• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Structural and Infrared Spectroscopic Study on Solvation of Acetylene by Protonated Water Molecules?

    2016-04-08 06:35:36XingtoKongXinLeiQinqinYunBingbingZhngZhiZhoDongYngShukngJingDongxuDiLingJingStteKeyLbortoryofMoleculrRectionDynmicsCollbortiveInnovtionCenterofChemistryforEnergyndMterilsDlinInstituteofChemiclPhysicsChineseAcde
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Xing-to Kong,Xin Lei,Qin-qin Yun,Bing-bing Zhng,b,Zhi Zho,c,Dong Yng,Shu-kng Jing,Dong-xu Di,Ling Jing?.Stte Key Lbortory of Moleculr Rection Dynmics,Collbortive Innovtion Center of Chemistry for Energy nd Mterils,Dlin Institute of Chemicl Physics,Chinese Acdemy of Sciences,Dlin 116023,Chinb.Stte Key Lbortory of Fine Chemicls,Dlin University of Technology,Dlin 116024,Chinc.Key Lbortory of Mterils Modi fi ction by Lser,Ion nd Electron Bems,Dlin University of Technology,Ministry of Eduction,Dlin 116024,Chin

    ?

    ARTICLE Structural and Infrared Spectroscopic Study on Solvation of Acetylene by Protonated Water Molecules?

    Xiang-tao Konga,Xin Leia,Qin-qin Yuana,Bing-bing Zhanga,b,Zhi Zhaoa,c,Dong Yanga,
    Shu-kang Jianga,Dong-xu Daia,Ling Jianga?
    a.State Key Laboratory of Molecular Reaction Dynamics,Collaborative Innovation Center of Chemistry for Energy and Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China
    b.State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116024,China
    c.Key Laboratory of Materials Modi fi cation by Laser,Ion and Electron Beams,Dalian University of Technology,Ministry of Education,Dalian 116024,China

    (Dated:Received on November 19,2015;Accepted on December 11,2015)

    The e ff ect of solvation on the conformation of acetylene has been studied by adding one water molecule at a time.Quantum chemical calculations of the H+(C2H2)(H2O)n(n=1?5) clusters indicate that the H2O molecules prefer to form the OH··π interaction rather than the CH··O interaction.This solvation motif is di ff erent from that of neutral(C2H2)(H2O)n(n=1?4)clusters,in which the H2O molecules prefer to form the CH··O and OH··C H-bonds.For the H+(C2H2)(H2O)ncationic clusters,the fi rst solvation shell consists of one ring structure with two OH··π H-bonds and three water molecules,which is completed at n=4.Simulated infrared spectra reveal that vibrational frequencies of OH··π H-bonded O?H stretching a ff ord a sensitive probe for exploring the solvation of acetylene by protonated water molecules.Infrared spectra of the H+(C2H2)(H2O)n(n=1?5)clusters could be readily measured by the infrared photodissociation technique and thus provide useful information for the understanding of solvation processes.

    Key words:Acetylene,Water,Solvation,Infrared photodissociation spectroscopy,Quantum chemical calculation

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: ljiang@dicp.ac.cn.

    I.INTRODUCTION

    Hydrogen-bonded interactions are of considerable interest because of their signi fi cant importance in physical,chemical,atmospheric,biological sciences,and so on[1?7].The classical hydrogen bonds(H-bonds)are usually de fi ned as A?H··B interactions,where A?H is a proton donating bond and B is a proton accepting center that has at least one lone electron pair. A and B are electronegative atoms,such as O,N, F,and Cl.Extensive e ff orts have also been made to study new types of H-bonds,which include nonconventional proton donors(i.e.,C?H)and proton acceptors (i.e.,π-bonded functional groups),as well as dihydrogen bonds[8?13].

