精品亚洲一区二区| 免费大片18禁| 国内久久婷婷六月综合欲色啪| 一个人看的www免费观看视频| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 美女被艹到高潮喷水动态| 亚洲 国产 在线| 日韩强制内射视频| 干丝袜人妻中文字幕| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 嫁个100分男人电影在线观看| 99热这里只有是精品50| 免费看a级黄色片| 嫩草影院新地址| 内地一区二区视频在线| 悠悠久久av| 久久久久久大精品| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 五月玫瑰六月丁香| 国产亚洲欧美98| 看免费成人av毛片| 亚洲自偷自拍三级| 成年免费大片在线观看| 国产精品98久久久久久宅男小说| 久久中文看片网| 1024手机看黄色片| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区 | 变态另类成人亚洲欧美熟女| 长腿黑丝高跟| 国产单亲对白刺激| 成人特级黄色片久久久久久久| 精品久久久久久久久av| 极品教师在线视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲内射少妇av| 两人在一起打扑克的视频| 日韩精品中文字幕看吧| 99在线人妻在线中文字幕| 国产成人av教育| 搞女人的毛片| 日本精品一区二区三区蜜桃| 欧美中文日本在线观看视频| 欧美区成人在线视频| 免费高清视频大片| 精品午夜福利视频在线观看一区| 久久精品91蜜桃| 欧美一区二区国产精品久久精品| 亚洲久久久久久中文字幕| 欧美区成人在线视频| 精品久久久久久久久av| 亚洲人成网站在线播| 精品一区二区三区视频在线观看免费| 日韩欧美免费精品| 国产在线精品亚洲第一网站| 亚洲真实伦在线观看| 69av精品久久久久久| 国产色爽女视频免费观看| 亚洲 国产 在线| 日本a在线网址| 国产在视频线在精品| 国产精品综合久久久久久久免费| 亚洲国产精品成人综合色| 久久人妻av系列| 成人国产一区最新在线观看| 亚洲七黄色美女视频| 国产 一区 欧美 日韩| 亚洲国产精品合色在线| avwww免费| 成人无遮挡网站| 国产单亲对白刺激| 夜夜看夜夜爽夜夜摸| a级毛片a级免费在线| 中文字幕免费在线视频6| 一区二区三区激情视频| 观看美女的网站| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av在线| 欧美成人a在线观看| 美女被艹到高潮喷水动态| 美女大奶头视频| 免费观看的影片在线观看| 日韩在线高清观看一区二区三区 | 啦啦啦啦在线视频资源| 亚洲一区二区三区色噜噜| 免费观看人在逋| 真实男女啪啪啪动态图| av国产免费在线观看| 国产精华一区二区三区| 搞女人的毛片| 国产精品人妻久久久影院| 麻豆av噜噜一区二区三区| 又紧又爽又黄一区二区| 免费大片18禁| 日日夜夜操网爽| 在线观看一区二区三区| 韩国av在线不卡| 麻豆成人av在线观看| 男女边吃奶边做爰视频| 一本精品99久久精品77| 婷婷色综合大香蕉| 中文字幕精品亚洲无线码一区| 色综合色国产| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 国内精品美女久久久久久| 亚洲午夜理论影院| av在线观看视频网站免费| 天天躁日日操中文字幕| 高清在线国产一区| 国产精品国产高清国产av| 日本色播在线视频| 亚洲av熟女| 国产高清三级在线| 日韩欧美 国产精品| 欧美一区二区国产精品久久精品| 国产精品久久久久久久久免| 日本成人三级电影网站| 九色成人免费人妻av| xxxwww97欧美| 精品人妻视频免费看| 