• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    重型卡車機(jī)艙內(nèi)流特性研究*

    2014-08-22 11:24:02葛吉偉王澤偉胡興軍王靖宇李崢崢
    機(jī)床與液壓 2014年24期
    關(guān)鍵詞:靖宇吉林大學(xué)機(jī)艙

    葛吉偉,王澤偉,胡興軍,2,王靖宇,楊 博,李崢崢

    1.吉林大學(xué)汽車仿真與控制國家重點(diǎn)實(shí)驗(yàn)室,長春 1300222.Department of Mechanical Engineering,Osaka University,Osaka 565-0871,Japan

    1.Introduction

    With the development of the modern automobile technology,the engine load is increasing and the problem of overheating of the engine compartment is growing.Internal flow of automobile engine compartment has great influence on the internal flow resistance and cooling[1].At the same time,cooling air flow is introduced into the engine compartment,consuming air kinetic energy and increasing the aerodynamic drag.Studies have shown that the car’s internal flow resistance accounted for 12%of the whole vehicle aerodynamic drag[2].Aerodynamic drag of auto cooling system is a main part of automobile internal flow resistance[3].Therefore,we put forward a higher request for the engine cooling system,and pay more and more attention on the engine compartment cooling performance[4].

    At this stage,auto makers assembles the parts of the engine cooling modules by experience which is provided by parts manufacturers but the matching of various modules is not considered.The cooling performance of a module in a location has achieved the optimal.But after assembled,the cooling performance will have a very great change,the original position will no longer be the best.The article will focus on a internal flow characteristics of under-hood for heavy-duty truck based on layout of cooling modules[5].

    2.Numerical simulation

    2.1.Geometric model of heavy-duty truck

    The original truck geometric model researched is a three dimensional numerical model provided by an auto company.The paper mainly studies the effect of layout of cooling modules on under-hood air flow and cooling[6].Cooling modules include a condenser,a intercooler,a water tank,a radiator and a fan.

    Tires of the truck,outside wheelhouse and modules on frame were simplified which has a little influence on flow field.The engine compartment keeps a condenser,an intercooler,a water tank radiator,a fan and an engine,etc.The engine will appropriately be simplified.The theory of porous media is used to establish model for the condenser,intercooler and radiator.Fuel pipes,water pipes,screws,nuts and other modules in the compartment were simplified.Simplified geometric model for the truck and engine compartment parts are shown in Figure 1 and Figure 2.

    Figure 1.Simplified heavy-duty trucks model

    Figure 2.Engine cooling modules

    The engine of the original heavy truck model is longitudinally placed.Fan is installed on the pump shaft,which drives the belt.And the belt drives the pump and the fan rotating.Figure 3 illustrates that in order to match to the water pump shaft the fan shaft has an angle with the radiator.As a result of the existence of this angle,the orthographic projection area of fan on the radiator is less than the parallel,and the position of the fan is lower than the center of the radiator,so it weakens the suction of fan for cooling air.

    Figure 3.Prototype Y=0 section

    Three kinds of improved cases were designed and the mathematical models were established:

    1)Case 1:Install the fan to the location paralleling to the radiator and make the fan shaft perpendicular to the radiator,which is in the center of the radiator core,as shown in Figure 4.

    Figure 4.Case 1 Y=0 section

    2)Case 2:For the layout form of cooling modules,traditional form of arrangement is intercoolerradiator-fan.The layout form of case 2 adopts intercooler-fan-radiator.So the fan is placed in the middle of the intercooler and radiator,and this reduces the air temperature which flow into the radiator and increases density and flow rate[7],as shown in Figure 5.

    Figure 5.Case 2 Y=0 section

    3)Case 3:There are three inlets in the front of the heavy truck,which are respectively the upper grille,the rubber decoration,and the lower grille.Figure 6 shows the area of the grille and the area of the radiator in the YZ plane is only a small overlapping part,so only a small part of the air overflowed from the upper grille flow into the intercooler and the radiator.Other parts outflow from cooling parts above.Due to not making full use of the cooling air,it goes against the engine cooling modules’cooling performance.Case 3 based of Case 1 is the radiator modules shift upward.In the process of upward shift,there are five small solutions to be analyzed.

    Figure 6.The front grille of the truck and cooling modules’relative locations

    By measured,there are 200 mm space cooling modules can be moved along the Z axis.There are 40 mm,80 mm and 120 mm,160 mm and 200 mm,as shown in Figure 7(a)~(e).

    Figure 7.Case 3 Y=0 section

    2.2.Grid generation

    The three-dimensional model of the truck is imported to the pre-process CFD software Hyper-mesh for topology,repairing surface and meshing surface grids.Different parts use different sizes.Grids in certain regions where the details are required should be dense and divided into triangular surface mesh[8].

    When generating volume mesh,first we should establish a computational domain to simulate numerical wind tunnel tests.The distance from the front boundary of the computational domain to the front of the truck is twice as long as the truck’s length.The distance from the rear boundary of computational domain to the rear of the truck is five times as long as the truck’s length.The width of computational domain is 7 times as long as the truck’s width.The height of computational domain is 4 times as long as the truck’s height.So this computational domain can insure that the flow of near the engine compartment can’t be affected,as shown in Figure 8.

