• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋰離子電池負極硅/碳復合材料的制備及其性能研究

    2014-10-11 11:22:28劉開宇呂美玉鐘劍劍
    湖南師范大學自然科學學報 2014年2期
    關鍵詞:美玉化工學院中南大學

    魏 來,劉開宇,李 艷,呂美玉,鐘劍劍

    (中南大學化學化工學院,中國長沙 410083)

    1 Introduction

    Rechargeable lithium ion batteries have numerous advantages such as high energy density,good cycle life,sta-bility and good power performance comparing with other rechargeable batteries,and have been regarded as the key elements for electronic devices(EVs)and hybrid electric vehicles(HEVs)[1].Nowadays,conventional commercial anode materials for lithium ion batteries are carbonaceous materials,such as graphite,modified carbonaceous sphere,soft carbon and so on[2].Commercial graphite anode materials are limited by its gravimetric specific capacity(372 mAh· g-1)[3],which can not satisfy the demand for high energy density devices in the future.In this regard,silicon-based materials have been considered as a promising candidate for anode materials due to their high theoretical gravimetric specific capacity of 4200 mAh· g-1(Li22Si5)[1].However,the volume expansion(>300%)of Si occurred in the electrode during the process of insertion/extraction of Li+leads to huge mechanical stress,resulting in the pulverization of the electrode and the loss of the contact between the electrode and current collector,as a result,the capacity decreases dramatically in several cycles and the electrode suffers from poor capacity retention.Moreover,the low intrinsic conductivity of Si could also lead to the polarization of the electrode,which limits its practical use.

    To address these problems,many efforts have been taken to improve the overall electrochemical performance of Si-based electrode.The synthesis of novel nanostructure of Si have been studied,such as“porous Si”[4],“Si nanowire”[5]“silicon-based thin films”[6],“silicon nano spheres”[7]and “Si-carbon hollow core-shell”[8].Other methods focus on the combination of Si with other components such as metals[9-10]or compounds[11-12].Furthermore,the decoration of the surface of nano-Si[13]or the modifying of current collector[14]were also investigated for improving the cohesion force of binder and collector of Si electrode.Comparing with these studies,creating Si/C composites is a promising approach because of their relative mild preparation with stable electrochemical performance.Carbon materials have been frequently used as the active matrix because of its softness,good electronic conductivity and small volume change.Si/C composites were usually synthesized by the way of high energy ball milling with other components[15]or by the phrolysis of different organic carbon sources[16-17].The types of carbon sources and the methods of preparation seem to be quite important for Si/C composites with good performance.

    In this paper,Si/C composites were prepared by a facile method of dispersing nano-Si and graphite in the solution of glucose monohydrate,followed by carbonization in the high temperature at argon atmosphere.The microstructure,morphology and electrochemical performance of the as-prepared Si/C composites were also investigated by different methods as anode materials for lithium ion batteries,and this material exhibited obviously enhanced electrochemical performance comparing to pristine pure nano-Si and graphite.

    2 Experimental

    2.1 Preparation of the materials

    The Si/C composites were synthesized as follows:Firstly,glucose monohydrate(C6H12O6·H2O,1.5g)was dissolved in 50 mL deionized water and ethanol(3∶1 in volume)solution with constant magnetic stirring.The nano-silicon powders(commercial available,>99.9%,Shuitian Materials Technology Co,Ltd,Shanghai,China)and flake graphite powders(200 mesh)were mixed in a ratio of 3:7.Subsequently,the mixture was slowly added into the previous glucose solution with strong magnetic stirring for 12 h,then the solvent was evaporated at 80℃over night to get a solid blend,the obtained solid blend precursor was heated to 750℃ under nitrogen atmosphere in a furnace for 2 h(5 ℃·min-1)and cooled naturally to room temperature.The products were grounded and sieved by 200-mesh shifter to obtain the Si/C composites.

    2.2 Structural and morphological characterization of the materials

    The morphologies of the composites were investigated by scanning electron microscopy(SEM,Quanta-200).The phase components of the materials were confirmed by powder X-Ray diffraction(XRD,D/maxш,Rigaku)with Cu Kα radiation(10°~80°).The microstructures of the composites were examined by transmission electron microscope(TEM,JEOL-3010).

    2.3 Electrochemical measurement

    The composites were evaluated using CR2016 coin-type cells with pure lithium tablets as the counter electrode under the same conditions and instruments.A micro-porous polypropylene(PE)membrane was used as the separator and the electrolyte was LiPF6(1 M)in a mixture of ethylene carbonate(EC)and dimethyl carbonate(DMC)with a volume ratio of 3∶7.The working electrode was prepared by adding active materials(80 wt.%),acetylene black(10 wt.%)as conducting agent and polyvinylidene fluoride(PVDF,10wt.%)as binder.The mixture was dispersed in N-methyl pyrrolidinone(NMP)and the obtained slurry was then spread uniformly on a copper foil and dried at 120℃ for 12 h.The electrodes were punched into round pellets with diameter of 14 mm and cells were assembled in an argon-filled glove box.The charging/discharging test of cells were carried out on the Land battery tester(CT2001,Wuhan)with the potential ranges of 0.005 V to 1.5 V(vs.Li+/Li)at room temperature.The cyclic voltammogram(CV)was measured with a RST electrochemical analyzer,the scanning rates was 0.1 mV·s-1.

