魏 嘉*,王 靜
(甘肅聯(lián)合大學(xué)師范學(xué)院數(shù)學(xué)系,中國 蘭州 730000)
一類變號三點(diǎn)邊值問題正解的存在性
魏 嘉*,王 靜
(甘肅聯(lián)合大學(xué)師范學(xué)院數(shù)學(xué)系,中國 蘭州 730000)
運(yùn)用錐上的Guo-Krasnoselskij’s不動點(diǎn)定理研究了一類非線性變號二階三點(diǎn)邊值問題至少一個正解的存在性.給出了與之相關(guān)聯(lián)的線性二階三點(diǎn)邊值問題的格林函數(shù)及格林函數(shù)的一些性質(zhì).最后,作為應(yīng)用,舉例證明了所得結(jié)論的正確性.
邊值問題;變號;格林函數(shù);正解
近年來,由于常微分方程邊值問題在工程、物理方面的廣泛應(yīng)用,多點(diǎn)邊值問題受到了廣泛的關(guān)注,如文[1~12] . 在文[1]中,Sun和Wei通過運(yùn)用錐上的拉伸與壓縮不動點(diǎn)定理證明了半正二階三點(diǎn)邊值問題
至少一個正解的存在性, 其中0<α<β<1,λ>0為參數(shù),f:[0,1]×(0,+∞)→(-M,+∞).
本文考慮變號二階三點(diǎn)邊值問題
(1)
其中α≥0,0<β<1,η∈(0,1).h(t)可變號:h(t)≥0,t∈[0,η];h(t)≤0,t∈[η,1].為了討論(1)式正解的存在性,我們做如下假設(shè):
(H1)f∈C([0,+∞),[0,+∞)),且非減.
(H2)h∈C([0,1],R)且h(t)≥0,t∈[0,η];h(t)≤0,t∈[η,1].另外,對于[0,1]上的任一子區(qū)間,h(t)?0.
(2)
本文所用的工具為如下的Guo-Krasnoselskij,s不動點(diǎn)定理.
(ⅰ) ‖Au‖≤‖u‖,u∈K∩?Ω1,且‖Au‖≥‖u‖,u∈K∩?Ω2;或
(ⅱ) ‖Au‖≥‖u‖,u∈K∩?Ω1,且‖Au‖≤‖u‖,u∈K∩?Ω2,
為了后面推理的需要,做如下記號:
引理1如果y∈E,則邊值問題
(3)
存在唯一解
證由于邊值問題(3)的唯一解可表示為
(ⅰ)當(dāng)t≤η時,邊值問題(3)的唯一解能夠表示為
(ⅱ)當(dāng)t>η時,邊值問題(3)的唯一解能夠表示為
引理2格林函數(shù)G(t,s)滿足如下性質(zhì):
(ⅰ)G(t,s)≥0,(t,s)∈[0,1]×[0,1];
證很容易證明G(t,s)≥0,(t,s)∈[0,1]×[0,1].下面分兩種情形來證明(ⅱ).
情形1, 0≤t≤η.
當(dāng)s1∈(t,η],s2∈[η,1]時,有
情形2,η 引理3設(shè)u∈P,則u(t)滿足如下性質(zhì): (ⅰ)u(t)≥γ(t)u(η),t∈[0,η];u(t)≤γ(t)u(η),t∈[η,1],其中 證由于u∈P, 在[0,η]上u為凹的, 在[η,1]上u為凸的, 且u(0)=αu′(0),u(1)=βu(η). (ⅰ),分下面兩種情況進(jìn)行討論: 當(dāng)t∈[0,η]時, 有 當(dāng)t∈[η,1]時, 有 從而u(t)≥γ(t)u(η),t∈[0,η];u(t)≤γ(t)u(η),t∈[η,1]. 引理4設(shè)(H1), (H2), (H3) 成立. 則對于任意的D∈[0,+∞),有 證對任意的ε∈[0,1-η],有 由于f非減,對?ε∈[0,1-η],有 設(shè)s=η-δε,ε∈[0,1-η],對于?D∈[0,+∞),據(jù)引理2中(ⅱ)和(H3),可得 再令s=η+ε,ε∈[0,1-η],對于?D∈[0,+∞),有 引理5設(shè) (H1),(H2),(H3)成立. 則算子T是全連續(xù)的. 證由于T:P→P,函數(shù)f非減, 據(jù)引理3中的(ⅰ)和引理4可得 因而 (Tu)″(t)=-h+(t)f(u(t))≤0,t∈[0,η], (Tu)″(t)=h-(t)f(u(t))≥0,t∈[η,1]. 那么由Arzela-Ascoli定理可知:T是全連續(xù)的. 定理2設(shè) (H1)~(H3) 成立. 若如下條件之一成立, (ⅰ)f0=0 且f∞=∞ (超線性),或 (ⅱ)f0=∞ 且f∞=0 (次線性), 則變號二階三點(diǎn)邊值問題(1)至少存在一個正解. 證(ⅰ)假設(shè)f為超線性. 當(dāng)f0=0, 存在H1>0,選取適當(dāng)?shù)摩?>0,使得對于0 令Ω1={u∈P:‖u‖ 那么 (ⅱ)假設(shè)f為次線性. 當(dāng)f0=∞,存在H3>0,選取適當(dāng)?shù)摩?>0,使得對于0 令Ω3={u∈P:‖u‖ 情況一,f有界.存在ρ>0使得f(u)≤ρ,u∈[0,∞). 令H4=max{2H3,ρΔ1},Ω4={u∈P:‖u‖ 即對于u∈P∩?Ω4,有 ‖Tu‖≤‖u‖. 考慮如下變號二階三點(diǎn)邊值問題 (4) 其中 [1] SUN J P, WEI J. Existence of positive solution for semipositone second-order three-point boundary-value problem [J]. Eletron J Diff Equ, 2008,41(1):1-7. [2] BAI D L, FENG H Y. Eigenvalue for a singular second order three-point boundary value problem [J]. J Appl Math Comp, 2012,38(1-2):443-452. [3] BAI Z B, DU Z J. Positive solutions for some second-order four-point boundary