    Figure 8.Computational domain size

    After building the computational domain and dividing the surface mesh,we should divide the volume mesh with STAR-CCM+.The main area is divided as the trimmer grid.The condenser,intercooler,radiator core and fan zoning is divided as the polyhedral mesh.For the space around the body,the part of the front grille,the space around the engine compartment cooling system and the space between grounds,we should refine the volume mesh to well capture the flow conditions of the position we concerned.Because of the presence of the wall surface boundary layer around the automobile generating a large flow velocity gradient,the outer surface of the truck and the inner surface of the engine compartment are extruded with the boundary layer along surface normal when we divide the volume mesh.The grid number of vehicle computational domain is about 11 846 000.Figure 9 is volume mesh on Y=0 coordinate crosssection.Other cases use the same meshing schemes.

    Figure 9.Heavy-duty trucks Y=0 section volume mesh

    2.3.Choosing numerical methods

    The air flow in the automobile engine compartment is determined by the flow of airflow field around the truck,so the simulation calculation process is coupling with the automotive external flow field and the automotive internal flow field.Automotive external flow field and internal flow field of engine compartment are separated.Simulation condition is that the engine is at the maximum torque point when vehicle speed is 30 km/h,much lower than 100 m/s,so this low speed flow is belong to the incompressible flow.We select a three-dimensional,unsteady,incompressible and viscous flow model[9].The control equation is Reynolds Averaged Navier-Stokes equations(RANS).The turbulence model is Realizable model.There are many curved walls in engine compartments,so Realizable k-e model has a good effect for simulating the boundary layer flow,the separated flow and the vortex flow[10].

    2.4.Boundary conditions

    The simulation process in the article is coupling with the automotive external flow field and the automotive internal flow field.Boundary conditions can be classified as the external boundary conditions and the internal boundary conditions.The external boundary conditions include inlet boundary conditions,outlet boundary conditions and wall boundary conditions of computational domain[11].Internal boundary conditions include engine compartment cooling systems and engines.The condenser,the intercooler and the radiator of cooling systems are porous media model to simulate,the fan use MRF methods to simulate,the wall of engine is setting to the corresponding thermal boundary[12].In order to simulate working conditions of heavy-duty trucks climbing at the maximum torque point under the highest summer temperature,fan speed is 1 400 r/min,the ambient temperature is 40℃,and the flow rate of the radiator circulating water is 22 m3/h.The inlet boundary condition is velocity inlet,the vehicle speed is 30 km/h,and the temperature is the highest possible temperature in summer 40℃.The outlet boundary condition is pressure outlet,and the pressure is the standard atmospheric pressure,the relative pressure is 0 Pa.The condenser,the intercooler and the radiator are the porous boundaries[13].There are heating parts of the engine compartments engine block,cylinder head,exhaust,turbo,etc.Thermal boundaries need to be according to the true situations to set.In star-ccm+ ,the condenser,the intercooler and the radiator are heat sources.

    3.Results analysis and discussion

    Figure 10(a)and(b)respectively show a velocity vector and a velocity scalar contour of the internal flow field of the prototype heavy-duty truck engine compartment at Y=0.Figure 11(a)and(b)respectively show a velocity vector and velocity scalar contour of the internal flow field of the prototype heavy-duty truck engine compartment at Y=0 when Case 1 change the location of the cooling fan.It can be seen that how the Case 1 impact on the velocity field of the entire engine compartment.

    Figure 10.Prototype Y=0 section

    Figure 11.Case 1 Y=0 section

    Contrasting with the velocity vector and velocity scalar contour of prototype heavy-duty trucks and Case 1,the flow velocity around the intercooler and the radiator in engine compartment of Case 1 is higher than the flow velocity of prototype heavy-duty trucks’.Low velocity Vortex regions in the cab’s floor of the prototype become small,and the wind speed becomes faster in these regions.The engine compartment cooling air flow speed becomes larger so that the engine compartment cooling air flow rate increases,helping take away more heat and improving the heavy-duty truck engine compartment thermal environment.

    As shown in the Table 1,we see flow-rate flowing through the condenser,the intercooler,the radiator and the fan.

    Table 1 shows that the cooling flow-rate flowing through the condenser,the intercooler,the radiator and the fan of Case 1 which improved the installation location of fan has increased,and the flow-rate flowing through the fan increases more,Δq=0.292 9 kg/s.So it proves that the layout scheme for cooling modules of Case 1 can improve the thermal environment of the engine compartment,especially the flowrate increasing in the radiator has improved the thermal performance of the engine cooling system.

    Table 1.Air flow-rate of cooling modules

    We can obtain the coolant temperature of the radiator inlet pipe and the radiator outlet pipe in Case 1,as shown in Table 2.

    Table 2.The cooling fluid temperature of the radiator inlet and outlet pipe

    Comprehensively analyzing the flow results of radiator modules and the coolant temperature of inlet and outlet of radiator,we can see that compared with the prototype,cooling performance of the Case 1 radiator has improved,but the radiator pipe water temperature is still higher than the maximum allowable temperature of the coolant with 100℃.