    3 Results and discussion

    3.1 Structure and morphology of the materials

    Fig.1 shows X-ray diffraction patterns of flake graphite,nano-Si,pyrolyzed carbon from glucose at the given conditions and the prepared Si/C composites.For the XRD pattern of the Si/C composites,it is clear to find the diffraction peaks of Si(28.4°,47.3°,56.1°,69.1°and 76.4°)and graphite(26.6°,42.5°,43.5°,54.7°and 77.6°),indicating the presence of graphite and silicon,and both silicon and graphite retain its own crystalline structure during the synthesized process,and any other phases(such as SiC or SiO2)are not observed.As for the XRD pattern of pyrolyzed glucose,obvious peaks are not detected except a diffused broad peak around 2θ=23°(amplifying figure in Fig.1),proving that the pyrolyzed carbon in the composites under given conditions was an amorphous phase.This results show that other inactive phases do not exist in the composites,and the composites are the blends of graphite,silicon and amorphous carbon pyrolyzed from glucose.

    The morphology of the raw materials and as-prepared Si/C composites are presented in Fig.2 by SEM investigation.Fig.2(a)and Fig.2(b)are the morphology of pristine nano-Si and flake graphite,respectively,which were used to prepare Si/C composites.The nano-Si powders show uniform and nano sized spherical particles,and the average size of the particles is about 100 nm.The flake graphite has primary sizes around 50 μm,and the particles are thin and flat.The image of the as-prepared Si/C composites is shown in Fig.3(c),indicating that the morphology of the composites is irregular.

    Fig.1 X-ray diffraction patterns of(a)flake graphite,(b)nano-silicon,(c)glucose pyrolyzed carbon and(d)Si/C composites

    Fig.2 SEM images of nano-Si(a),flake graphite(b)and Si/C composites(c)

    The TEM images of Si/C composites are presented in Fig.3.Fig.3(a)shows that the composites have fine sizes,nano-sized Si particles are bonded to the graphite sheets by the coating of disordered carbon from glucose.However,the Si particles consist of agglomerates of clusters,as particles may not be perfectly dispersed by pyrolysis process.Fig.3(b)clearly displays the figure of the carbon coated Si particle.It is evident that Si particles are uniformly coated by the carbon layer.The thickness of this layer forming a complete shell is around 10 nm.Fig.3(c)and Fig.3(d)are the HRTEM images of the material.The crystal plane spacing fit well with the number of Si(111)and flake graphite(002),indicating that composites are composed of three phases,graphite,nano-Si and disordered carbon from pyrolyzed glucose.Nano-Si and graphite particles are dispersed into carbon networks from glucose,and the structure provides a buffer for Si particles to accommodate the huge stress and the and volume change during the Li+inserting and extracting processes[18].

    Fig.3 TEM images of Si/C composites(a)and(b);HRTEM of Si/C composites(c)and(d)

    3.2 Electrochemical performance of the electrode materials

    The charge-discharge curves of the as prepared Si/C composites at different cycles under current density of 50 mA g-1are shown in Fig.4(a).Obviously,there is a distinct potential platform during the first discharge curve from 0.1 to 0.9 V,which could mainly attribute to the formation of a solid electrolyte interphase(SEI)on the surface of electrode.During this process,a part of Li+in the electrolyte were consumed to the formation of SEI and the decomposition of the electrolyte,contributing to the irreversible capacity loss of the electrode.After the first cycle,the potential platform disappears,and the structure of crystal structure silicon transforms to amorphous phase,which can be proved from the shift of the subsequent discharge curves.The distinct charge potential platform around 0.4 V is due to the extraction of Li+from Si,while the slope ranging from 0.15 to 0.2 V can be related to the process of lithium ion extracting from the flake graphite[19].As for the discharge curve,the straight potential platform below 0.2 V is mainly ascribed to the insertion of lithium ion for both silicon and flake graphite,as silicon and graphite possess similar discharge potential vs.Li+(0 ~0.1 V,0 ~ 0.2 V,respectively[1,19]).Fig.4(b)shows the first charge-discharge curves of nano-Si,flake graphite and the as prepared Si/C composites at the current rate of 50 mA· g-1.Visibly,the discharge platform around 0 ~0.2 V is the Li+inserting of active materials,including graphite and silicon,and the main extraction process there are several distinct potential platforms can be attributed to nano-Si anode(0.4 V)and flake graphite anode(0.15 V)can also be observed,although the first charge and discharge specific capacity of nano-Si are 1800.18 mAh· g-1and 3483.56 mAh· g-1,respectively,The initial columbic efficiency is only 51.72% ,which is similar to the previously reports of the nano-Si.The Si/C composites,however,exhibit a first charge capacity of 733.65 mAh· g-1and discharge capacity of 1048.27 mAh· g-1,along with an initial columbic efficiency of 69.98%,based on the ratio of graphite and nano-Si during the preparation and the theoretical calculating methods of the specific capacity of Si/graphite composites[20],the initial charge and discharge capacity of the material are maintained within reasonable values.

