• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于PDMS的經(jīng)濟(jì)型微流體加工技術(shù)研究*

    2014-08-22 11:23:22張雅雅崔建國(guó)重慶理工大學(xué)藥學(xué)與生物工程學(xué)院重慶400054
    機(jī)床與液壓 2014年24期
    關(guān)鍵詞:雅雅經(jīng)濟(jì)型建國(guó)

    張雅雅,崔建國(guó)重慶理工大學(xué)藥學(xué)與生物工程學(xué)院,重慶 400054

    1.Introduction

    Microfluidic technology can be controlled,operated and tested in microscopic dimensions,which is an emerging interdisciplinary based on microelectronics, micromechanical, bioengineering and micronano technology[1].Last decade,the development of microfluidic technology was very rapidly,brought a dramatic change in the field of medicine,chemistry and life sciences,and some of the company was committed to industrialize microfluidic technology[2].The equipment related to microsystem including micropump,microvalve,micromixer,microfilter,and micro splitter,etc[3].Microfluidic chip is an implementation platform for microfluidic technology,and its essence is processed 10~100μm width channel systems by using micro-processing technology on the substrates,mainly based on analysis chemistry,biochemistry,and micro electromechanical processing technology.It’s the key point of micro total analysis systems in current development,since microfluidic chips play great application value in these areas[4-5].In order to fabricate micro pipeline network structure in microfluidic chips,the processing technology plays a very important role.

    For microfluidic chip processing technology based on PDMS,the more classical method is maskbased lithography,but the processing of mask requires higher cost,longer time-consuming,and more expensive lithography machines and special machinery,which are difficult to meet the needs of rapid processing.Therefore,this method cannot be carried out in an ordinary laboratory [6].In this paper,current novel and relatively fast processing PDMSmicrochannel structure method is reviewed,such as the economical laser erosion and projector lithography technology[7-8].For the treatment of PDMSsurface wettability,the classical method is to use the more expensive plasma etching machine,after activating functional groups on PDMS surface,ideal modified result can be obtained.But the expensive cost of this method is not suitable for ordinary laboratory,the alternative method is to use microwave and vacuum ultraviolet surface modification technology[9].Microfluidic chip multilayer structure alignment and the unreversible packaging has always been a difficulty.This paper discusses the self-aligned bonding and reversible plug bonding technology.Combination of both can better solve the above difficulty,which can realize self-aligned bonding of multilayer PDMSstructures and reversible packaging[10-11].By comparing the existing microfluidic processing technology based on PDMS,this paper integrates a set of economic microfluidic processing technology.As a useful complement to traditional classical processing methods,these methods do not need expensive special equipment,and can be carried out in an ordinary laboratory.

    2.The structure,performance and preparation of PDMS

    Polydimethylsiloxane(PDMS)is a common high molecular polymer material,and it has advantages of low cost,simple processing,and also has low surface energy,excellent optical transparency,durability,insulating,as well as biocompatibility characteristics.Thus,this material is commonly used to process the microfluidic chip by soft lithography[12-13].It’s a silicone(silicone rubber)material,and containing the structural units—(CH3)2SiO—.The polymer molecular structure is shown in Figure 1.

    Figure 1.Structure of PDMS

    In conventional microfluidic chips,the general method of making PDMSmaterials is:A weight ratio of 10:1 is fully mixed with polymer base and curing agent of PDMS(Sylgard 184,Dow Corning),fully stirred 5 min,placed in a vacuum desiccator degassing 0.5 h,and PDMSprepolymer is then obtained;the prepolymer is poured into the exposed photoresist molding or other models for degassing 0.5 h,and then placed on a hot plate and heated at a temperature of 80℃ for 2 h,after cooling the cured PDMS chips are obtained[9].If the prepolymer is pouring on a glass slide,setting the speed of the coating machine,spinning coating a certain time,PDMS substrates with different thickness are obtained.Table 1 is the results of our laboratory tests.

    Table 1.Relationship of PDMS thickness and the spin speed of dumped plastic machine

    3.Fabricating micro-structure of PDMS

    3.1.Laser erosion templateless processing technology

    The microchannel structure based on PDMSproduction process needs mask,but the mask process,such as lithography photoresist or silicon deep reactive ion etching,etc.,all need to spend longer time and higher cost.Accordingly,in microfluidic and MEMS(microelectromechanical systems),fast and straightforward PDMSmicrostructure machining technology is very important,therefore the laser erosion technique can rapidly process the microfluidic chip.

    By summing up the traditional laser engraving shortcomings when fabricating PDMSmicrostructures,Hao-Bing Liu and others put forward the use of CO2laser,through cutting and pattern transfer(TC&T)process to fabricate PDMSmicrostructures,and finally obtain better results[7,14].TC&T process for templateless fabrication of PDMS microstructures is shown in Figure 2.

    Figure 2.Process for templateless fabrication of PDMS[7]

    In this way,a smooth channel bottom is obtained,due to removing the mask and precision machining process equipment consumables,thus can greatly reduce the time and cost of the molding.Through TC& T process,the feature structures with depth range of 2 μm ~3.6 mm and the aspect ratio of 10:1 can be obtained,wherein the minimum lateral feature size can reach 30μm(limited by the scanning accuracy and laser spot size).The lateral resolution of this technology is not higher than the photolithography mask,but compared to the complex process of production of the mask,it is more suitable for microfluidic applications.If the application field of the lateral feature size is not very critical,this fast and low cost method can be widely used to process PDMS microstructures.Such as CO2laser can be used to quickly processed microfluidic devices on PDMS[15].