    Figure 12(a)and(b),respectively,are temperature contours of the prototype engine compartment and Case1’s at Y=0.

    Figure 12(a)shows that the prototype temperature at the top of the radiator is lower than Case 1’s due to reflow,but is still higher in other regions.The air temperature at the top of engine cylinder head is still relatively high,compared with the prototype.Due to the position change of the fan,the air flowrate flowing through the cooling module increases.The range of the high-temperature gas zone has been reduced.Through changing the location of the fan,high temperature gas reflow phenomenon has decreased.This can prevent the cooling air being secondary heated.This will help improve the effectiveness of the radiator.Compared with the prototype,the temperature of the engine compartment has decreased,but still failed to meet the cooling needs of the engine cooling modules,so we need further discussions.

    Figure 12.Y=0 section temperature contour

    Figure 13(a),(b),F(xiàn)igure 14(a),(b)and Figure 15(a),(b),respectively,show the velocity scalar and the temperature contour of the prototype,Case 1 and Case 2.Case 2 is based on Case 1 but the fan will be placed in the middle of the intercooler and the radiator.Comparing Figure 14 with Figure 15,the flow rate becomes faster at the condenser and the center position of intercooler because of the fan being put into the middle of the intercooler and the radiator and the pumping action of the fan.However,the flow rate of the air flowing through the radiator is much lower than that in Case 1.The airflow flowing through the radiator of Case 1 is divided into two parts,one is heated in the intercooler after the outflow,the other part does not flow through the intercooler.However,the flow passing through the radiator almost comes from the intercooler and is heated,reducing the flow-rate in the radiator,so the cooling performance of the radiator is deteriorated.Comparing temperature contour of Case 1 and Case 2,the temperature in the radiator and the engine of Case 2 is higher than that in Case1.The engine compartment cooling modules thermal performance of Case 2 has not improved,compared with Case 1.Comparing velocity scalar and temperature contour of Case 2 and Prototype’s,we can see that the flow rate of Case 2 above the radiator modules and in the zones between the top and bottom of the cab is smaller than the prototype’s,but the temperature at fan,radiator and engine is higher than the prototype’s.

    Figure 13.Prototype Y=0 section

    Figure 14.Case 1 Y=0 section

    Figure 15.Case 2 Y=0 section

    Table 3 shows the results of the flow-rate of the cooling modules in prototype,Case 1 and Case 2.

    Table 3 shows that the flow-rate of Case 2 in the condenser is greater,compared with Case 1 and prototype.The flow-rate of the intercooler,the radiator and the fan must be less than that of the prototype and Case 1.Flow-rate test results match with the analysis of the velocity scalar and temperature contour of cooling modules.

    Table 3.Air flow-rate of cooling modules

    By simulating Case 3 which contains five small solutions,velocity vector and velocity scalar at Y=0 cross-sectional were obtained,as shown in Figures16(a),(b)~ 20(a),(b).The flow rate passing through intercooler core in model in whichΔz=40 mm has increased compared with Case 1.Meanwhile the air at the bottom of front of heavy-duty trucks flows into intercooler,and the low-speed reflow regions above the radiator disappear.But near the front wall of heavy trucks above intercooler appears a lowspeed area,and air velocity beneath the engine increases.

    Compared with Case 1,the flow-rate from engine compartment of model in whichΔz=80 mm into the intercooler increased,and the flow rate above the cooling modules accelerates.But the flow-rate from the bottom into intercooler decreases.Due to translation of the fan,the flow rate above the engine accelerates.Compared with the Case 1,the most significant changes of model in whichΔz=120 mm is that the air hardly flows from front floor of engine compartment into the intercooler.A small part of flowrate from the up-grid into the engine compartment impinges on the rack in the intercooler,and the flow rate becomes small and the air can be separated.The air of the model in whichΔz=160 mm from the upgrid into the engine compartment is no longer hampered by the shelf and is more smooth through the intercooler to a radiator.The overlapping areas of the areas projected the up-grille;and the intermediate rubber trim and lower grid on the YZ Plane and the areas projected radiator on the YZ Plane are much more than the three small solutions’ above.As shown in velocity scalar,the intercooler and the radiator air flow rate is slightly higher than the three small solutions’above in the whole.

    Figure 16.Case 3 Δz=40 mm

    Figure 17.Case 3 Δz=80 mm

    Figure 18.Case 3 Δz=120 mm

    Figure 19.Case 3 Δz=160 mm

    Figure 20.Case3 Δz=200 mm

    In Table 4 given there are the results of the flow of the monitored cooling modules in prototype,Case 1 and Case 3 with five small solutions.This study focuses an attention on the flow of radiator.In the model in whichΔz=40 mm,there is still air flowing into the radiator below the front and this increases the flow passing through the radiator due to the flow from the up-grille into the radiator increasing and the radiator moving along Z-axis by 40 mm.The flow from the bottom into intercooler decreases in the model Δz=80 mm.Although the flow from up-grille into the radiator increases,the mass of cooling gas passing through the radiator in the modelΔz=80 mm is smaller than it in the modelΔz=40 mm.The flow from front floor of engine compartment into the intercooler is few in the modelΔz=120 mm and the flow is the least comparing with other four solutions.Although the air from front floor of engine compartment no longer passes by the radiator in the modelΔz=160 mm.The air from the up-grille into the radiator has increased and the flow reaches a maximum value in the modelΔz=200 mm.So the cooling performance of the radiator is the best.