    Fig.4 (a)Charge-discharge profile of Si/C composites at different cycles;(b)initial charge-discharge curves of nano-Si,flake graphite and Si/C composites

    Fig.5(a)compares the cycling performance of nano-Si,flake graphite and Si/C composites at 50 mA· g-1.Evidently,the pure nano-Si electrode exhibits high initial charge(1800.18 mAh· g-1)and discharge capacity(3483.56 mAh· g-1),however,the capacity decays rapidly to 274.48 mAh· g-1after 20 cycles.It is well known that the capacity fade and large initial irreversible capacity for Si anode is owing to the large volume changes during the insertion and extraction processes of Li+,leading to the poor capacity retention of pure Si electrode.The flake graphite exhibits an initial discharge capacity of 433.54 mAh· g-1and keeps a steady capacity at about 380 mAh· g-1during the cycling,which is even higher than the theoretical specific capacity of graphite.This result may be due to the previous grinding process during the preparation of the half cells.It has been reported that graphite have a higher reversible capacity after grinding process,and the grinding process of crystalline graphite is essentially a non-graphitization process from a structural chemistry perspective[21].In this regard,the as-prepared Si/C composites exhibit a relatively stable capacity during the cycling,capacity fading is significantly alleviated and the capacity of 586.98 mAh· g-1is reserved after 20 cycles with the capacity retention of 80.01%,while that of nano-Si is 15.21%.The cycling performance at different rates of Si/C composites are shown in Fig.5(b).As seen,at the current density of 150 mA· g-1,300 mA· g-1,and 600 mA· g-1,the initial capacities of Si/C composites are 664.57 mAh· g-1,625.35 mAh· g-1and 431.44 mAh· g-1,respectively,and the coulombic efficiencies of Si/C composites are 69.97%,69.85%and 69.56%,respectively.After 20 cycles,83.50%,77.26%and 85.38%of the initial capacity can be reserved.It is evident that improved capacity retention of the Si/C composites is achieved.The enhanced cycleability can be related to the following reasons:(1)Nano-Si and graphite are coated by the glucose-pyrolyzed carbon,providing the carbon network for the connection between Si particles and flake graphite and maintains stable electrical contact of nano-Si particles in the Si/C composites during the charge-discharge process,that is to say,nano-Si particles and graphite sheets are connected by the electronic con-ducting network from the glucose-pyrolyzed carbon.(2)The presence of coated carbon on the surface of active materials reduced the direct contact between electrode and electrolyte,which is beneficial for maintaining its mechanical stability by reliving stresses resulting from volume change from Si.(3)The volume change occurred in the Si electrode may lead to the fracture of SEI,resulting in increased Li+to the formation of new SEI on the surface of electrode during the subsequent processes,the addition of coated carbon and graphite can accommodate the volume change occurred in Si electrode and therefore the enough insertion/extraction of Li+in the electrolyte is guaranteed.

    Fig.5 (a)Cycling performance of nano-Si,flake graphite and Si/C composites at 50 mA· g-1;(b)cycling performance of Si/C composites at different current densities

    Fig.6 Cyclic voltammograms of the Si/C composites for first three cycles at scanning rate of 0.1 mV·s-1from 0 ~1.5 V

    To further investigate the charge-discharge process of the Si/C composites,cyclic voltammograms(CV)was conducted.Fig.6 displays the first three CV cycles of the materials at the scanning rate of 0.1 mV·s-1.There is a broad cathodic platform ranging from 0.4 to 0.8 V during the first cycle,the platform corresponds to the formation of the SEI on the surface of the electrode,which can be the result of the decomposition of electrolyte,after the first curve,the platform disappears.The distinct cathodic peak below 0.15 V is due to the Li+insertion into the active material,including both Si and graphite.There are two anodic peaks during the charge process,the anodic peak between 0.15 and 0.3 V is mainly related to the Li+extraction from flake graphite,while the anodic peak around 0.45 V is related to the extraction of Li+from nano-Si.The other cathodic peak located at 0.2 V from the 2nd cycle corresponds to dealloying process of crystal Si to amorphous phase.It is evident that all the results are in agreement with the charge-discharge curves discussed above.