    Fully rotationally resolved spectra have demonstrated that water is positioned above the benzene plane,forming the OH··π H-bonded interactions[14]. Resonantion-dipinfraredspectroscopyofthe C6H6(H2O)n(n=1?7)clusters has indicated that there exist both classical OH··O and nonconventional OH··π H-bonded interactions[15].The NH··π H-bonded interactions have been detected in the ammonia-benzene dimer by high-resolution optical and microwave spectra [16].High-level ab initio calculations have exhibited that the OH··π H-bond in C6H6-H2O is stronger than the NH··π H-bond in C6H6-NH3,and their directionality is mainly controlled by the electrostatic interaction [17].The CH··π H-bonded energy in C6H6-CH4is determined to be 4.31?4.73 kJ/mol by mass analyzed threshold ionization spectroscopy,which is consistent with the theoretical value calculated by the CCSD(T) method[18].In the interactions of ethylene with the fi rst-row hydrides(CH4,NH3,H2O,and HF),π H-bonds become stronger from CH4to HF,which is highly correlated to inductive energy[19].

    The OH··π H-bond could also be formed in the interactions of water with the simplest alkyne,acetylene. Previous studies have revealed that(C2H2)(H2O)has two con fi gurations,in which either H2O acts as proton acceptor to form CH··O H-bond or C2H2serves as proton acceptor to form OH··π H-bond.The CH··O H-bond is stronger than the OH··π H-bond,and the barrier for the isomerization from the latter to the former is very low(0.75 kJ/mol),suggesting that the interconversion readily occurs[11,20].Theoretical inves-tigations of neutral(C2H2)(H2O)n(n=1?4)clusters have indicated that the interactions between acetylene and water are mainly composed by CH··O and OH··C H-bonds[21,22].When acetylene interacts with protonated water molecule(H3O+),only one stable con fi guration with OH··π H-bond is formed,which binding energy was predicted to be 81.13 kJ/mol at MP2/6-311++G(3df,3pd)level[5].So far,much less work has been done for the systematic study on the solvation of C2H2by protonated water clusters,leaving that the issues how the excess proton a ff ects solvation motif of C2H2as compared to the neutral water and how the OH··π H-bond varies with sequential hydration remain open.

    Herein,we present a study on the solvation of C2H2by a series of protonated water clusters.Electronic structure calculations of the H+(C2H2)(CO2)n(n=1?5) clusters reveal that the H2O molecules prefer to form the OH··π interaction rather than the CH··O interaction.The fi rst solvation shell consists of one ring structure with two OH··π H-bonds and three water molecules,which is completed at n=4.Simulated IR spectra exhibit that vibrational frequencies of OH··π H-bonded O?H stretching a ff ord a sensitive probe for exploring the solvation of acetylene by adding one water molecule at a time.

    II.THEORETICAL METHODS

    Quantum chemical calculations are carried out using Gaussian 09 program suite[23].Initial con fi gurations are built on the basis of the relevant structures reported in Refs.[5,21,22].Previous investigations have demonstrated that the structures and energetics of H-bonded complexes could be properly predicted by the M06-2X hybrid functional[24?27],which functional is employed for the present calculations.The aug-ccpVDZ basis set is used for C,H,and O atoms.Tight convergence of the optimization and the self-consistent fi eld procedures is imposed,and an ultra fi ne grid is utilized.Relative energies include zero-point vibrational energies.Harmonic vibrational frequencies are calculated at the same level.All reported structures are true minima without imaginary vibrational frequencies. Simulated IR spectra are derived from M06-2X/aug-ccpVDZ harmonic vibrational frequencies and intensities. Harmonic vibrational frequencies are scaled by a factor of 0.933,which is determined by the comparison of simulated vibrational frequencies of the bridged proton stretch in the nonclassical H+(C2H2)ion with experimental value[28].IR stick spectra are convoluted by a Gaussian line shape function with a width of 10 cm?1. The quantum theory of“atoms in molecules”calculations are performed by the Multiwfn program at the M06-2X/aug-cc-pVDZ level[29].