    Table 4.The flow-rate of cooling modules

    By simulation results,the temperature of the radiator outlet pipe is107.32 ℃ in Case 3(Δz=200 mm)where the flow-rate of the radiator is the highest but is still higher than the maximum allowable temperature of the coolant with 100℃.It proves that when the fan speed is fixed at 1400rpm,changing the layout of the cooling modules to improve the thermal performance of the engine compartment can’t reach the cooling requirements at the harshest conditions of the heavy-duty truck engine compartment thermal environment.Changing the layout of the cooling modules to improve the thermal performance of the engine compartment is limited.To make the temperature of the radiator outlet pipe less than the maximum allowable temperature,the cooling fan speed needs to be increased to meet the requirements.So this research simply selects a few points of the fan speed to try to increase the fan speed of the optimal solution to improve the thermal environment of the engine compartment.By the numerical simulation,we get that when the fan speed is 1.22 times higher than the original model,the temperature of the radiator outlet pipe is 79.00 ℃.Within the normal temperature range,the cooling needs of the engine compartment can be met.

    4.Conclusion

    For the cooling arrangement of the heavy-duty truck prototype engine compartment,three improve-ment programs were proposed using the same grid scheme and boundary conditions.The results of each case were analyzed and compared.The effect of the fifth solution in the Case 3 is the best.It can effectively optimize the flow structure of the engine compartment and improve the cooling performance of the radiator.The temperature of the radiator outlet pipe reduces from the 109.02 ℃ of the original model to 107.32℃.The effect of only changing the layout of the cooling modules to improve the thermal performance of the engine compartment is limited.Although changing the layout of the cooling modules can’t meet the needs of the thermal performance of the engine compartment,changing the layout of the cooling modules and then increasing the fan speed can minimize the energy consumption and improve the economical efficiency of the heavy-duty trucks.

    [1] Dumas L.CFD-based Optimization for Automotive Aerodynamics[M].Berlin:Springer,2008:191-215.

    [2] YU Zhi-sheng.Automotive theories(The third edition)[M].Beijing:Mechanical Industry Press,2000:10-11.

    [3] FU Li-min.Automotive aerodynamics[M].Beijing:Mechanical Industry Press,2006.

    [4] Fortunate F,Damiano F,Di Matteo L L,et al.Underhood Cooling Simulation for Development of New Vehicles[C]//SAE Paper,2005-01-2046.

    [5] WANG Fu-jun.Computational fluid dynamics analysis-CFDSoftware Principles and Applications[M].Beijing:Tsinghua University Press,2004.

    [6] LIU Chuan-chao.The flow calculation and cooling of the truck outflow and engine compartment[D].Xi’an:Northwestern Polytechnical University,2005.

    [7] Zhigang Yang,Bozeman J,F(xiàn)red Z,et al.CFRM Concept for Vehicle Thermal System[C]//SAE Paper,2002-01-1207.

    [8] WANG Sheng-xi.Analyze two-dimensional unstructured grid generation method and its application[J].Computer engineering and application,2010.

    [9] FU Li-min,WU Yun-zhu,HE Bao-qin.Simulation Research on Automotive Aerodynamic Characteristics during the Overtaking Process[J].Chinese Journal of Mechanical Engineering,2000.

    [10]FU De-xun.Computational Fluid Dynamics[M].Beijing:Higher Education Press,2002.

    [11] LIU Xi-xia,The heat transfer numerical simulation research for Main battle tank engine compartment[D].Beijing:Armored Force Engineering Institute,2004.

    [12] HE Wei,MA Jing.The comparison for multiple reference frame method and the sliding mesh method in numerical simulation of the auto front intake[J].Computer aided engineering,2007,16(3):96-100.

    [13] Francois N.Using CFD for heat exchanger development and thermal management,Valeo Engine Cooling[C]//European Automotive CFDConference EACC,F(xiàn)rankfurt,Germany,June 29-302005.