    4 Conclusion

    Si/C composites were successfully synthesized by steps of liquid solidification and subsequent pyrolysis process.The Si/C composites exhibit high reversible capacity of 733.65 mAh· g-1with an initial coulombic efficiency of 69.98%at the current of 50 mA· g-1,and improved capacity retention is achieved after 20 cycles at different current.The improved overall electrochemical performance can be attributed to the characters of the composites including the special structure and the uniformly carbon coating.This indicates that the composites may be a promising anode material for lithium ion batteries.However,further studies on optimizing the particle distribution of the raw materials in the composites and promoting the enhanced electrochemical performance of this material are still necessary.

    [1]WU H,CUI Y.Designing nanostructured Si anodes for high energy lithium ion batteries[J].Nano Today,2012,7(5):414-429.

    [2]HOSSAIN S,KIM Y K,SALEH Y,et al.Comparative studies of mcmb and C-C composite as anodes for lithium-ion battery systems[J].J Power Sources,2003,114(2):264-276.

    [3]HANAI K,LIU Y,IMANISH N,et al.Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries[J].J Power Sources,2005,146(1-2):156-160.

    [4]ZHENG Y,YANG J,WANG J L,et al.Nano-porous Si/C composites for anode material of lithium-ion batteries[J].Electrochimica Acta,2007,52(19):5863-5867.

    [5]WU H,CHAN G,CHOI J W,et al.Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte in-terphase control[J].Nature Nanotechnology,2012,7(5):310-315.

    [6]ZHANG Y,XIA X,WANG X,et al.Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithium-ion batteries[J].J Power Sources,2012,213:106-111.

    [7]YAO Y,MCDOWELL M T,RYU I,et al.Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J].Nano letters,2011,11(7):2949-2954.

    [8]ZHOU X Y,TANG J J,YANG J,et al.Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J].Electrochimica Acta,2013,87:663-668.

    [9]YAN J M,HUANG H Z,ZHANG J,et al.The study of Mg2Si/carbon composites as anode materials for lithium ion batteries[J].J Power Sources,2008,175(1):547-552.

    [10]HUANG S,CHENG Y,XIAO H,et al.Characterization of Sn and Si nanocrystals embedded in SiO2matrix fabricated by magnetron co-sputtering[J].Surface Coatings Technol,2010,205(7):2247-2250.

    [11]ZHOU W,UPRET S,WHITTING M S,et al.High performance Si/MgO/graphite composite as the anode for lithium-ion batteries[J].Electrochem Comm,2011,13(10):1102-1104.

    [12]HWA Y,KIM W S,YU B C,et al.Enhancement of the cyclability of a Si anode through Co3O4coating by the sol-gel method[J].J Phy Chem C,2013,117(14):7013-7017.

    [13]NAM S H,KIM K S,SHIM H S,et al.Probing the lithium ion storage properties of positively and negatively carved Silicon[J].Nano letters,2011,11(9):3656-3662.

    [14]KIM Y L,SUN Y K,LEE S M,et al.Enhanced electrochemical performance of Silicon-based anode material by using current collector with modified surface morphology[J].Electrochimica Acta,2008,53(13):4500-4504.

    [15]LEE H Y,LEE S M.Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J].Electrochem Comm,2004,6(5):465-469.

    [16]WANG M S,F(xiàn)AN L Z.Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries[J].J Power Sources,2013,244:570-574.

    [17]CAI J J,ZUO P J,CHENG X Q,et al.Nano-Silicon/polyaniline composite for lithium storage[J].Electrochemi Comm,2010,12(11):1572-1575.

    [18]LAI J,GUO H J,Wang Z X,et al.Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries[J].J Alloys Comp,2012,530:30-35.

    [19]SU M R,WANG Z X,GUO H,et al.Silicon,flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries[J].Adv Powder Technol,2013,24(6):921-925.

    [20]DIMOV N,KUGINO S,YOSHIO M,et al.Mixed silicon-graphite composites as anode material for lithium ion batteries[J].J Power Sources,2004,136(1):108-114.

    [21]ALACNTARA R,LAVELA P,ORTIZ G F,et al.Electrochemical,textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries[J].Carbon,2003,41(15):3003-3013.