    3.2.Projector lithography(DP2)method

    In recent years,in field of microfluidic precision processing technology,in order to overcome the flaws and shortcomings of inflexibility,complexity and high cost of operating,many scholars have carried out alternative researches,wherein the consumer electronics products with high precision to simplify precision machining have achieved good results,this inexpensive tool can rapid replicate microscopic model[16-18].First,the laser printer is used to make transparent mask(replaced the traditional chromiumbased mask),then the micropattern can be directly obtained via the projector projection and exposure on the light-sensitive membrane[17].Such technology can achieve accuracy about 100μm,it can reduce the time and cost of the rapid prototyping process.

    In order to overcome the shortcomings of precision processing technology,especially high costs,and can be carried out the templateless process out of clean-room,Si-wei Zhao,et al.,proposed a method that referred to the directed projection on dry-film photoresist(DP2),by means of processing a printed-circuit-board on photosensitive film.Such direct method using non-contact mask design,exposing the photosensitive polymer to form a structure,and the dry-film resist process is simplified,and can be used for precision machining of the photosensitive polymers and microfluidic structures[8].In an ordinary laboratory,this method can produce a complex three-dimensional microfluidic structure within one hour.More importantly,compared to all the maskless lithography technology,DP2 is relatively simple to set,only needing a digital projector and an adjustable optical lens,can achieve high accuracy(10 μm)and high alignment accuracy(<10μm).In addition,it is an environmentally friendly and non-toxic process.The working principle is shown in Figure 3.

    Figure 3.Illustration of the DP2 process[19]

    Due to the projector device and the chip itself limited,the exposure area obtained by this method is relatively limited.But generally speaking,compared with DP2 and other precision machining technology out of cleanroom,DP2 is simple,does not require a photomask or UV light source,and has high resolution(10 μm),which is suitable for rapid micro model processing in general laboratory[16,19].

    4.Wettability on the modified PDMS surface

    In the field of biomedical,as implant materials and medicines carrier,PDMS can enter the body.But the hydrophobic surface may cause adverse reactions of the human body,and the modification treatment need to be done[20].Meanwhile,in the field of microfluidic,PDMSmaterials are often used as micro-reactor substrates,they are also required to be modified on their flexible surface,and oxygen plasma is the more commonly used method of modifying the surface of materials[21].PDMS is a hydrophobic polymer,after exposure oxygen plasma,along with oxidation,chain scission and cross joint,silicon surface is formed,so it becomes hydrophilic structure[22].Furthermore,the oxygen plasma treatment may also be used to permanently bonding between the polymer and the silicon-based material[23].

    Although this technology has many advantages,the oxygen plasma surface treatment requires special equipment(such as plasma machine),and its expensive price and other factors do not applicable to most ordinary laboratory.

    4.1.PDMSsurface modification using vacuum ultraviolet

    Yao Shuyin,et al.,proposed that using vacuum UV light can significantly delay the recovery time of PDMS hydrophobicity,and improve the biocompatibility[24].Specific operations are as follows,using a vacuum ultraviolet light irradiation device UER20-172 V,the sample is sealed in a chamber with a vacuum pressure of about 500 Pa,and then it is irradiated for several minutes.After irradiation,the hydroxyl groups is formed on material surface,which greatly increased the hydrophilicity on the surface of the PDMS.By measuring the contact angle,irradiating 10 min can almost reach 0°,place a short time later,the contact angle is gradually increased to 73°.Compared with other modification methods,this method can obtain better experimental results.If the modified PDMS samples immediately put into the water,two months later the measurement of contact angle is still close to 0°,which proves that water environment can prevent PDMS chain flip,help keep the surface hydrophilic,thereby facilitating to maintain the surface hydrophilic.

    4.2.Microwave modification on the surface of PDMS

    Brent T.Ginn and Oliver Steinbock designed and tested an economical method to replace conventional commercial oxygen plasma treatment equipment,i.e.,relying on an unmodified kitchen microwave oven(microwave discharge function)and standard laboratory glass desiccator[9].Specific way of plasma treatment is:using ethanol rinse to clean prepared PDMS samples in advance,and to prevent accumulation of surface residues;after washing,sample is dried with compressed air,and placed on a glass slide;then the slide and some steel(function is generated spark and start oxygen decomposition while the microwave discharging)is placed in the vacuum desiccator;Oxygen is filled into the desiccator for two minutes,and then the pressure is degassed to 10-3Torr;Finally,the desiccator is placed in a microwave oven,microwave power is adjusted to the maximum,and performed 25 s plasma treatment.By testing the experiment of hydrophilicity on the surface of the PDMS(contact angle measurements)and plasma-induced adhesion force(bonding properties between PDMS and glass),its reliability is confirmed.Using the microwave and conventional oxygen plasma cleaning machine to process PDMS surface,the changes of the contact angle are shown in Figure 4.