    III.RESULTS AND DISCUSSION

    A.Solvation motifs and IR spectra

    Several representative low-lying structures of the H+(C2H2)(H2O)n(n=1?5)clusters are presented in Fig.1.The structures are labeled according to the number of H2O molecules and relative energies.For each cluster up to n=5,simulated IR spectra of the representative low-lying isomers are shown in Figs.2?5. Scaled harmonic vibrational frequencies and intensities of free O?H stretching,OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and CC2H2in the lowest-lying isomers of (n=1?5)are listed in Table I.

    1.n=1

    As illustrated in Fig.1,one OH group of the H3O+moiety in the isomer 1A forms one OH··π H-bond with π electrons of C2H2,leaving other two OH groups free.

    Four kinds of absorption peaks are mainly observed in 1A(Fig.2).The frequencies at 3536 and 3449 cm?1 are assigned to the free O?H stretching vibration of H3O+(labeled free νOH)(Table I).The frequency at 3134 cm?1corresponds to the C?H stretching vibrations of C2H2(labeled νCH).Sharp peak at 2036 cm?1 belongs to the OH··π H-bonded O?H stretching(labeled νOH···π).The C≡C stretching vibration(labeled νC≡C)is predicted at 1920 cm?1.

    2.n=2

    On the basis of 1A,the second H2O either binds to H3O+(isomer 2A)or one CH end of acetylene (isomer 2B).The isomer 2B consists of one OH··π H-bond and one CH··O H-bond,which lies 64.03 kJ/mol above 2A.

    In the simulated IR spectrum of 2A(Fig.2),the free νOHmodes appear at 3650 and 3556 cm?1.The frequency at 3158 cm?1corresponds to the νCHmotion. The peak at 2813 cm?1is attributed to the OH··π H-bonded O?H stretching,which is remarkably blueshifted by 777 cm?1with respect to that in 1A.A new type of absorption peak is observed around 1963 cm?1 in 2A as compared to 1A,which is assigned to the OH··O H-bonded O?H stretching(labeled νOH···O). For 2B,the free νOH,νCH,and νOH···πmodes are calculated around 3560,3000,and 1800 cm?1,respectively.

    3.n=3

    FIG.1 Optimized structures of the H+(C2H2)(H2O)n(n=1?5)clusters(C:gray;H:light gray;O:red).Relative energies are given in parenthesis with unit of kJ/mol.

    TABLE I Scaled vibrational frequencies(in cm?1)and intensities(km/mol,in parenthesis)of free O?H stretching(free νOH),OH··O H-bonded O?H stretching(νOH···O),OH··π H-bonded O?H stretching(νOH···π),and C?H stretching of C2H2(νCH)for the lowest-lying isomers of H+(C2H2)(H2O)n(n=1?5).

    The lowest energy isomer(3A)could be regarded as the derivative of 2A,in which the third H2O occupies the remaining free OH site of H3O+(Fig.1).In the next energetically low-lying isomer 3B(+4.36 kJ/mol), one H-bonded ring is formed by two OH··π H-bonds and one OH··O H-bond.3C(+5.93 kJ/mol)is evolved from 2A,in which the third water is attached by one H-bonded interaction with the second water.In 3D (+6.93 kJ/mol),two terminal water molecules in the H7O3+chain form two OH···π H-bonds with C2H2,resulting in one H-bonded three-water ring.The isomers 3E(+46.33 kJ/mol)and 3F(+106.19 kJ/mol)could be viewed as the derivative of 2C,in which the third water binds to the OH group of H3O+and H2O,respectively.

    FIG.2 Simulated IR spectra of the optimized isomers of H+(C2H2)(H2O)1,2.Assignments of free O?H stretching, OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and C?H stretching of C2H2,are indicated in green,red,magenta,and blue,respectively.