    猜你喜歡
    美玉化工學院中南大學
    使固態(tài)化學反應100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    中南大學建筑與藝術學院作品選登
    中南大學教授、博士生導師
    安全(2021年4期)2021-05-19 07:56:52
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    中南大學校慶文創(chuàng)產(chǎn)品設計
    湖南包裝(2020年6期)2021-01-20 02:02:10
    鄭美玉二三事
    海峽姐妹(2019年2期)2019-03-23 02:54:46
    伊源美玉—中國翠
    寶藏(2017年11期)2018-01-03 06:46:12
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    聚天下良友 琢百世美玉
    天工(2015年3期)2015-12-21 12:23:40
    免费观看av网站的网址| 亚洲人成77777在线视频| 超碰97精品在线观看| 少妇猛男粗大的猛烈进出视频| 高清不卡的av网站| 婷婷色综合www| 九色亚洲精品在线播放| 久久久久久久国产电影| 日韩精品免费视频一区二区三区| 久久国产精品男人的天堂亚洲| 久久婷婷青草| 午夜福利,免费看| 岛国毛片在线播放| 高清黄色对白视频在线免费看| 一级片免费观看大全| 亚洲天堂av无毛| bbb黄色大片| 成人国语在线视频| 夫妻午夜视频| netflix在线观看网站| 老司机深夜福利视频在线观看 | 欧美 日韩 精品 国产| www.熟女人妻精品国产| 国产成人精品福利久久| 亚洲专区中文字幕在线 | 色播在线永久视频| 久久精品国产亚洲av高清一级| 亚洲av日韩精品久久久久久密 | 欧美精品一区二区免费开放| 国产一区二区三区综合在线观看| 国产精品二区激情视频| 日韩精品免费视频一区二区三区| 伊人久久国产一区二区| 国产成人午夜福利电影在线观看| 国产男女超爽视频在线观看| 国产黄色免费在线视频| 国产成人欧美在线观看 | 1024香蕉在线观看| 欧美日韩视频高清一区二区三区二| 亚洲av成人不卡在线观看播放网 | 天堂8中文在线网| 我的亚洲天堂| 国产成人免费无遮挡视频| 成人影院久久| 亚洲欧洲国产日韩| 青草久久国产| 色精品久久人妻99蜜桃| 久久精品国产亚洲av高清一级| 国产成人精品在线电影| 91精品三级在线观看| 最近中文字幕2019免费版| 欧美精品一区二区大全| 欧美日韩亚洲综合一区二区三区_| 久久天躁狠狠躁夜夜2o2o | 亚洲七黄色美女视频| 超色免费av| 免费看av在线观看网站| 丰满饥渴人妻一区二区三| 中文字幕亚洲精品专区| 老熟女久久久| 蜜桃在线观看..| 人人妻人人澡人人爽人人夜夜| 国产成人精品无人区| 国产熟女午夜一区二区三区| 亚洲免费av在线视频| 欧美精品av麻豆av| 国产老妇伦熟女老妇高清| 国产精品蜜桃在线观看| 欧美老熟妇乱子伦牲交| 亚洲一码二码三码区别大吗| 日本一区二区免费在线视频| 中国国产av一级| 欧美日韩国产mv在线观看视频| 秋霞在线观看毛片| 日日啪夜夜爽| 国产一区二区激情短视频 | 国产成人免费无遮挡视频| 亚洲欧美中文字幕日韩二区| 国产爽快片一区二区三区| 久久精品aⅴ一区二区三区四区| 精品酒店卫生间| 老鸭窝网址在线观看| 国产 一区精品| 成人三级做爰电影| 午夜日韩欧美国产| 在线观看www视频免费| 男女午夜视频在线观看| 亚洲欧美成人精品一区二区| 母亲3免费完整高清在线观看| 一区二区av电影网| 免费日韩欧美在线观看| 国产一卡二卡三卡精品 | 好男人视频免费观看在线| 97在线人人人人妻| 欧美日韩一区二区视频在线观看视频在线| √禁漫天堂资源中文www| 亚洲精品国产一区二区精华液| 少妇猛男粗大的猛烈进出视频| 九色亚洲精品在线播放| 天天影视国产精品| 久久久国产精品麻豆| 亚洲av国产av综合av卡| 成人三级做爰电影| 美女福利国产在线| 国产一级毛片在线| 尾随美女入室| 亚洲精品日韩在线中文字幕| 可以免费在线观看a视频的电影网站 | 亚洲av成人精品一二三区| 欧美中文综合在线视频| 我要看黄色一级片免费的| 在现免费观看毛片| 国产亚洲av片在线观看秒播厂| 人妻一区二区av| 国产成人精品无人区| 少妇人妻 视频| 成人影院久久| 亚洲欧美日韩另类电影网站| videos熟女内射| 不卡视频在线观看欧美| 99精国产麻豆久久婷婷| 欧美日韩一级在线毛片| 成人漫画全彩无遮挡| 免费在线观看视频国产中文字幕亚洲 | 亚洲成人免费av在线播放| 亚洲精品美女久久久久99蜜臀 | 国产一区亚洲一区在线观看| 丰满少妇做爰视频| 美女福利国产在线| 啦啦啦中文免费视频观看日本| 十分钟在线观看高清视频www| 久久性视频一级片| 免费观看人在逋| 免费观看av网站的网址| 男女之事视频高清在线观看 | www.