    Figure 4.Contact angles between water and PDMSprocessed by microwave and oxygen plasma machine[9]

    5.Bonding and packaging among PDMS chips

    Packaging is one of the most challenging steps of micro-nanometer manufacturing,since most of the micro-devices contain more than one substrate.According to the assembly process,there are two most important factors:adhesion and alignment[25].Traditional bonding techniques are usually used for silicon semiconductor manufacturing industry,and general processing environment requires high temperature(a few hundred to one thousand degrees),heavy mechanical load, strong electric field, hermetically sealed device[26],etc.In most of the microsystem applications,formed micropattern structure on polymeric material such as the wafer or PDMS,the above processes are harmful(especially for bioactive ingredients).Therefore,it’s necessary for seeking constant reliable bonding packaging technology at low temperature.

    5.1.Capillary adsorption self-assembly technique

    Yu-zhe Ding,et al.put forward a kind of simple operation,package strategy—aapillary-driven Automatic Packaging(CAP)technology,successfully realize the self-assembly process[10].Using this technology,the chip’s pattern can spontaneous adjustment and glue,and the two surfaces of the chip need to be treated by oxygen plasma and get hydrophilic.Specifically,the self-alignment and self-engagement of CAP process is using liquid capillary bridge,and three interfaces between the top and bottom substrates to achieve capillary interactions.Cap-illary interaction contains two physical forces:capillary force FCon the wetting borders and suction force FSfrom the negative Laplace pressure(ΔP)inside the liquid menisci[27].As shown in Figure 5,the function of lateral component FC⊥of capillary force spontaneous aligns the both same comb-like surface structures by the surface energy of the liquid;the vertical component FC||of the suction capillary force can constantly evaporate followed with the capillary bridge,and gradually form intimate contact surface;gravity G of substrates may lead to some misalignments,and the substrates may not well perpendicular to the gravity plane.In order to maintain a negative adhesion to overcome the influence of gravity when moving,just the suspended bottom surface of the substrate is made underneath the fixed top surface,with the liquid evaporating,the bottom surface gradually closes to the fixed roof surface,and eventually packages together.Notably,F(xiàn)C⊥ is proportional to the number and the length of the comb-like structures,so when the bottom surface is not perfectly perpendicular to the gravity plane,the capillary force will be increased and drag the bottom surface to the alignment position;at the same time,the Laplace force of capillary bridge will move from the bottom surface to the top surface of the fixed,this force is larger than the gravity force.

    Figure 5.Illustration of the principle of CAP[10]

    CAP technology has high precision alignment(less than 10 μm),better self-engagement and adhesion performance(larger than 300 kPa).It can also realize multi-layer microstructures package,etc.In addition,this technique does not need any special equipment,does not involve heat treatment or mechanical treatment,so it’s very convenient to carry in general laboratory.Meanwhile,the self-alignment technique has been applied to the field of packaging microfluidics[28].

    5.2.Reversible pluggable package technology

    Connection between macro and micro structure has always been the most complex and the worst reliability steps in microfluidic system development progress.Scholars have carried out a large irreversible(such as adhesive bonding)and reversible(pressfit)packaging technology research,trying to provide dedicated fluid channel between standard tubes and small piece of equipments,but none of these packaging technology is suitable for precision machining or difficult to miniaturization and integration[29-30].Arnold Chen et al.,proposed a completely reversible,standard,and non-adhesive technology—Fit-to-Flow(F2F).F2F adapter interconnect can make macro peripheral devices connect to the microfluidic chip[11].It is similar to plug-and-play USB system in modern electronics,PDMS module with parallel tubes formed the socket.Therefore,a shape complementary component can simply insert,and constitute a mechanical seal of microchannel.

    Specifically,Arnold Chen has carried out two distinct physical sealing mechanisms researches.One of which is to take advantage of the elastomeric sleeve tensile force to form a reversible seal,the other one is to use the negative pressure of vacuum pump to form the reversible interface seal(both are suitable for ordinary laboratory).As shown in Figure 6,F(xiàn)igure 6(a)is reversible sealed with tension,simple structure,easy to plug,but less affordable leak pressure(about 60 kPa);Figure 6(b)is using vacuum negative pressure to form reversible seal,slightly complex structure,and external negative pressure source.The leakage pressure that can afford is related to the ratio between negative pressure and flow area.When the ratio is 4.7,it can reach to 336 kPa.F2F connection technology configures system for scalable multi-channel provides a common connection,at the same time F2F makes the microfluidic chip to be used repeatedly and pluggable,simple processing,especially suitable for ordinary laboratory.

    6.Applications

    Micropump is a very important part in microfluidic system,it can be effective for micro-liquid mixing,pumping,etc[5,31].Using the above economical processing technology,it can be convenient to carry out processing microfluidic devices and systems in ordinary laboratory.Jian-guo Cui et al.,using the above methods,developed a simple structure of peristaltic micropump based on the principle of negative pressure driving[31],as shown in Figure 7.Micropump consists of three layers PDMS materi-als,includes pneumatic layer,driving membrane layer and flow channel layer.The entire structures adopt the above methods to process,product and package.In particular,the pneumatic layer is connected with the negative pressure source,which can effectively remove the air bubbles in flow channel through PDMS driving membrane.This advantage is desired when dealing with complex fluid samples.The pump can be used in variety of biological and medical applications,such as point-diagnosis,cell culture,bodyfluid inspection,and drug development.