    猜你喜歡
    靖宇吉林大學(xué)機(jī)艙
    吉林大學(xué)學(xué)報(地球科學(xué)版)
    Mottness,phase string,and high-Tc superconductivity
    船舶機(jī)艙火災(zāi)的原因分析及預(yù)防
    水上消防(2022年2期)2022-07-22 08:43:56
    Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    船舶機(jī)艙通風(fēng)相關(guān)要求及常見關(guān)閉裝置分析
    水上消防(2021年3期)2021-08-21 03:12:20
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    船舶機(jī)艙常見消防隱患及防控
    水上消防(2020年5期)2020-12-14 07:16:20
    《吉林大學(xué)學(xué)報( 理學(xué)版) 》征稿簡則
    謝謝你
    国内精品一区二区在线观看| 亚洲国产高清在线一区二区三| 国产精品久久久久久av不卡| 无遮挡黄片免费观看| 午夜激情福利司机影院| 美女被艹到高潮喷水动态| 国产成人影院久久av| 一级毛片久久久久久久久女| 日韩精品中文字幕看吧| 一级毛片aaaaaa免费看小| 成人毛片a级毛片在线播放| 丰满的人妻完整版| 久久精品国产亚洲av香蕉五月| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜爱| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 一级毛片我不卡| 国产黄色视频一区二区在线观看 | 午夜免费激情av| 黄色一级大片看看| 午夜精品国产一区二区电影 | 国产三级中文精品| 日本爱情动作片www.在线观看 | 丰满的人妻完整版| 精华霜和精华液先用哪个| 国产午夜福利久久久久久| 12—13女人毛片做爰片一| 国产高清视频在线播放一区| 国产高潮美女av| av在线蜜桃| av福利片在线观看| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 久久韩国三级中文字幕| 男女之事视频高清在线观看| 一个人免费在线观看电影| 日韩欧美免费精品| 亚洲国产精品成人综合色| 亚洲五月天丁香| 亚洲高清免费不卡视频| 一个人观看的视频www高清免费观看| 久久6这里有精品| 日韩欧美免费精品| 成人无遮挡网站| 日韩成人伦理影院| 在线播放国产精品三级| 最近最新中文字幕大全电影3| 精品国内亚洲2022精品成人| 精品久久久久久久人妻蜜臀av| 91狼人影院| 国产高清不卡午夜福利| 亚洲成人久久性| 欧美不卡视频在线免费观看| 高清毛片免费看| 中文字幕久久专区| 午夜视频国产福利| 亚洲无线观看免费| 天天躁夜夜躁狠狠久久av| 1024手机看黄色片| 白带黄色成豆腐渣| 久久6这里有精品| 婷婷精品国产亚洲av| 最近视频中文字幕2019在线8| 亚洲人成网站在线观看播放| 国产真实伦视频高清在线观看| av在线播放精品| 亚洲人成网站在线观看播放| 黄色视频,在线免费观看| 亚洲最大成人中文| 国产成人a∨麻豆精品| 中文亚洲av片在线观看爽| 日本欧美国产在线视频| 少妇高潮的动态图| 亚洲欧美清纯卡通| 日本成人三级电影网站| 久久九九热精品免费| 久久久国产成人免费| 精品熟女少妇av免费看| 可以在线观看的亚洲视频| 又粗又爽又猛毛片免费看| aaaaa片日本免费| 精华霜和精华液先用哪个| 99久久成人亚洲精品观看| 精品国产三级普通话版| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄 | 桃色一区二区三区在线观看| 人人妻,人人澡人人爽秒播| 成人二区视频| 国产一级毛片七仙女欲春2| 一级毛片我不卡| 亚洲色图av天堂| 国内精品宾馆在线| 99国产极品粉嫩在线观看| 丝袜喷水一区| 白带黄色成豆腐渣| 日韩精品青青久久久久久| 人人妻,人人澡人人爽秒播| 久久久久久久久久久丰满| 精品免费久久久久久久清纯| 国内精品一区二区在线观看| 久久久色成人| 久久人人爽人人片av| 日本撒尿小便嘘嘘汇集6| 国产精品av视频在线免费观看| 精品日产1卡2卡| 婷婷色综合大香蕉| 又爽又黄无遮挡网站| 国产精品一及| 九九爱精品视频在线观看| 色吧在线观看| 99热这里只有是精品50| 欧美一区二区国产精品久久精品| 18禁黄网站禁片免费观看直播| 亚洲av.av天堂| 亚洲欧美成人综合另类久久久 | 日韩国内少妇激情av| 免费观看的影片在线观看| 亚洲精品色激情综合| 