熟女人妻精品国产| 国产成人91sexporn| 七月丁香在线播放| 久久久国产一区二区| 欧美国产精品一级二级三级| 男女高潮啪啪啪动态图| 免费日韩欧美在线观看| 男女无遮挡免费网站观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲免费av在线视频| 热re99久久国产66热| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| 制服诱惑二区| 精品第一国产精品| 麻豆精品久久久久久蜜桃| 在线观看免费视频网站a站| 国产伦人伦偷精品视频| 啦啦啦在线观看免费高清www| 中文字幕高清在线视频| 中文字幕亚洲精品专区| 成人免费观看视频高清| 制服诱惑二区| 久久人人爽av亚洲精品天堂| 精品少妇一区二区三区视频日本电影 | 色综合欧美亚洲国产小说| 精品卡一卡二卡四卡免费| 丝袜脚勾引网站| 最近2019中文字幕mv第一页| 99国产精品免费福利视频| 黄片无遮挡物在线观看| 男女国产视频网站| 一本大道久久a久久精品| 亚洲av成人不卡在线观看播放网 | 一边亲一边摸免费视频| 国语对白做爰xxxⅹ性视频网站| 久久久久久人人人人人| 五月开心婷婷网| 日本av免费视频播放| 国产男女内射视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品av麻豆狂野| 成年av动漫网址| 亚洲欧美一区二区三区久久| 久久久久精品性色| 老司机靠b影院| 欧美黄色片欧美黄色片| 国产 一区精品| 男女国产视频网站| 免费黄色在线免费观看| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久男人| 在线观看免费午夜福利视频| 日韩成人av中文字幕在线观看| 免费看av在线观看网站| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 免费观看av网站的网址| 天美传媒精品一区二区| 国产成人系列免费观看| 中文字幕人妻熟女乱码| 一级a爱视频在线免费观看| 黄色一级大片看看| 激情五月婷婷亚洲| www.自偷自拍.com| 日韩大码丰满熟妇| av不卡在线播放| 尾随美女入室| 午夜久久久在线观看| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 丁香六月欧美| 精品国产一区二区三区四区第35| 成人国产麻豆网| 久久久久网色| 久久国产精品大桥未久av| 高清av免费在线| 亚洲精品中文字幕在线视频| 欧美精品人与动牲交sv欧美| 无限看片的www在线观看| 高清视频免费观看一区二区| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美日韩在线播放| 最新的欧美精品一区二区| 毛片一级片免费看久久久久| 在线精品无人区一区二区三| 国产精品三级大全| 涩涩av久久男人的天堂| 69精品国产乱码久久久| 久热爱精品视频在线9| 成人亚洲精品一区在线观看| 黑人欧美特级aaaaaa片| 久久婷婷青草| 亚洲精品乱久久久久久| 亚洲专区中文字幕在线 | 999久久久国产精品视频| 老鸭窝网址在线观看| 嫩草影院入口| 亚洲在久久综合| 久久人妻熟女aⅴ| 亚洲精品乱久久久久久| 999久久久国产精品视频| 天天躁夜夜躁狠狠久久av| 黄色毛片三级朝国网站| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 久久人人爽人人片av| 99久久人妻综合| 777久久人妻少妇嫩草av网站| 我要看黄色一级片免费的| 亚洲熟女毛片儿| 久久精品久久久久久久性| 蜜桃在线观看..| 青草久久国产| 免费观看性生交大片5| 亚洲国产成人一精品久久久| 精品少妇黑人巨大在线播放| 欧美日韩福利视频一区二区| 9191精品国产免费久久| 伊人久久国产一区二区| 精品国产乱码久久久久久男人| 18禁裸乳无遮挡动漫免费视频| 久久精品亚洲熟妇少妇任你| 青春草视频在线免费观看| 国产精品 国内视频| 亚洲av电影在线观看一区二区三区| 美女视频免费永久观看网站| 亚洲精华国产精华液的使用体验| 久久性视频一级片| 一本久久精品| 久久精品国产亚洲av涩爱| 大片电影免费在线观看免费| 精品亚洲成a人片在线观看| 亚洲美女黄色视频免费看| 9热在线视频观看99| 午夜福利免费观看在线| 国产精品女同一区二区软件| 久久精品aⅴ一区二区三区四区| av片东京热男人的天堂| 久久久久久久国产电影| 婷婷色综合大香蕉| 精品国产超薄肉色丝袜足j| 久久99一区二区三区| av卡一久久| 午夜福利,免费看| 亚洲国产中文字幕在线视频| 国产精品久久久av美女十八| 国产成人91sexporn| 欧美成人精品欧美一级黄| 亚洲精品视频女| 夜夜骑夜夜射夜夜干| 