value problems [J]. J Math Anal Appl, 2007,330(1):34-50. [4] BOHNER M, STEVIC S. Linear perturbations of a nonoscillatory second-order dynamic equation [J], J Diff Equ Appl, 2009,15(11):1211-1221. [5] DU X S, ZHAO Z Q. A necessary and sufficient condition for the existence of positive solutions to singular sublinear three-point boundary value problems[J]. J Appl Math Comp, 2007,186(1):404-413. [6] GUPTA C P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations [J]. J Math Anal Appl, 1992,168 (2):540-551. [7] KONG L J. Second order singular boundary value problems with integral boundary conditions [J]. Nonlinear Anal, 2010,31(5):2628-2638. [8] KUN W, ZHI L. Positive solutions for a system of second-order boundary-value problems involving first-order derivatives [J]. Eletron J Diff Equ, 2012,135(1):1-17. [9] LI G, LIU X, JIA M. Positive solutions to a type of nonlinear three-point boundary-value problem with sign changing nonlinearities [J]. Comput Math Appl, 2009,57(3):348-355. [10] LIU B, LIU L, WU Y. Positive solutions for singular second order three-point boundary value problems [J]. Nonlinear Anal, 2007,66(12):2756-2766. [11] MA R. Positive solutions of a nonlinear three-point boundary value problems [J]. Electron J Differential Equations, 1998,34 (1):1-8. [12] 申騰飛,劉文斌,宋文耀.一類帶有p-Laplacian 算子分?jǐn)?shù)階微分方程邊值問題正解的存在性[J].湖南師范大學(xué)自然科學(xué)學(xué)報, 2012,35(5):9-14. [13] GUO D, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones [M]. New York:Academic Press, 1988. [14] KRASNOSELSKIJ M A. Positive solutions of operator equations [M]. Groningen: Noordhoff, 1964. (編輯 沈小玲) The Existence of Positive Solutions to Three-point Boundary Value Problem with Change of Sign WEIJia*,WANGJing (Department of Mathematics, Normal College, Gansu Lianhe University, Lanzhou 730000, China) This paper investigates the existence of at least one positive solution to the nonlinear second-order three-point boundary value problem with change of sign by the application of the Guo-Krasnoselskij’s fixed-point theorem in cones. The Green’s function and some of its properties of the linear second-order three-point boundary value problem related to the nonlinear boundary value problem are provided. At last, an example is given to demonstrate the results of this study. boundary value problem; sign changing; Green’s function; positive solution 2012-11-05 甘肅省自然科學(xué)基金資助項(xiàng)目(3ZS042-B26-021);甘肅省教育廳科研基金資助項(xiàng)目(1013B-03) * ,E-mail:weijia_vick@163.com O175 A 1000-2537(2014)02-0072-062 主要結(jié)果
3 應(yīng)用舉例