少妇被粗大猛烈的视频| 又爽又黄无遮挡网站| 亚洲国产欧洲综合997久久,| 在线国产一区二区在线| 国内精品宾馆在线| 热99在线观看视频| 国产免费男女视频| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av香蕉五月| 国产亚洲精品av在线| 熟女人妻精品中文字幕| 日韩三级伦理在线观看| 国产午夜精品论理片| 可以在线观看的亚洲视频| 一进一出抽搐动态| 深夜a级毛片| 99热这里只有是精品50| 久久天躁狠狠躁夜夜2o2o| www日本黄色视频网| av在线亚洲专区| 午夜激情欧美在线| 亚洲国产欧洲综合997久久,| 日本成人三级电影网站| 亚洲图色成人| 一级毛片久久久久久久久女| 22中文网久久字幕| 精品一区二区三区av网在线观看| 久久久精品欧美日韩精品| 国产欧美日韩精品亚洲av| 黄色视频,在线免费观看| 亚洲最大成人手机在线| 国产高清三级在线| 国产高清不卡午夜福利| 精品一区二区三区人妻视频| 久久精品久久久久久噜噜老黄 | 综合色av麻豆| 亚洲欧美成人精品一区二区| 日韩欧美精品免费久久| 日日撸夜夜添| 亚洲最大成人中文| 亚洲av不卡在线观看| 国产 一区精品| 国产精品久久久久久亚洲av鲁大| 成年女人永久免费观看视频| 国产精品久久视频播放| 99久久无色码亚洲精品果冻| 好男人在线观看高清免费视频| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 精品一区二区三区视频在线| 青春草视频在线免费观看| 嫩草影视91久久| 国产女主播在线喷水免费视频网站 | 亚洲精品国产成人久久av| 久久天躁狠狠躁夜夜2o2o| 热99re8久久精品国产| 99热精品在线国产| 久久久a久久爽久久v久久| 啦啦啦啦在线视频资源| 亚洲av成人精品一区久久| 在线看三级毛片| 国产色爽女视频免费观看| 免费av不卡在线播放| 国产不卡一卡二| 国产精品亚洲一级av第二区| 亚洲国产精品sss在线观看| 免费av观看视频| 啦啦啦啦在线视频资源| av在线天堂中文字幕| 亚洲精品乱码久久久v下载方式| 搡老妇女老女人老熟妇| 此物有八面人人有两片| 国产精品不卡视频一区二区| 久久久久久九九精品二区国产| 亚洲综合色惰| 午夜老司机福利剧场| 久久久久性生活片| 久久99热6这里只有精品| 女的被弄到高潮叫床怎么办| 99热这里只有精品一区| 午夜久久久久精精品| 久久久久免费精品人妻一区二区| 久久久a久久爽久久v久久| aaaaa片日本免费| 免费人成视频x8x8入口观看| 精品午夜福利在线看| 一区二区三区高清视频在线| 国产在线男女| 国产v大片淫在线免费观看| 天美传媒精品一区二区| www.色视频.com| 在线观看av片永久免费下载| 不卡视频在线观看欧美| 日本在线视频免费播放| 看免费成人av毛片| 最好的美女福利视频网| 国产一区二区三区av在线 | 精品一区二区三区视频在线观看免费| 国产精品亚洲一级av第二区| 亚洲一级一片aⅴ在线观看| 亚洲成人久久爱视频| 中国美白少妇内射xxxbb| 人人妻人人澡欧美一区二区| 两个人的视频大全免费| 免费一级毛片在线播放高清视频| 欧美丝袜亚洲另类| 亚洲av第一区精品v没综合| avwww免费| 人妻夜夜爽99麻豆av| 国产精品99久久久久久久久| 国产高清三级在线| 成人鲁丝片一二三区免费| 男插女下体视频免费在线播放| 亚洲无线在线观看| 久久精品久久久久久噜噜老黄 | 国国产精品蜜臀av免费| 精品久久久久久久久亚洲| 精品熟女少妇av免费看| 国产精品亚洲美女久久久| 蜜桃久久精品国产亚洲av| 1024手机看黄色片| 两个人视频免费观看高清| 99视频精品全部免费 在线| 成人性生交大片免费视频hd| 校园人妻丝袜中文字幕| 亚洲av成人av| 91av网一区二区| 12—13女人毛片做爰片一| 两性午夜刺激爽爽歪歪视频在线观看| 日本一本二区三区精品| 国产亚洲欧美98| 精品欧美国产一区二区三| 天美传媒精品一区二区| 变态另类丝袜制服| 搡女人真爽免费视频火全软件 | 国产 一区精品| 日韩欧美 国产精品| 欧美激情久久久久久爽电影| 免费人成在线观看视频色| 国产久久久一区二区三区| 美女 人体艺术 gogo| 嫩草影院入口| 俄罗斯特黄特色一大片| 精品午夜福利在线看| avwww免费| 日产精品乱码卡一卡2卡三| 国产午夜福利久久久久久| 黄色一级大片看看| 看片在线看免费视频| 国产 一区 欧美 日韩| 欧美成人精品欧美一级黄| 乱系列少妇在线播放| 欧美性感艳星| 国产精品,欧美在线| 色在线成人网| 国产不卡一卡二| 国产成人精品久久久久久| 亚洲色图av天堂| 国产精品不卡视频一区二区| 青春草视频在线免费观看| 尤物成人国产欧美一区二区三区| 