    Figure 6.The general principles of F2F[11]

    Figure 7.A vacuum-driven peristaltic micropump[31]

    7.Conclusion

    In this paper,the processing of microfluidic chips is analyzed,and different processing technologies are compared.Such as using volume control and spin coating to get the PDMSprepolymer,using CO2 laser cutting technology and DP2 technology to produce PDMSmicrochannel,using a vacuum UV irradiation and microwave oxygen plasma activation to modified PDMSsurface,and using CAP and F2F interface technologies which can form multilayer irreversible and reversible bonding between PDMS chips.These economic technologies do not need clean room and other specific environment,and are very suitable for ordinary laboratory.So they can completely become a useful supplement of traditional classical microfluidic processing technology.The reliability of these technologies have been confirmed,and have been applied to many microfluidic chip production and in application fields,such as in chemical,medicine and life sciences and other areas.

    [1] Whitesides G M.The Origins and Future of Microfluidics[J].Nature,2006,442:368-373.

    [2] Yole Developpement company 4 years microfluidics technology to predict the future development trend[J].Micronano-electronic Technology,2008,2:123-123.

    [3] Li yonggang.Studies on Key Processes and Techniques of PDMSMicrofludic Chips[D].Graduate school of Chinese academy of sciences,2006.

    [4] Wang Ming.Study of Microfluidic Chip in Poly(dimethylsiloxane)[D].Institute of Electronics Chinese Academy of Sciences,2003.

    [5] Farid Amirouche,Yu Zhou and Tom Johnson.Current micropμmp technology and their biomedical applications[J].Microsystem Technology,2009,15(5):647-666.

    [6] JR Anderson,DT Chiu,RJ Jackman,et al.Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping[J].Anal.Chem.,2000,72(14):3158-3164.

    [7] Liu H B, Gong H Q.Templateless prototyping of ploydimethylsiloxane microfludic structures using a pulsed CO2laser[J].J.Micromech.Microeng,2009,19:1-8.

    [8] Zhao S,Cong H,Pan T.Direct projection on dry-film photoresist(DP2):do-it-yourself three-dimensional polymer microfluidics[J].Lab Chip,2009,9:1128-1132.

    [9] Brent T.Ginn and Oliver Steinbock.Polymer Surface Modification Using Microwave-Oven-Generated Plasma[J].Langmuir,2003,19(19):8117-8118.

    [10] Yuzhe Ding,Lingfei Hong,et al.Capillary-driven automatic packaging[J].Lab Chip,2011(11):1464-1469.

    [11] Arnold Chen and Tingrui Pan.Fit-to-Flow(F2F)Interconnects:Universal Reversible Adhesive-Free Microfludic Adaptors Lab-on-a-Chip Systems[J].Lab Chip,2011(11):727-732.

    [12] Jiang jiahuan.Biomedical microsystem technology and application[M].Beijing:Chemical industry press,2006.

    [13] Jinwen Zhou,Amanda Vera Ellis,Nicolas Hans Voelcker.Recent developments in PDMSsurface modification for microfluidic devices[J].ELECTROPHORESIS,2010(1):2-16.

    [14]Snakenborg D,Klank H,Kutter JP.Microstructure fabrication with a CO2laser system[J].J.Micromech.Microeng.,2004,14:182.

    [15] Huawei Li,Yiqiang Fan,et al.Fabrication of polystyrene microfluidic devices using a pulsed CO2laser system[J].Microsystem Technology,2012,18:373-379.

    [16] Younan Xia and George.M.Whitesides.Microfabrication,Microstructures and Microsystems[J].Angew.Chem.,1998,194:1-20.

    [17] Wei Wang,Siwei Zhao and Tingrui.Pan.Lab-on-a-print:from a single polymer film to three-dimensional integrated microfluidics[J].Lab Chip,2009,9:1133-1137.

    [18] Limu Wang,Rimantas Kodzius,et al.Prototyping chips in minutes:Direct Laser Plotting(DLP)of functional microfluidic structures[J].Sensors and Actuators B:Chemical,2012,168:214-222.

    [19] Focke M,Kosse D,Müller C,et al.Lab-on-a-Foil:microfluidics on thin and flexible films [J].Lab Chip,2010,10,1365-1386.

    [20] Efimenkoa K,Crowea J-A,Maniosh E,et al.Rapid formation of soft hydrophilic silicone elastomer surfaces[J].Polymer,2005,46(22):9329-9341.

    [21] McDonald J C,Whitesides G M.Poly(dimethylsiloxane)as a Material for Fabricating Microfluidic DevicesAcc[J].Acc.Chem.Res.,2002,35(7):491-499.

    [22] Hillborg H,Ankner JF.Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques[J].Polymer,2000,41:6851-6863.

    [23] Cheng JY,Ross C A.Templated Self-Assembly of Block Copolymers:Top-Down Helps Bottom-Up[J].Advanced Materials,2006,18(19):2505-2521.

    [24] YAO Shuyin,WU Zhongkui,YANG Jun.Research on hydrophilizition of polydimethysiloxane(PDMS)surface by vacuum ultraviolet radiation[J].Journal of Hubei University,2010,32(2):188-199.

    [25] Kim JY,Baek JY.Photopolymerized check valve and its integration into a pneμmatic pμmping system for biocompatible sample delivery[J].Lab Chip,2006(6):1091-1094.

    [26] Wei W,Pan T.From Cleanroom to Desktop:Emerging Micro-Nanofabrication Technology for Biomedical Applications[J].Ann Biomed Eng,2011,39:600-620.

    [27] Gerlach A,Lambach H,Seidel D.Propagation of adhesives in joints during capillary adhesive bonding of microcomponents[J].Microsyst Technol,1999(6):19-22.