看免费成人av毛片| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 国产成人91sexporn| 女人被躁到高潮嗷嗷叫费观| 两性夫妻黄色片| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 黄片无遮挡物在线观看| 久热爱精品视频在线9| 大话2 男鬼变身卡| 国产精品嫩草影院av在线观看| 亚洲成色77777| 综合色丁香网| 精品少妇黑人巨大在线播放| 午夜免费鲁丝| 人妻一区二区av| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 爱豆传媒免费全集在线观看| 亚洲精品一区蜜桃| 色婷婷av一区二区三区视频| 亚洲少妇的诱惑av| 亚洲精品自拍成人| 亚洲精品第二区| 中文天堂在线官网| 国产在视频线精品| 国产男女超爽视频在线观看| netflix在线观看网站| 国产成人精品福利久久| 丁香六月欧美| 99国产精品免费福利视频| 国产精品一区二区在线不卡| 久久毛片免费看一区二区三区| 色综合欧美亚洲国产小说| 精品亚洲成国产av| 少妇的丰满在线观看| 国产深夜福利视频在线观看| 人人妻人人澡人人看| 婷婷色av中文字幕| 观看av在线不卡| 黄网站色视频无遮挡免费观看| 纵有疾风起免费观看全集完整版| 老司机在亚洲福利影院| 精品福利永久在线观看| 美女国产高潮福利片在线看| 久久久久久久久久久久大奶| 老司机在亚洲福利影院| 日韩一本色道免费dvd| 下体分泌物呈黄色| 人成视频在线观看免费观看| 不卡av一区二区三区| 在线天堂最新版资源| 观看美女的网站| 一区福利在线观看| 激情五月婷婷亚洲| 熟女av电影| 青春草亚洲视频在线观看| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久 | 欧美在线黄色| 最新在线观看一区二区三区 | 精品亚洲乱码少妇综合久久| 99热国产这里只有精品6| 欧美日韩av久久| 欧美精品一区二区大全| 97精品久久久久久久久久精品| 男女下面插进去视频免费观看| 亚洲国产最新在线播放| 亚洲人成77777在线视频| 久久99热这里只频精品6学生| 黄片小视频在线播放| 激情五月婷婷亚洲| 午夜福利,免费看| 精品第一国产精品| 捣出白浆h1v1| 热re99久久国产66热| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久午夜乱码| 在线天堂中文资源库| 啦啦啦中文免费视频观看日本| 久久久久精品人妻al黑| 少妇猛男粗大的猛烈进出视频| 亚洲中文av在线| 一区二区三区四区激情视频| 女性生殖器流出的白浆| netflix在线观看网站| 成人亚洲欧美一区二区av| 亚洲国产最新在线播放| 男女免费视频国产| 欧美日韩精品网址| 超色免费av| 在线观看www视频免费| 两性夫妻黄色片| 欧美亚洲日本最大视频资源| 99精品久久久久人妻精品| 国产欧美日韩一区二区三区在线| 极品人妻少妇av视频| www.自偷自拍.com| 成人国语在线视频| 亚洲精品久久成人aⅴ小说| 多毛熟女@视频| 国产又色又爽无遮挡免| 黑人欧美特级aaaaaa片| 十八禁网站网址无遮挡| 色播在线永久视频| 亚洲欧美精品自产自拍| 狂野欧美激情性bbbbbb| 亚洲人成电影观看| 女的被弄到高潮叫床怎么办| 色婷婷av一区二区三区视频| 国产又爽黄色视频| 国产亚洲最大av| 欧美黄色片欧美黄色片| 国产免费视频播放在线视频| 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 久久99一区二区三区| 亚洲欧美一区二区三区国产| 国产精品无大码| 国产精品蜜桃在线观看| 亚洲av男天堂| 国产xxxxx性猛交| 久久久国产一区二区| 80岁老熟妇乱子伦牲交| 天美传媒精品一区二区| 亚洲人成77777在线视频| 无限看片的www在线观看| 在线看a的网站| 下体分泌物呈黄色| 街头女战士在线观看网站| 国产精品蜜桃在线观看| 女人精品久久久久毛片| 午夜免费观看性视频| 男女高潮啪啪啪动态图| 国产不卡av网站在线观看| 各种免费的搞黄视频| 国产在线一区二区三区精| 欧美精品一区二区免费开放| 色婷婷久久久亚洲欧美| 亚洲成色77777| 一级片'在线观看视频| 十八禁高潮呻吟视频| 麻豆精品久久久久久蜜桃| 岛国毛片在线播放| 久久久精品94久久精品| 悠悠久久av| 国产成人精品在线电影| 成人漫画全彩无遮挡| 无遮挡黄片免费观看| 日本午夜av视频| 下体分泌物呈黄色| 国产av精品麻豆| 久久99热这里只频精品6学生| 一区二区日韩欧美中文字幕| 国产成人91sexporn| 黄色 视频免费看| 久久免费观看电影| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 最新在线观看一区二区三区 | 