麻豆精品久久久久久蜜桃| 99久国产av精品国产电影| 最近视频中文字幕2019在线8| 天堂√8在线中文| 久久99热这里只有精品18| 2021天堂中文幕一二区在线观| 成人毛片a级毛片在线播放| 成人亚洲欧美一区二区av| 欧美+日韩+精品| 99热精品在线国产| 国产成人a区在线观看| 人妻久久中文字幕网| 少妇熟女欧美另类| 国产亚洲av嫩草精品影院| 久久天躁狠狠躁夜夜2o2o| 69人妻影院| 综合色丁香网| 一级毛片电影观看 | 天堂动漫精品| 日韩欧美三级三区| 国产私拍福利视频在线观看| 一a级毛片在线观看| 亚洲美女黄片视频| 久久欧美精品欧美久久欧美| 午夜福利高清视频| 身体一侧抽搐| 国内精品美女久久久久久| 一个人看的www免费观看视频| 亚洲最大成人中文| 精品少妇黑人巨大在线播放 | 精品人妻视频免费看| 男女啪啪激烈高潮av片| 在线观看av片永久免费下载| 日本免费一区二区三区高清不卡| 免费在线观看影片大全网站| 在线天堂最新版资源| 哪里可以看免费的av片| 日韩亚洲欧美综合| 国产乱人偷精品视频| 小蜜桃在线观看免费完整版高清| 免费av不卡在线播放| 亚洲乱码一区二区免费版| 床上黄色一级片| 久久国内精品自在自线图片| 亚洲最大成人手机在线| 久99久视频精品免费| 午夜激情欧美在线| 免费看av在线观看网站| 中文字幕免费在线视频6| 亚洲第一电影网av| 亚洲第一电影网av| 国产91av在线免费观看| 精品欧美国产一区二区三| 毛片女人毛片| 乱系列少妇在线播放| 一级毛片久久久久久久久女| 露出奶头的视频| 日本五十路高清| 舔av片在线| 亚洲欧美精品综合久久99| 久久久欧美国产精品| 国产女主播在线喷水免费视频网站 | 看黄色毛片网站| 蜜臀久久99精品久久宅男| 亚洲美女黄片视频| avwww免费| 国产精品免费一区二区三区在线| 久久人人爽人人爽人人片va| 国产精品日韩av在线免费观看| 欧美性感艳星| 一个人观看的视频www高清免费观看| 午夜福利在线观看吧| 99国产精品一区二区蜜桃av| 一个人免费在线观看电影| 亚洲最大成人av| 在线观看美女被高潮喷水网站| 岛国在线免费视频观看| а√天堂www在线а√下载| 亚洲aⅴ乱码一区二区在线播放| 一个人观看的视频www高清免费观看| 成人无遮挡网站| 久久久国产成人免费| 中文字幕精品亚洲无线码一区| 97超级碰碰碰精品色视频在线观看| 美女高潮的动态| 亚洲精品乱码久久久v下载方式| 十八禁国产超污无遮挡网站| 亚洲三级黄色毛片| 中文资源天堂在线| 看十八女毛片水多多多| 99国产极品粉嫩在线观看| 亚洲乱码一区二区免费版| 男女下面进入的视频免费午夜| 亚洲av免费在线观看| 狂野欧美激情性xxxx在线观看| 最近中文字幕高清免费大全6| 亚洲精品久久国产高清桃花| 成人性生交大片免费视频hd| 又爽又黄无遮挡网站| 精品人妻一区二区三区麻豆 | 尾随美女入室| 精品福利观看| 午夜福利在线观看免费完整高清在 | 亚洲欧美中文字幕日韩二区| 国产69精品久久久久777片| 又爽又黄a免费视频| 联通29元200g的流量卡| 国产免费男女视频| 国产老妇女一区| 身体一侧抽搐| 亚洲成人中文字幕在线播放| 丰满人妻一区二区三区视频av| 国产精品爽爽va在线观看网站| 99久久无色码亚洲精品果冻| 亚洲欧美中文字幕日韩二区| 99久国产av精品| 日韩大尺度精品在线看网址| 国产探花极品一区二区| 午夜福利在线观看免费完整高清在 | 久久精品国产亚洲网站| 亚洲欧美精品综合久久99| 国产色婷婷99| 久久久久国产网址| 高清午夜精品一区二区三区 | 国产黄片美女视频| ponron亚洲| 婷婷六月久久综合丁香| 综合色av麻豆| 高清毛片免费观看视频网站| 国产视频内射| 亚洲在线自拍视频| 黄色一级大片看看| 大型黄色视频在线免费观看| 草草在线视频免费看| 男女边吃奶边做爰视频| 男女视频在线观看网站免费| 一级黄片播放器| 丝袜喷水一区| 国内精品一区二区在线观看| 天天躁夜夜躁狠狠久久av| 丰满的人妻完整版| 亚洲av一区综合| 在线免费十八禁| 国产在视频线在精品| 搞女人的毛片| 亚洲激情五月婷婷啪啪| 99热网站在线观看| 一个人免费在线观看电影| 亚洲欧美中文字幕日韩二区| 国产精品永久免费网站| 国产伦在线观看视频一区| 国产极品精品免费视频能看的| 无遮挡黄片免费观看| 色哟哟·www| 99久久精品国产国产毛片| 国产v大片淫在线免费观看| 午夜视频国产福利| 日本-黄色视频高清免费观看| 欧美bdsm另类| 18禁在线播放成人免费| 久99久视频精品免费| 国产aⅴ精品一区二区三区波| av在线亚洲专区| 91久久精品电影网| 久久久久久久久久黄片| 亚洲五月天丁香| 欧美成人免费av一区二区三区| 久久亚洲国产成人精品v| 91久久精品电影网| 