    In the simulated IR spectra of 3A?3F(Fig.3),the free O?H stretching vibrations weakly appear around 3600 cm?1.The intensities of C?H stretching vibrations are very weak(around 3200 cm?1)in 3A?3D,but recover remarkably in 3E and 3F because of the formation of CH··O H-bonds.The νOH···πmotion presents at 3078,3423,3247,3524/3518,2655,and 1725 cm?1 in 3A?3F,respectively.The νOH···Opeaks are observed around 1800?2500 cm?1in 3A?3E and 3400 cm?1in 3F.

    4.n=4 and 5

    For the n=4 cluster,the isomer 4A could be viewed as the derivative of 3D,in which the fourth water binds to the free OH group of the H3O+moiety(Fig.1).4B is the analogy of 3C,which lies 2.94 kJ/mol higher in energy above 4A.In 4C(+5.58 kJ/mol),the fourth water is attached to the free OH group of the H5O2+moiety of 3B,of which the shared proton also forms one H··π interaction with acetylene with the bond distance of 2.97?A[30].Analogous to 4A,4D holds one additional CH··O H-bond between H2O and C2H2,which lies+5.83 kJ/mol above 4A.In the structure of 4E (+10.01 kJ/mol),one H-bonded ring is formed by two OH··π H-bonds and four H-bonds.In 4E,the distance between the shared proton and the center of C2H2is so long(4.41?A)that there is no H··π interaction.In 4F(+10.89 kJ/mol),one terminal of the H9O4+chain forms OH··π H-bond with C2H2,similar to 3C.In 4G(+11.62 kJ/mol),one ring containing four water molecules is generated and the H3O+moiety is incorporated into the formation of one OH··π H-bond.For the n=5 cluster,the solvated structures are similar to those of n=4,suggesting that the formation of two OH··π H-bonds with the ring containing three or four water molecules is favorable.

    FIG.3 Simulated IR spectra of the six optimized isomers of H+(C2H2)(H2O)3.Assignments of free O?H stretching, OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and C?H stretching of C2H2are indicated in green,red,magenta,and blue,respectively.

    In the simulated IR spectra of the n=4 cluster(Fig.4), the νOH···πmotion is calculated at 3539/3532,3355, 3584/3526,3556/3553,3546/3513,3350,and 3117 cm?1 in 4A?4G,respectively.The νOH···Omodes are sharply observed in all the isomers,the positions are distinctively di ff erent throughout the seven isomers.Interestingly,the characteristic vibrations of H5O2+Zundel ion present around 1600 and 1080 cm?1in 4C and 4E,respectively[31].

    As depicted in Fig.5,the νOH···πmotion is predicted to be 3583/3544,3564/3512,3562/3557,3401,3402, 3613/3516,and 3223 cm?1in 5A?5G,respectively. Several peaks of νOH···Omodes remarkably appear in all the isomers.However,the vibrations of H5O2+Zundel is absent from the n=5 cluster.

    B.General trend

    It can be seen from the aforementioned solvation motifs that the H2O molecules in the n=1?5 clusters prefer to form the OH··π interaction rather than the CH··O interaction.The fi rst solvation shell consists of one ring structure with two OH··π H-bonds and three water molecules,which is completed at n=4.Previous studies on the neutral(C2H2)(H2O)n(n=1?4)clusters revealed that the H2O molecules prefer to form the CH··O and OH··C H-bonds with C2H2,and C2H2is involved in the formation of a H-bonded ring starting at n=2.At n=4,the neutral(C2H2)(H2O)4cluster holds a water tetramer interacting with acetylene[21],which is di ff erent from the protonoated H+(C2H2)(H2O)4cluster that contains a water trimer interacting with acetylene.