    [28] Xing S,Zhao S,Pan T.Print-to-print:a facile multi-object micro-patterning technique[J].Biomedical microdevices,2013:1-8.

    [29] Thorsen T,Maerkl S J,Quake S R.Microfluidic Large-Scale Integration[J].Science,2002,298:580-584.

    [30] Arora A,Simone G.Latest Developments in Micro Total Analysis Systems[J].Anal Chem,2010,82(12):4830-484.

    [31] Cui J G,Pan T.A vacuμm-driven peristaltic micropμmp with valed actuation chambers[J].J.Micromech.Microeng,2011,21:1-7.

    猜你喜歡
    雅雅經(jīng)濟(jì)型建國(guó)
    Flow separation control over an airfoil using continuous alternating current plasma actuator
    愛(ài)吃醋的雅雅
    你是我最牽掛的人
    經(jīng)濟(jì)型連鎖酒店的“小算盤(pán)”
    金橋(2018年9期)2018-09-25 02:53:26
    我的同學(xué)是樹(shù)人
    經(jīng)濟(jì)型數(shù)控車(chē)床自動(dòng)化加工系統(tǒng)的改造
    黃建國(guó)小小說(shuō)欣賞
    Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network
    模具用經(jīng)濟(jì)型P20板材生產(chǎn)實(shí)踐
    天津冶金(2014年4期)2014-02-28 16:52:37
    經(jīng)濟(jì)型車(chē)床數(shù)控系統(tǒng)精插器的設(shè)計(jì)
    河南科技(2014年12期)2014-02-27 14:10:37
    av线在线观看网站| 国产精品秋霞免费鲁丝片| 久久久久久久久久成人| 日韩精品免费视频一区二区三区 | 黑人猛操日本美女一级片| 亚洲内射少妇av| 亚洲av男天堂| 精品国产一区二区久久| 日韩精品有码人妻一区| 中文欧美无线码| 九草在线视频观看| 精品一区二区三卡| 性色av一级| 精品卡一卡二卡四卡免费| videossex国产| 婷婷色综合www| 国内精品宾馆在线| 欧美日韩av久久| 999精品在线视频| 久久久a久久爽久久v久久| 国产不卡av网站在线观看| 女性生殖器流出的白浆| 91久久精品电影网| 国产黄频视频在线观看| 久久久久精品久久久久真实原创| 18禁裸乳无遮挡动漫免费视频| a级毛片免费高清观看在线播放| 亚洲精品av麻豆狂野| 国产亚洲精品久久久com| 建设人人有责人人尽责人人享有的| 老熟女久久久| 精品一品国产午夜福利视频| 一个人看视频在线观看www免费| 全区人妻精品视频| 免费高清在线观看视频在线观看| 精品久久久久久电影网| av又黄又爽大尺度在线免费看| 2018国产大陆天天弄谢| 亚洲av电影在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频| 在线 av 中文字幕| 亚洲精品中文字幕在线视频| 日本91视频免费播放| 赤兔流量卡办理| 国产成人精品在线电影| 久久热精品热| 少妇丰满av| 亚洲内射少妇av| 美女福利国产在线| 国产精品99久久99久久久不卡 | 99re6热这里在线精品视频| 国产有黄有色有爽视频| 制服诱惑二区| xxx大片免费视频| 最近中文字幕高清免费大全6| 街头女战士在线观看网站| 18在线观看网站| 亚洲国产精品专区欧美| a级毛片免费高清观看在线播放| 丰满少妇做爰视频| 最近的中文字幕免费完整| 黑人巨大精品欧美一区二区蜜桃 | 伦精品一区二区三区| 亚洲成色77777| 日韩av在线免费看完整版不卡| 国产伦精品一区二区三区视频9| 一级毛片 在线播放| 青春草亚洲视频在线观看| 一区二区三区乱码不卡18| 一边摸一边做爽爽视频免费| 高清在线视频一区二区三区| 亚洲精华国产精华液的使用体验| 久久久久久久久久人人人人人人| 欧美精品人与动牲交sv欧美| 欧美日韩精品成人综合77777| 大片电影免费在线观看免费| 国产黄片视频在线免费观看| 中文字幕av电影在线播放| a级毛片黄视频| 国产爽快片一区二区三区| 考比视频在线观看| 色网站视频免费| 午夜av观看不卡| 97在线视频观看| 久久午夜福利片| 国产69精品久久久久777片| 精品亚洲成国产av| 99re6热这里在线精品视频| av网站免费在线观看视频| www.