精品乱码久久久久久99久播| 69人妻影院| 国产精品一二三区在线看| 欧美潮喷喷水| 日本-黄色视频高清免费观看| 久久精品国产亚洲av香蕉五月| 狠狠狠狠99中文字幕| av福利片在线观看| 女同久久另类99精品国产91| 男女下面进入的视频免费午夜| 天美传媒精品一区二区| 2021天堂中文幕一二区在线观| 男女边吃奶边做爰视频| 欧美色视频一区免费| 欧美国产日韩亚洲一区| 国产精品一区二区三区四区免费观看 | 噜噜噜噜噜久久久久久91| 久久久a久久爽久久v久久| 亚洲精品在线观看二区| 免费搜索国产男女视频| 欧美一级a爱片免费观看看| 亚洲乱码一区二区免费版| 嫩草影院入口| 国产在线男女| 搡女人真爽免费视频火全软件 | 老司机福利观看| 黄色一级大片看看| 日本 av在线| 一区二区三区免费毛片| 又爽又黄a免费视频| 99视频精品全部免费 在线| 久久久久久久久大av| 一区二区三区免费毛片| 亚洲第一电影网av| 一级黄色大片毛片| 久久久久久伊人网av| 一本久久中文字幕| 国产乱人偷精品视频| 欧美最新免费一区二区三区| 成人国产麻豆网| 18禁在线无遮挡免费观看视频 | 久久欧美精品欧美久久欧美| 亚洲无线在线观看| 久久久久性生活片| 国产午夜精品论理片| 97人妻精品一区二区三区麻豆| 国产高清有码在线观看视频| 校园春色视频在线观看| 国产精品1区2区在线观看.| 亚洲综合色惰| 一本一本综合久久| 观看免费一级毛片| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 一本一本综合久久| 99久久精品一区二区三区| 久久久午夜欧美精品| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 国产白丝娇喘喷水9色精品| 99久久精品热视频| 国产亚洲av嫩草精品影院| 可以在线观看毛片的网站| 日韩av不卡免费在线播放| or卡值多少钱| 亚洲av不卡在线观看| 国产老妇女一区| 九色成人免费人妻av| 秋霞在线观看毛片| 久久鲁丝午夜福利片| 丰满的人妻完整版| 国产片特级美女逼逼视频| 在线国产一区二区在线| 亚洲精品日韩av片在线观看| av卡一久久| 成人综合一区亚洲| 国产三级在线视频| 日日摸夜夜添夜夜爱| 十八禁国产超污无遮挡网站| 日本免费一区二区三区高清不卡| 美女xxoo啪啪120秒动态图| 中出人妻视频一区二区| 高清午夜精品一区二区三区 | 久久国产乱子免费精品| videossex国产| 美女被艹到高潮喷水动态| 亚洲精品日韩av片在线观看| 插阴视频在线观看视频| 国产精品野战在线观看| 最好的美女福利视频网| 久久午夜福利片| 欧美最黄视频在线播放免费| 日韩欧美精品v在线| 久久韩国三级中文字幕| 亚洲在线观看片| 日韩欧美精品v在线| 最近手机中文字幕大全| 在线国产一区二区在线| 亚洲欧美成人综合另类久久久 | 青春草视频在线免费观看| 亚洲美女黄片视频| 午夜免费激情av| 欧美日韩国产亚洲二区| 色综合亚洲欧美另类图片| 热99re8久久精品国产| 三级经典国产精品| 丰满乱子伦码专区| 久久久久久久久久久丰满| 嫩草影视91久久| 美女内射精品一级片tv| 中文字幕av在线有码专区| 黄片wwwwww| 国产成人aa在线观看| 国产黄片美女视频| 亚洲最大成人av| 国产综合懂色| 亚洲欧美日韩无卡精品| 一本一本综合久久| 黄色一级大片看看| 一级毛片电影观看 | av黄色大香蕉| 亚洲精品一区av在线观看| 国模一区二区三区四区视频| 亚洲色图av天堂| 春色校园在线视频观看| 亚洲中文字幕一区二区三区有码在线看| 麻豆成人午夜福利视频| av中文乱码字幕在线| 欧美中文日本在线观看视频| 精品久久久久久久久亚洲| 国产成人aa在线观看| .国产精品久久| 免费看美女性在线毛片视频| 成人综合一区亚洲| 久久精品国产亚洲av香蕉五月| aaaaa片日本免费| 午夜福利在线观看免费完整高清在 | 亚洲国产日韩欧美精品在线观看| 丰满人妻一区二区三区视频av| 成年女人毛片免费观看观看9| 久久热精品热| 免费观看的影片在线观看| 99久久九九国产精品国产免费| 噜噜噜噜噜久久久久久91| 成人美女网站在线观看视频| 成人国产麻豆网| 性欧美人与动物交配| 欧美一区二区精品小视频在线| 97热精品久久久久久| 人妻制服诱惑在线中文字幕| 国产一区二区三区在线臀色熟女| 男女下面进入的视频免费午夜| 插阴视频在线观看视频| 日韩精品中文字幕看吧| 久久综合国产亚洲精品| 赤兔流量卡办理| 免费不卡的大黄色大毛片视频在线观看 | 在线观看66精品国产| 最近中文字幕高清免费大全6| 国产在线男女| 国产黄a三级三级三级人| 国产高清三级在线| 亚洲av.av天堂| 别揉我奶头 嗯啊视频| 欧美bdsm另类|