    IR spectra ofthe lowest-lying isomers for the H+(C2H2)(H2O)n(n=1?5)clusters are compared in Fig.6.It can be seen that the intensities of free O?H stretching and C?H stretching are very weak,and their positions slightly change with the increase of cluster size.The OH··π H-bonded O?H stretching is predicted at 2036,2813,3078,3532/3539,and 3544/3583 cm?1for 1A?5A(Table II),respectively,exhibiting an obvious increase with the increase of cluster size.This implies that the OH··π interaction strength is weakened gradually as the number of the water molecule increases,consequently,resulting in a decrease trend of the red-shift(?νOH···π,Table II)from the antisymmetric stretching vibrational frequency(3756 cm?1)of the free water molecule[32].Furthermore,the?νOH···πvalues are very similar at n=4 or 5,suggesting that the solvation of acetylene by prontonated water approaches to be converged around n=4 or 5.The νOH···Omotions are also blue-shifted from 2A to 5A,but are split into several peaks and expanded in a broad region at larger clusters,indicating a less sensitive probe than the νOH···πmotion for exploring early stage solvation of acetylene by adding one water molecule at a time.

    TABLE II Electron density(ρ(rb)),Laplacian of electron density(■2ρ(rb)),and energy density(HBCP)at the OH··π H-bond critical points in the lowest-lying isomers(1A?? 5A).Scaled vibrational frequencies of OH··π H-bonded O?H stretching(νOH···π)and their red-shifts(?νOH···π)from the antisymmetric stretching vibrational frequency(3756 cm?1)of the free water molecule are also given.

    FIG.4 Simulated IR spectra of the seven optimized isomers of H+(C2H2)(H2O)4.Assignments of free O?H stretching, OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,C?H stretching of C2H2,and diagnostic vibration of H5O2+are indicated in green,red,magenta,blue, and orange,respectively.

    FIG.5 Simulated IR spectra of the seven optimized isomers of H+(C2H2)(H2O)5.Assignments of free O?H stretching, OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and C?H stretching of C2H2are indicated in green,red,magenta,and blue,respectively.

    Topological parameters of OH··π H-bonds at bond critical points are calculated to assess the e ff ect of protonated water molecules on the νOH···πfrequency shift. Electron density(ρ(rb)),Laplacian of electron density(■2ρ(rb)),and energy density(HBCP)of OH··π H-bond at bond critical points(BCPs)in the lowestlying isomers(1A?5A)are summarized in Table II. The ρ(rb)value for 1A?5A is calculated to be 0.0584, 0.0287,0.0362,0.0126/0.0125,and 0.0124/0.0118(Table II),respectively,indicating a monotonic decrease of OH··π H-bond strength.This supports the red-shifts of OH··π H-bonded O?H stretching vibrational frequencies from the free water molecule as a function of the number of water molecule(Fig.7).The negative HBCPvalues for 1A(?0.0134)and 2A(?0.0007)suggest the OH··π H-bonds could be regarded as partially covalent interactions.The HBCPvalues become positive in the 3A?5A clusters,indicating that the OH··π H-bonds could be mainly dominant by electrostatic interactions and thus get weaker as the cluster size increases[5].

    FIG.6 Simulated IR spectra of the lowest-lying isomers of H+(C2H2)(H2O)n(n=1?5).Assignments of free O-H stretching,OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and C?H stretching of C2H2are indicated in green,red,magenta,and blue,respectively.

    Infrared photodissociation(IRPD)spectroscopy of mass-selected complexes has emerged as a powerful tool for the structural characterization of the gas-phase species[33?36].Under readily achievable experimental conditions,absorption of single IR photon or multiple IR photons by a cluster can induce a measurable increase in the sequence,resulting in IRPD spectra that closely resemble linear absorption spectra.Compared with the conventional vibrational spectroscopy, IRPD has advantages of high selectivity,high sensitivity and being a background-free consequence technique.Considering that the free O?H stretching,H-bonded O?H stretching,and diagnostic vibration of H5O2+have been successfully resolved in the IRPD spectra of a series of mass-selected clusters radiated by optical parametric oscillator/optical parametric ampli fi er table-top laser system or infrared free electron laser source[31,37?39],the predicted IR spectra for the H+(C2H2)(H2O)n(n=1?5)clusters could be readily measured by the IRPD technique and thus a ff ord useful information for the understanding of early stage solvation of acetylene by adding one water molecule at a time.