久久久久久大精品| av女优亚洲男人天堂| 欧美另类亚洲清纯唯美| 国内精品一区二区在线观看| 黄片wwwwww| 午夜老司机福利剧场| 欧美国产日韩亚洲一区| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 国产在线男女| 十八禁网站免费在线| 国产精品久久久久久久久免| 国产av在哪里看| 一本久久中文字幕| 国产精品一区二区三区四区免费观看 | 国产一区二区三区av在线 | videossex国产| 看黄色毛片网站| 我的女老师完整版在线观看| 成年女人毛片免费观看观看9| 身体一侧抽搐| 一区二区三区免费毛片| 欧美激情久久久久久爽电影| 亚洲av日韩精品久久久久久密| 天堂影院成人在线观看| 国产不卡一卡二| 韩国av在线不卡| 999久久久精品免费观看国产| 两个人视频免费观看高清| 美女被艹到高潮喷水动态| 色综合亚洲欧美另类图片| 国产视频内射| 嫩草影视91久久| 嫁个100分男人电影在线观看| 日本熟妇午夜| 欧美一区二区亚洲| 少妇的逼水好多| 国产91精品成人一区二区三区| 老司机午夜福利在线观看视频| 中文字幕av成人在线电影| 在线观看午夜福利视频| 亚洲经典国产精华液单| 亚洲av熟女| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 午夜久久久久精精品| 一级a爱片免费观看的视频| 国产美女午夜福利| 日本黄色视频三级网站网址| 最后的刺客免费高清国语| 日韩一区二区视频免费看| 成人国产一区最新在线观看| 99国产极品粉嫩在线观看| 免费av不卡在线播放| 一级a爱片免费观看的视频| 69人妻影院| 男人狂女人下面高潮的视频| 日日摸夜夜添夜夜添小说| 内射极品少妇av片p| 国产男靠女视频免费网站| 嫩草影院新地址| 国产精品永久免费网站| 亚洲中文字幕一区二区三区有码在线看| 女生性感内裤真人,穿戴方法视频| 亚洲一区高清亚洲精品| 亚洲经典国产精华液单| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产 | 香蕉av资源在线| 乱系列少妇在线播放| 国产成人一区二区在线| 黄色女人牲交| 别揉我奶头~嗯~啊~动态视频| 欧美+日韩+精品| 香蕉av资源在线| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 欧美中文日本在线观看视频| 国产一区二区三区av在线 | 国产精品综合久久久久久久免费| 午夜福利成人在线免费观看| 国产老妇女一区| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久av不卡| 九色国产91popny在线| 婷婷精品国产亚洲av在线| 一本久久中文字幕| 欧美日本视频| 一a级毛片在线观看| 色综合亚洲欧美另类图片| 一进一出抽搐动态| 一区二区三区激情视频| 欧美激情在线99| 久久久久精品国产欧美久久久| 神马国产精品三级电影在线观看| 啪啪无遮挡十八禁网站| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 舔av片在线| 亚洲人成伊人成综合网2020| 亚洲va日本ⅴa欧美va伊人久久| 此物有八面人人有两片| 国产一区二区在线av高清观看| 91精品国产九色| 夜夜看夜夜爽夜夜摸| 久久久精品欧美日韩精品| 蜜桃久久精品国产亚洲av| 久久久久久九九精品二区国产| 在线观看美女被高潮喷水网站| 精品久久久久久久久久久久久| 日韩人妻高清精品专区| 日韩av在线大香蕉| 亚洲三级黄色毛片| 美女免费视频网站| 国产亚洲精品久久久com| 日韩欧美在线乱码| 免费大片18禁| 欧美另类亚洲清纯唯美| 美女免费视频网站| 欧美日韩亚洲国产一区二区在线观看| 少妇被粗大猛烈的视频| 日韩欧美在线二视频| 