色视频.com| 观看美女的网站| 曰老女人黄片| 黑人巨大精品欧美一区二区蜜桃 | 99精国产麻豆久久婷婷| 亚洲av中文av极速乱| 成人国语在线视频| 久久99热这里只频精品6学生| 国产片特级美女逼逼视频| 成年av动漫网址| 97超碰精品成人国产| 大话2 男鬼变身卡| 26uuu在线亚洲综合色| 国产精品免费大片| 最近手机中文字幕大全| 嘟嘟电影网在线观看| 一区二区日韩欧美中文字幕 | 久久久欧美国产精品| 精品熟女少妇av免费看| 99热国产这里只有精品6| 国国产精品蜜臀av免费| 大片免费播放器 马上看| 99热全是精品| 亚洲第一av免费看| 国产在线免费精品| 亚洲精品自拍成人| 成人国产av品久久久| 青春草视频在线免费观看| 亚洲性久久影院| 午夜福利在线观看免费完整高清在| 日本色播在线视频| 国国产精品蜜臀av免费| 99久久综合免费| 日韩亚洲欧美综合| 99热这里只有精品一区| 考比视频在线观看| 99视频精品全部免费 在线| 制服诱惑二区| 丰满乱子伦码专区| 一区二区三区乱码不卡18| 国产精品一二三区在线看| 老女人水多毛片| 狠狠精品人妻久久久久久综合| 国产午夜精品一二区理论片| 欧美三级亚洲精品| 99热国产这里只有精品6| 国产高清国产精品国产三级| 国产亚洲精品久久久com| 99热这里只有精品一区| 99re6热这里在线精品视频| 亚洲精品自拍成人| 啦啦啦在线观看免费高清www| 免费观看无遮挡的男女| 麻豆乱淫一区二区| 天天影视国产精品| 日日摸夜夜添夜夜添av毛片| 国产免费福利视频在线观看| 亚洲av成人精品一二三区| 丰满迷人的少妇在线观看| 久久久久精品性色| 国产亚洲精品第一综合不卡 | 欧美xxⅹ黑人| 亚洲国产av新网站| 在线观看美女被高潮喷水网站| 久久久久网色| 国产日韩欧美亚洲二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本爱情动作片www.在线观看| 久久人人爽人人片av| 国产成人精品一,二区| 少妇高潮的动态图| 亚洲精品自拍成人| 91久久精品电影网| 国产亚洲av片在线观看秒播厂| 蜜桃在线观看..| 中文字幕人妻丝袜制服| 欧美日韩成人在线一区二区| 精品久久国产蜜桃| 国产精品久久久久成人av| 欧美3d第一页| 日韩视频在线欧美| 国产精品一区二区三区四区免费观看| 亚洲av日韩在线播放| 五月伊人婷婷丁香| 各种免费的搞黄视频| 日日摸夜夜添夜夜爱| 丰满饥渴人妻一区二区三| 久久狼人影院| 欧美日韩综合久久久久久| 黄片无遮挡物在线观看| 国产亚洲午夜精品一区二区久久| 我要看黄色一级片免费的| av在线app专区| 久久精品人人爽人人爽视色| 午夜av观看不卡| 99九九线精品视频在线观看视频| 国产精品一区www在线观看| videos熟女内射| 夫妻性生交免费视频一级片| 视频区图区小说| 亚洲色图综合在线观看| 蜜桃国产av成人99| 久久精品国产亚洲av涩爱| 国产精品成人在线| 狂野欧美激情性xxxx在线观看| 曰老女人黄片| 国产免费又黄又爽又色| 国产精品久久久久久久电影| 久久久久久伊人网av| 午夜91福利影院| 精品亚洲乱码少妇综合久久| 高清视频免费观看一区二区| 交换朋友夫妻互换小说| 亚洲综合色惰| 王馨瑶露胸无遮挡在线观看| 国产精品国产三级国产专区5o| 极品少妇高潮喷水抽搐| 欧美激情极品国产一区二区三区 | 国产一区二区在线观看日韩| 在线观看国产h片| 亚洲五月色婷婷综合| 考比视频在线观看| 亚洲精品乱码久久久久久按摩| 一本色道久久久久久精品综合| 18禁在线无遮挡免费观看视频| 亚洲图色成人| 性高湖久久久久久久久免费观看| 如日韩欧美国产精品一区二区三区 | 天堂中文最新版在线下载| 日本vs欧美在线观看视频| 亚洲国产最新在线播放| 久久精品国产a三级三级三级| 女人久久www免费人成看片| 看非洲黑人一级黄片| 啦啦啦视频在线资源免费观看| 亚洲国产成人一精品久久久| 91精品一卡2卡3卡4卡| 欧美激情极品国产一区二区三区 | 亚洲精品美女久久av网站| 精品熟女少妇av免费看| 日韩中字成人| 有码 亚洲区| 亚洲国产精品一区三区| 亚洲精品av麻豆狂野| 老司机亚洲免费影院| 欧美丝袜亚洲另类| 欧美人与善性xxx| av在线观看视频网站免费| 国产精品欧美亚洲77777| 国产亚洲精品久久久com| 国产淫语在线视频| 中文天堂在线官网| 国产高清国产精品国产三级| 99热6这里只有精品| 乱人伦中国视频| 中文字幕人妻丝袜制服| 国产亚洲欧美精品永久| 热99国产精品久久久久久7| 欧美97在线视频| 寂寞人妻少妇视频99o| 精品久久久久久久久av| 久久精品国产亚洲网站| 日韩一区二区视频免费看| 国产精品 国内视频| 国产精品欧美亚洲77777| 国产 精品1| 精品久久久噜噜| 成人毛片a级毛片在线播放| 最新中文字幕久久久久| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 色5月婷婷丁香| av福利片在线| 一区二区三区乱码不卡18| 美女中出高潮动态图| 母亲3免费完整高清在线观看 | 亚洲五月色婷婷综合| 国产又色又爽无遮挡免| 亚洲美女黄色视频免费看| 