    IV.CONCLUSION

    The solvation of acetylene by protonated water molecules has been studied via a cluster model.Quantum chemical calculations of the H+(C2H2)(H2O)n(n=1?5)clusters indicate that the H2O molecules prefer to form the OH··π interaction rather than the CH··O interaction.The fi rst solvation shell consists of one ring structure with two OH··π H-bonds and three water molecules,which is completed at n=4.Simulated IR spectra reveal that vibrational frequencies of OH··π H-bonded O?H stretching a ff ord a sensitive probe for exploring the solvation of acetylene by protonated water molecules.The combination of IRPD technique and theoretical modeling thus provide a vivid physical picture about how protonated water molecules solvate the acetylene.

    FIG.7 Red-shifts(?νOH···π)of OH··π H-bonded O?H stretching vibrational frequencies from the antisymmetric stretching vibrational frequency(3756 cm?1)of the free water molecule and electron density(ρ(rb))of the OH··π H-bond critical points as a function of the number of water molecule(n).

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21273232 and No.21327901)and the Key Research Program of the Chinese Academy of Science(No.KGZD-EW-T05). Ling Jiang acknowledges Hundred Talents Program of Chinese Academy of Sciences and Collaborative Innovation Center of Chemistry for Energy and Materials.

    [1]G.A.Je ff rey and W.Saenger,Hydrogen Bonding in Biological Structures,Berlin:Springer-Verlag(1991).

    [2]G.A.Je ff rey,An Introduction to Hydrogen Bonding, New York:Oxford University Press(1997).

    [3]G.R.Desiraju and T.Steiner,The Weak Hydrogen Bond in Structural Chemistry and Biology,New York:Oxford University Press Inc.(1999).

    [4]T.Steiner,Angew.Chem.Int.Ed.41,48(2002).

    [5]S.Janusz Grabowski,Chem.Rev.111,2597(2011).

    [6]N.Heine and K.R.Asmis,Int.Rev.Phys.Chem.34, 1(2015).

    [7]P.A.Hunt,C.R.Ashworth,and R.P.Matthews, Chem.Soc.Rev.44,1257(2015).

    [8]I.Alkorta,I.Rozas,and J.Elguero,Chem.Soc.Rev. 27,163(1998).

    [9]P.Hobza and Z.Havlas,Chem.Rev.100,4253(2000).

    [10]S.J.Grabowski,J.Phys.Chem.A 105,10739(2001). [11]L.Sobczyk,S.J.Grabowski,and T.M.Krygowski, Chem.Rev.105,3513(2005).

    [12]S.Tsuzuki and A.Fujii,Phys.Chem.Chem.Phys.10, 2584(2008).

    [13]B.G.de Oliveira,Phys.Chem.Chem.Phys.15,37 (2013).

    [14]S.Suzuki,P.G.Green,R.E.Bumgarner,S.Dasgupta, W.A.Goddard,and G.A.Blake,Science 257,942 (1992).

    [15]R.N.Pribble and T.S.Zwier,Science 265,75(1994).

    [16]D.A.Rodham,S.Suzuki,R.D.Suenram,F.J.Lovas, S.Dasgupta,W.A.Goddard,and G.A.Blake,Nature 362,735(1993).

    [17]S.Tsuzuki,K.Honda,T.Uchimaru,M.Mikami,and K.Tanabe,J.Am.Chem.Soc.122,11450(2000).

    [18]K.Shibasaki,A.Fujii,N.Mikami and S.Tsuzuki,J. Phys.Chem.A 110,4397(2006).

    [19]P.Tarakeshwar,H.S.Choi,and K.S.Kim,J.Am. Chem.Soc.123,3323(2001).

    [20]D.Tzeli,A.Mavridis,and S.S.Xantheas,J.Chem. Phys.112,6178(2000).

    [21]D.Tzeli,A.Mavridis,and S.S.Xantheas,Chem.Phys. Lett.340,538(2001).