最新中文字幕久久久久| 国产久久久一区二区三区| 美女大奶头视频| 成人二区视频| 午夜福利18| 麻豆精品久久久久久蜜桃| 日日啪夜夜撸| 韩国av在线不卡| 波多野结衣高清无吗| 国产美女午夜福利| 精品人妻1区二区| 美女 人体艺术 gogo| 大型黄色视频在线免费观看| 午夜激情福利司机影院| 精品人妻1区二区| 麻豆精品久久久久久蜜桃| 午夜福利在线在线| 又爽又黄无遮挡网站| 色在线成人网| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 99久国产av精品| 精品久久久久久久久亚洲 | 日韩一本色道免费dvd| 乱系列少妇在线播放| 精品人妻熟女av久视频| 动漫黄色视频在线观看| 成人性生交大片免费视频hd| 神马国产精品三级电影在线观看| 亚洲一区高清亚洲精品| 精品久久久久久久久亚洲 | 免费高清视频大片| 午夜视频国产福利| 欧美一区二区亚洲| 黄色一级大片看看| 欧美xxxx黑人xx丫x性爽| 亚洲专区国产一区二区| 毛片女人毛片| 麻豆久久精品国产亚洲av| 国产淫片久久久久久久久| 麻豆久久精品国产亚洲av| 午夜精品久久久久久毛片777| 国产爱豆传媒在线观看| 国内精品久久久久久久电影| 国产一区二区三区av在线 | xxxwww97欧美| 亚洲自拍偷在线| 中出人妻视频一区二区| 国产高清激情床上av| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 99久久中文字幕三级久久日本| 又黄又爽又刺激的免费视频.| 精品午夜福利在线看| 免费在线观看日本一区| 久久久久久国产a免费观看| 午夜免费男女啪啪视频观看 | 一级av片app| 婷婷色综合大香蕉| 精品人妻一区二区三区麻豆 | 欧美一区二区亚洲| 免费无遮挡裸体视频| 久久久久国内视频| 国产一区二区三区视频了| 国产人妻一区二区三区在| 男人舔奶头视频| 欧美3d第一页| 欧美日韩精品成人综合77777| 日韩欧美在线二视频| 久久精品国产清高在天天线| 国产探花在线观看一区二区| 听说在线观看完整版免费高清| 久久精品国产亚洲av涩爱 | 亚洲av中文av极速乱 | 免费看光身美女| 嫩草影院精品99| 91在线观看av| 91在线精品国自产拍蜜月| 婷婷精品国产亚洲av| 春色校园在线视频观看| 国产乱人视频| 两人在一起打扑克的视频| 婷婷色综合大香蕉| 观看免费一级毛片| 久久久久久国产a免费观看| 国产午夜精品论理片| 国产高清有码在线观看视频| 中文亚洲av片在线观看爽| 国产亚洲av嫩草精品影院| 欧美一区二区精品小视频在线| 亚洲欧美激情综合另类| 精品久久久久久久久亚洲 | 亚洲精品国产成人久久av| 伦精品一区二区三区| 亚洲黑人精品在线| 欧美三级亚洲精品| 免费在线观看成人毛片| 国产一区二区在线观看日韩| 国产 一区 欧美 日韩| 国产黄a三级三级三级人| 尾随美女入室| 欧美zozozo另类| 99视频精品全部免费 在线| 久久久色成人| 午夜福利在线在线| 蜜桃久久精品国产亚洲av| 亚洲av美国av| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 国产高清不卡午夜福利| 熟女人妻精品中文字幕| 五月伊人婷婷丁香| 99热这里只有是精品50| 乱人视频在线观看| .国产精品久久| 精品欧美国产一区二区三| 亚洲精品在线观看二区| 欧洲精品卡2卡3卡4卡5卡区| 哪里可以看免费的av片| 欧美日韩国产亚洲二区| 久久久久国内视频| 日本免费一区二区三区高清不卡| 极品教师在线视频| 亚洲自偷自拍三级| 国产成人一区二区在线| 亚洲久久久久久中文字幕| 国产高清激情床上av| 亚洲欧美日韩高清在线视频| 99九九线精品视频在线观看视频| av天堂中文字幕网| 国产成人aa在线观看| 国产三级中文精品| 亚洲男人的天堂狠狠| 国产高清视频在线观看网站| 亚洲,欧美,日韩| 国模一区二区三区四区视频| 男女啪啪激烈高潮av片| 亚洲男人的天堂狠狠| 国产男人的电影天堂91| 内射极品少妇av片p| a在线观看视频网站| 欧美+亚洲+日韩+国产| 亚洲av电影不卡..