中国国产av一级| 美女视频免费永久观看网站| 人妻制服诱惑在线中文字幕| 亚洲熟女精品中文字幕| 久久精品久久精品一区二区三区| 三上悠亚av全集在线观看| 99精国产麻豆久久婷婷| 成人国语在线视频| 黄色视频在线播放观看不卡| 熟女av电影| 精品久久久久久久久亚洲| 婷婷色综合www| 午夜视频国产福利| 美女主播在线视频| 午夜免费鲁丝| 欧美丝袜亚洲另类| 亚洲美女黄色视频免费看| 欧美日韩视频高清一区二区三区二| 婷婷成人精品国产| videosex国产| 爱豆传媒免费全集在线观看| 免费黄色在线免费观看| 免费看光身美女| 精品国产一区二区久久| 色婷婷久久久亚洲欧美| 国产成人午夜福利电影在线观看| 男人操女人黄网站| 婷婷色综合www| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄| 春色校园在线视频观看| kizo精华| 一区二区av电影网| 熟女人妻精品中文字幕| 亚洲国产日韩一区二区| 18禁裸乳无遮挡动漫免费视频| 久久人人爽人人片av| videosex国产| 国产亚洲欧美精品永久| 啦啦啦啦在线视频资源| 国产精品一区二区在线观看99| 九色成人免费人妻av| 国产无遮挡羞羞视频在线观看| 国产白丝娇喘喷水9色精品| 成人国语在线视频| a级毛色黄片| 久久精品人人爽人人爽视色| 日韩av免费高清视频| 欧美3d第一页| 色网站视频免费| 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 久久国产精品大桥未久av| 亚洲内射少妇av| 韩国高清视频一区二区三区| 大香蕉久久网| 亚洲内射少妇av| 女的被弄到高潮叫床怎么办| 成年美女黄网站色视频大全免费 | 国产精品人妻久久久久久| 人人妻人人澡人人看| 亚洲国产色片| 伊人久久精品亚洲午夜| 亚州av有码| 国产黄色视频一区二区在线观看| 欧美+日韩+精品| 99热网站在线观看| 51国产日韩欧美| 看免费成人av毛片| 亚州av有码| 亚洲精品中文字幕在线视频| 久久鲁丝午夜福利片| 日韩伦理黄色片| 成年人午夜在线观看视频| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 丝袜美足系列| 日韩欧美一区视频在线观看| 免费人妻精品一区二区三区视频| 天美传媒精品一区二区| 久久国产精品男人的天堂亚洲 | 69精品国产乱码久久久| 热99国产精品久久久久久7| 久久av网站| 99热网站在线观看| 一级黄片播放器| 大香蕉久久网| 亚洲国产欧美在线一区| 亚洲精品第二区| 大陆偷拍与自拍| 午夜激情久久久久久久| 18禁观看日本| 亚洲精品aⅴ在线观看| 啦啦啦视频在线资源免费观看| 国产免费又黄又爽又色| 国产精品国产三级专区第一集| 一级毛片我不卡| 99re6热这里在线精品视频| 亚洲av福利一区| 成年av动漫网址| 成人亚洲欧美一区二区av| 亚洲综合色网址| 婷婷成人精品国产| 国产女主播在线喷水免费视频网站| 国产高清有码在线观看视频| 精品一区二区三卡| 日韩精品有码人妻一区| 一级黄片播放器| 老司机影院毛片| 欧美性感艳星| 久久久久久久亚洲中文字幕| 一区在线观看完整版| 国产精品久久久久久精品电影小说| 性高湖久久久久久久久免费观看| 丰满乱子伦码专区| 老女人水多毛片| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 久久久久久久久久成人| 久久人人爽人人爽人人片va| 熟妇人妻不卡中文字幕| 伦精品一区二区三区| 色婷婷av一区二区三区视频| 插阴视频在线观看视频| 欧美变态另类bdsm刘玥| 看非洲黑人一级黄片| 欧美精品亚洲一区二区| 成人免费观看视频高清| 伦理电影免费视频| 久久久国产欧美日韩av| 街头女战士在线观看网站| 欧美日韩视频高清一区二区三区二| 自线自在国产av| 日本黄大片高清| 毛片一级片免费看久久久久| 18+在线观看网站| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 热99久久久久精品小说推荐| 色吧在线观看| 国产日韩欧美视频二区| 欧美xxⅹ黑人| av一本久久久久| 亚洲第一av免费看| 少妇被粗大猛烈的视频| 简卡轻食公司| 国产精品久久久久久久电影| 亚洲欧美日韩卡通动漫| 18+在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩另类电影网站| 亚洲经典国产精华液单| 久久久精品94久久精品| 黑人巨大精品欧美一区二区蜜桃 | 22中文网久久字幕| 国产高清有码在线观看视频| 精品一品国产午夜福利视频| 亚洲国产av新网站| 成人二区视频| 这个男人来自地球电影免费观看 | 亚洲av综合色区一区| 高清午夜精品一区二区三区| 亚洲精品久久午夜乱码| 少妇的逼水好多| 女人精品久久久久毛片| 特大巨黑吊av在线直播| 国产色婷婷99| 成人黄色视频免费在线看| av女优亚洲男人天堂| 久久女婷五月综合色啪小说| 青春草亚洲视频在线观看| 又黄又爽又刺激的免费视频.