欧美在线黄色| 午夜久久久在线观看| 久久av网站| 91精品国产国语对白视频| 欧美日韩综合久久久久久| 国产片特级美女逼逼视频| 久久天躁狠狠躁夜夜2o2o | 欧美激情极品国产一区二区三区| 一本久久精品| 国产黄色免费在线视频| 国产爽快片一区二区三区| 亚洲成国产人片在线观看| 国产精品香港三级国产av潘金莲 | 丰满饥渴人妻一区二区三| 久久久久精品久久久久真实原创| av在线老鸭窝| 国产日韩一区二区三区精品不卡| 午夜福利免费观看在线| 美女国产高潮福利片在线看| 如日韩欧美国产精品一区二区三区| 亚洲av成人不卡在线观看播放网 | 丁香六月欧美| 欧美xxⅹ黑人| 麻豆乱淫一区二区| 又大又黄又爽视频免费| 日韩 欧美 亚洲 中文字幕| 国产视频首页在线观看| 岛国毛片在线播放| 色婷婷久久久亚洲欧美| 91aial.com中文字幕在线观看| 热re99久久精品国产66热6| 男女边摸边吃奶| 亚洲精品第二区| 少妇被粗大猛烈的视频| 亚洲欧美激情在线| 婷婷色麻豆天堂久久| 久久精品久久久久久久性| 菩萨蛮人人尽说江南好唐韦庄| 国产淫语在线视频| 国产99久久九九免费精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美激情在线| 日本vs欧美在线观看视频| 精品一区二区三卡| 看免费av毛片| 亚洲七黄色美女视频| 在线观看www视频免费| 免费不卡黄色视频| 国产精品国产av在线观看| 免费观看性生交大片5| 免费观看av网站的网址| 丰满饥渴人妻一区二区三| 国产成人91sexporn| av视频免费观看在线观看| 久久99热这里只频精品6学生| 欧美激情高清一区二区三区 | 亚洲美女视频黄频| 人妻 亚洲 视频| av国产精品久久久久影院| 欧美激情高清一区二区三区 | 日本vs欧美在线观看视频| 两个人免费观看高清视频| 看免费av毛片| 国产成人精品久久二区二区91 | 18在线观看网站| 久久人人97超碰香蕉20202| 熟女少妇亚洲综合色aaa.| 日韩,欧美,国产一区二区三区| 超碰成人久久| 街头女战士在线观看网站| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线不卡| 最近中文字幕2019免费版| 国产亚洲av高清不卡| 日韩精品有码人妻一区| 久久精品熟女亚洲av麻豆精品| 综合色丁香网| 亚洲av日韩在线播放| 热re99久久精品国产66热6| 中国三级夫妇交换| 国产一卡二卡三卡精品 | 国产成人精品福利久久| 下体分泌物呈黄色| 成人国产麻豆网| 午夜福利一区二区在线看| 毛片一级片免费看久久久久| 亚洲一区二区三区欧美精品| 九九爱精品视频在线观看| 欧美少妇被猛烈插入视频| 国产一区二区激情短视频 | 免费在线观看视频国产中文字幕亚洲 | 亚洲视频免费观看视频| 丰满少妇做爰视频| 成人手机av| 一级爰片在线观看| 青青草视频在线视频观看| 成年美女黄网站色视频大全免费| 在线观看www视频免费| 成年女人毛片免费观看观看9 | 亚洲七黄色美女视频| 悠悠久久av| 亚洲精品国产一区二区精华液| 大香蕉久久网| 欧美日韩精品网址| 亚洲国产av影院在线观看| 亚洲精华国产精华液的使用体验| 午夜福利影视在线免费观看| 国产一区二区三区av在线| 国产xxxxx性猛交| 亚洲精品av麻豆狂野| 亚洲国产欧美一区二区综合| 久久精品国产a三级三级三级| 黑人猛操日本美女一级片| 色网站视频免费| 性色av一级| 精品午夜福利在线看| 黄色一级大片看看| 亚洲精品第二区| 色吧在线观看| 捣出白浆h1v1| 日韩 亚洲 欧美在线| 99久久精品国产亚洲精品| 一本一本久久a久久精品综合妖精| 午夜福利影视在线免费观看| 男人操女人黄网站| 青春草视频在线免费观看| 美女福利国产在线| 欧美日韩成人在线一区二区| 在线观看一区二区三区激情| 久久青草综合色| 人成视频在线观看免费观看| 久久精品国产a三级三级三级| 亚洲av电影在线观看一区二区三区| 天堂中文最新版在线下载| 国产一级毛片在线| 黑人猛操日本美女一级片| 丝袜美腿诱惑在线| 热re99久久精品国产66热6| 一级片'在线观看视频| 亚洲成色77777| 精品国产超薄肉色丝袜足j| 国产亚洲欧美精品永久| 午夜福利在线免费观看网站| 韩国高清视频一区二区三区| 一级片'在线观看视频| 90打野战视频偷拍视频| 久久人人爽人人片av| 大码成人一级视频| 久久久国产精品麻豆| 丰满饥渴人妻一区二区三| 熟女少妇亚洲综合色aaa.| 国产男女超爽视频在线观看| 亚洲成人一二三区av| 久久久国产一区二区| 天天添夜夜摸| 妹子高潮喷水视频| 亚洲欧洲日产国产| 免费观看人在逋| 999久久久国产精品视频| 制服人妻中文乱码| 亚洲第一区二区三区不卡| 天天躁夜夜躁狠狠躁躁| 国产日韩一区二区三区精品不卡| 国产成人精品无人区| 女人高潮潮喷娇喘18禁视频| 欧美日韩视频高清一区二区三区二| 一级片免费观看大全|