在线观看| 天堂动漫精品| 特级一级黄色大片| 国产亚洲av嫩草精品影院| 午夜免费成人在线视频| 国产精品永久免费网站| 丰满乱子伦码专区| 国产乱人伦免费视频| 好男人在线观看高清免费视频| 亚洲美女黄片视频| 久久人妻av系列| 最近视频中文字幕2019在线8| 国产精品国产高清国产av| 一本一本综合久久| 搡老岳熟女国产| 99热这里只有是精品50| 观看美女的网站| 亚洲国产高清在线一区二区三| 一级黄片播放器| 久久婷婷人人爽人人干人人爱| 精品国内亚洲2022精品成人| 国产高清有码在线观看视频| av在线蜜桃| 国产精品伦人一区二区| 国产成年人精品一区二区| 久久久久免费精品人妻一区二区| 日韩欧美精品免费久久| 精品人妻1区二区| av黄色大香蕉| 欧美性猛交╳xxx乱大交人| 小说图片视频综合网站| 国产日本99.免费观看| 99热网站在线观看| netflix在线观看网站| 97热精品久久久久久| 久久欧美精品欧美久久欧美| 日本三级黄在线观看| 久久精品综合一区二区三区| 一个人看的www免费观看视频| 国产成人aa在线观看| 搡女人真爽免费视频火全软件 | 久久久久国产精品人妻aⅴ院| 久久午夜亚洲精品久久| 五月伊人婷婷丁香| 日日夜夜操网爽| 日韩av在线大香蕉| 成人国产一区最新在线观看| 久久久久久久久久久丰满 | 精品国内亚洲2022精品成人| 欧美激情在线99| 国产精品综合久久久久久久免费| 亚洲男人的天堂狠狠| 琪琪午夜伦伦电影理论片6080| 少妇高潮的动态图| 51国产日韩欧美| 九九久久精品国产亚洲av麻豆| 午夜视频国产福利| 亚洲精品久久国产高清桃花| av中文乱码字幕在线| 久久国产精品人妻蜜桃| 校园人妻丝袜中文字幕| 成人av一区二区三区在线看| 蜜桃久久精品国产亚洲av| 久久久久久大精品| 中文亚洲av片在线观看爽| 干丝袜人妻中文字幕| 国产男人的电影天堂91| 日韩精品中文字幕看吧| 51国产日韩欧美| 久久久久久伊人网av| 91狼人影院| 精品欧美国产一区二区三| 久久精品国产自在天天线| 日韩一区二区视频免费看| 精品久久久久久久末码| av在线观看视频网站免费| 国产在线精品亚洲第一网站| 一区二区三区四区激情视频 | 精品一区二区三区视频在线观看免费| 久久草成人影院| 亚洲精品粉嫩美女一区| 国产精品98久久久久久宅男小说| 黄色视频,在线免费观看| 久久香蕉精品热| 成人二区视频| 国产精品三级大全| 日本成人三级电影网站| 成人鲁丝片一二三区免费| 亚洲国产欧洲综合997久久,| 看十八女毛片水多多多| 欧美色欧美亚洲另类二区| 亚洲av美国av| 国产精品一区二区三区四区免费观看 | 国产精品美女特级片免费视频播放器| 久久99热这里只有精品18| 搡老熟女国产l中国老女人| 真人一进一出gif抽搐免费| 午夜a级毛片| netflix在线观看网站| 亚洲最大成人手机在线| 国内揄拍国产精品人妻在线| 欧美日本视频| 最近在线观看免费完整版| 国内揄拍国产精品人妻在线| 中国美白少妇内射xxxbb| 欧美色视频一区免费| 国产精品无大码| av专区在线播放| 一边摸一边抽搐一进一小说| 亚洲成人精品中文字幕电影| 美女被艹到高潮喷水动态| 日本免费a在线| 国产高清不卡午夜福利| 午夜爱爱视频在线播放| 一进一出抽搐gif免费好疼| 日韩 亚洲 欧美在线| 日本五十路高清| 特大巨黑吊av在线直播| 久久久久久久久久黄片| 欧美日本视频| 性色avwww在线观看| 日韩一本色道免费dvd| 免费看日本二区| 精品乱码久久久久久99久播| 尾随美女入室| 亚洲av熟女|