| 日本色播在线视频| 国产成人aa在线观看| 国产av精品麻豆| 一二三四中文在线观看免费高清| 亚洲性久久影院| av一本久久久久| 国产一区有黄有色的免费视频| 亚洲国产av新网站| 另类精品久久| 日韩av在线免费看完整版不卡| 中文字幕精品免费在线观看视频 | 老司机影院毛片| 久久久久久久精品精品| 免费观看在线日韩| 七月丁香在线播放| 欧美日韩亚洲高清精品| 亚洲精品乱码久久久久久按摩| 美女福利国产在线| 十八禁网站网址无遮挡| 美女xxoo啪啪120秒动态图| h视频一区二区三区| 亚洲av男天堂| 国产亚洲一区二区精品| 久久久亚洲精品成人影院| 99久国产av精品国产电影| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 人妻一区二区av| 久久影院123| kizo精华| 搡老乐熟女国产| 久久久欧美国产精品| 亚洲国产欧美在线一区| 亚洲精品一区蜜桃| 国产 一区精品| 天堂俺去俺来也www色官网| 亚洲精品日韩在线中文字幕| 夜夜骑夜夜射夜夜干| 免费高清在线观看日韩| 国产免费一区二区三区四区乱码| 成人亚洲精品一区在线观看| 午夜福利视频精品| 国产精品一区二区三区四区免费观看| 亚洲精品av麻豆狂野| 九草在线视频观看| 久久青草综合色| 精品人妻熟女毛片av久久网站| 成人漫画全彩无遮挡| kizo精华| 久久久久人妻精品一区果冻| 99久久精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 一个人免费看片子| 精品一区二区免费观看| 中文字幕亚洲精品专区| 亚洲熟女精品中文字幕| 亚洲五月色婷婷综合| 国产av码专区亚洲av| 少妇猛男粗大的猛烈进出视频| 黄色一级大片看看| 日日爽夜夜爽网站| 久久精品国产亚洲av涩爱| 午夜免费鲁丝| 久久精品国产亚洲av涩爱| 久久青草综合色| 国产精品.久久久| 一区二区三区免费毛片| 国产男女超爽视频在线观看| av卡一久久| 美女脱内裤让男人舔精品视频| 能在线免费看毛片的网站| 五月开心婷婷网| 91在线精品国自产拍蜜月| 亚洲在久久综合| 免费观看性生交大片5| 看免费成人av毛片| 高清不卡的av网站| 国产在线免费精品| 91在线精品国自产拍蜜月| 亚洲久久久国产精品| 丰满迷人的少妇在线观看| 亚洲,欧美,日韩| av国产精品久久久久影院| 亚洲国产日韩一区二区| 国产成人免费无遮挡视频| 色94色欧美一区二区| 一区二区三区免费毛片| 一级毛片黄色毛片免费观看视频| av电影中文网址| 狠狠婷婷综合久久久久久88av| 日本欧美国产在线视频| 我的老师免费观看完整版| a 毛片基地| a级毛片在线看网站| 国产精品一区www在线观看| 亚洲第一区二区三区不卡| 国产精品久久久久久精品电影小说| 欧美精品人与动牲交sv欧美| 狂野欧美白嫩少妇大欣赏| 超色免费av| 超碰97精品在线观看| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 视频区图区小说| 精品亚洲成国产av| 日韩av免费高清视频| 欧美激情 高清一区二区三区| 国产视频首页在线观看| 久久久精品免费免费高清| √禁漫天堂资源中文www| 精品人妻在线不人妻| 在线观看国产h片| 精品少妇黑人巨大在线播放| 黑人欧美特级aaaaaa片| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| 欧美三级亚洲精品| 人妻少妇偷人精品九色| 我的老师免费观看完整版| 精品人妻熟女av久视频| 91久久精品电影网| 亚洲精品成人av观看孕妇| 视频在线观看一区二区三区| 国产精品国产三级国产专区5o| 男人操女人黄网站| 高清毛片免费看| 97超视频在线观看视频| 成人综合一区亚洲| 夫妻午夜视频| h视频一区二区三区| 精品一区在线观看国产| 亚洲在久久综合| 亚洲高清免费不卡视频| 夜夜看夜夜爽夜夜摸| 欧美 亚洲 国产 日韩一| 天天操日日干夜夜撸| a级毛色黄片| 91aial.com中文字幕在线观看| 女的被弄到高潮叫床怎么办| 欧美bdsm另类| 精品人妻一区二区三区麻豆| 国产精品人妻久久久影院| 亚洲欧美色中文字幕在线| 国产亚洲欧美精品永久| 日韩在线高清观看一区二区三区| 18禁在线播放成人免费| 亚洲久久久国产精品| 嫩草影院入口| 九九在线视频观看精品| 简卡轻食公司| 亚洲精品,欧美精品| 久久久久久久国产电影| 中国三级夫妇交换| 免费人成在线观看视频色| av一本久久久久| 伊人久久精品亚洲午夜| 亚洲精品av麻豆狂野| 国产免费现黄频在线看| 日韩免费高清中文字幕av| 我的老师免费观看完整版| 色婷婷久久久亚洲欧美| 久久久午夜欧美精品| 精品99又大又爽又粗少妇毛片| 日韩不卡一区二区三区视频在线| 久久精品国产鲁丝片午夜精品| 久久久久视频综合| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 岛国毛片在线播放| 欧美日韩国产mv在线观看视频| 永久免费av网站大全| 国产日韩欧美视频二区| 视频区图区小说| 我的女老师完整版在线观看| tube8黄色片|