    [22]D.Tzeli,A.Mavridis,and S.S.Xantheas,J.Phys. Chem.A 106,11327(2002).

    [23]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F. Ogliaro,M.J.Bearpark,J.Heyd,E.N.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand,K. Raghavachari,A.P.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,N.J.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Rev A.02, Wallingford CT:Gaussian,Inc.,(2009).

    [24]K.L.Copeland and G.S.Tschumper,J.Chem.Theory Comput.8,1646(2012).

    [25]S.R.Gadre,S.D.Yeole,and N.Sahu,Chem.Rev.114, 12132(2014).

    [26]X.B.Wang and S.R.Kass,J.Am.Chem.Soc.136, 17332(2014).

    [27]Z.Zhao,X.T.Kong,X.Lei,B.B.Zhang,J.J.Zhao, and L.Jiang,Chin.J.Chem.Phys.28,501(2015).

    [28]G.E.Douberly,A.M.Ricks,B.W.Ticknor,W.C. McKee,P.v.R.Schleyer,and M.A.Duncan,J.Phys. Chem.A 112,1897(2008).

    [29]T.Lu and F.Chen,J.Comput.Chem.33,580(2012).

    [

    30]S.J.Grabowski,J.Phys.Chem.A 111,13537(2007).

    [31]K.R.Asmis,N.L.Pivonka,G.Santambrogio,M. Brummer,C.Kaposta,D.M.Neumark,and L.Woste, Science 299,1375(2003).

    [32]L.Jiang,T.Wende,R.Bergmann,G.Meijer,and K. R.Asmis,J.Am.Chem.Soc.132,7398(2010).

    [33]E.J.Bieske and O.Dopfer,Chem.Rev.100,3963 (2000).

    [34]M.A.Duncan,Int.Rev.Phys.Chem.22,407(2003).

    [35]K.R.Asmis and D.M.Neumark,Acc.Chem.Res.45, 43(2012).

    [36]A.B.Wolk,C.M.Leavitt,E.Garand,and M.A.Johnson,Acc.Chem.Res.47,202(2014).

    [37]J.M.Headrick,E.G.Diken,R.S.Walters,N.I.Hammer,R.A.Christie,J.Cui,E.M.Myshakin,M.A. Duncan,M.A.Johnson,and K.D.Jordan,Science 308,1765(2005).

    [38]A.Fujii and K.Mizuse,Int.Rev.Phys.Chem.32,266 (2013).

    [39]J.A.Fournier,C.J.Johnson,C.T.Wolke,G.H.Weddle,A.B.Wolk,and M.A.Johnson,Science 344,1009 (2014).

    久久久亚洲精品成人影院| 久久99热这里只频精品6学生| 国产亚洲91精品色在线| 精品国产一区二区久久| www.色视频.com| 国产欧美日韩综合在线一区二区 | 国产黄频视频在线观看| 这个男人来自地球电影免费观看 | 成年女人在线观看亚洲视频| 国产美女午夜福利| 久久午夜综合久久蜜桃| 久久精品久久久久久噜噜老黄| 一级毛片黄色毛片免费观看视频| 亚洲不卡免费看| 美女xxoo啪啪120秒动态图| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影小说| 久久99精品国语久久久| 两个人免费观看高清视频 | 亚洲国产精品999| 欧美日韩亚洲高清精品| 精品卡一卡二卡四卡免费| 亚洲精品乱久久久久久| 国内少妇人妻偷人精品xxx网站| 亚洲欧美成人精品一区二区| 久久久久久人妻| 最后的刺客免费高清国语| 啦啦啦在线观看免费高清www| 爱豆传媒免费全集在线观看| 亚洲综合精品二区| 亚洲精品乱码久久久v下载方式| 免费看不卡的av| 国产免费一级a男人的天堂| av免费在线看不卡| 大片免费播放器 马上看| 国产精品久久久久久久久免| 日日啪夜夜爽| 日韩一本色道免费dvd| av免费在线看不卡| 国内精品宾馆在线| 久久久国产欧美日韩av| 在线天堂最新版资源| 日本午夜av视频| 亚洲av电影在线观看一区二区三区| 国产 精品1| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜| 日本色播在线视频| 国产av国产精品国产| 性色av一级| 亚洲精品一二三| 欧美精品人与动牲交sv欧美| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区国产| 人人妻人人看人人澡| 国产成人精品无人区| 国产一区亚洲一区在线观看| 黄色视频在线播放观看不卡| 国产又色又爽无遮挡免| 汤姆久久久久久久影院中文字幕| 色哟哟·www| 欧美日韩av久久| 大又大粗又爽又黄少妇毛片口| 成人亚洲欧美一区二区av| 99热国产这里只有精品6| 最近中文字幕高清免费大全6| 韩国高清视频一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲美女视频黄频| 99久久精品国产国产毛片| 新久久久久国产一级毛片| 免费av不卡在线播放| 99久久精品热视频| 美女国产视频在线观看| 春色校园在线视频观看| 欧美97在线视频| 两个人的视频大全免费| 青春草亚洲视频在线观看| 一级黄片播放器| 国产又色又爽无遮挡免| 国产亚洲5aaaaa淫片| 精品一区在线观看国产| 在线观看www视频免费| 久久av网站| 国产午夜精品久久久久久一区二区三区| 狂野欧美激情性xxxx在线观看| 狂野欧美白嫩少妇大欣赏| 在线观看免费视频网站a站| 久久99一区二区三区| av又黄又爽大尺度在线免费看| 男人和女人高潮做爰伦理| 夜夜爽夜夜爽视频| 午夜福利网站1000一区二区三区| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 国产av一区二区精品久久| 亚洲精品亚洲一区二区| 久久久久久久精品精品| 又爽又黄a免费视频| 在线天堂最新版资源| 97超视频在线观看视频| 国产美女午夜福利| 久久精品国产亚洲av涩爱| 成年美女黄网站色视频大全免费 | 国产91av在线免费观看| 女的被弄到高潮叫床怎么办| 成年av动漫网址| 一级毛片aaaaaa免费看小| 欧美+日韩+精品| 亚洲国产精品一区二区三区在线| 黄片无遮挡物在线观看| 亚洲精品色激情综合| 国产日韩一区二区三区精品不卡 | 97在线视频观看| 99久久综合免费| 国产精品99久久99久久久不卡 | 性色avwww在线观看| 一级av片app| 亚洲三级黄色毛片| 亚洲精品aⅴ在线观看| 多毛熟女@视频| 少妇人妻精品综合一区二区| 免费大片黄手机在线观看| 亚洲欧洲国产日韩| 曰老女人黄片| 久久毛片免费看一区二区三区| 国产极品天堂在线| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 99视频精品全部免费 在线| 一本—道久久a久久精品蜜桃钙片| 大香蕉97超碰在线| 熟女av电影| 午夜av观看不卡| 久久精品久久精品一区二区三区| 国产亚洲av片在线观看秒播厂| 亚洲欧美精品自产自拍| 亚洲国产精品一区三区| 伊人久久国产一区二区| 成人毛片a级毛片在线播放| 欧美国产精品一级二级三级 | 国产伦精品一区二区三区视频9| 一本久久精品| 亚洲国产精品999| 国产一区二区在线观看日韩| 久久久久精品性色| 十八禁网站网址无遮挡 | 国产欧美日韩精品一区二区| 观看av在线不卡| 丰满少妇做爰视频| 80岁老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| 在现免费观看毛片| 内射极品少妇av片p| av福利片在线| 日韩欧美精品免费久久| 在线观看免费视频网站a站| 自拍偷自拍亚洲精品老妇| 亚洲,一卡二卡三卡| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品aⅴ在线观看| 亚洲欧洲日产国产| 在线观看www视频免费| 亚洲中文av在线| 亚洲自偷自拍三级| 欧美成人午夜免费资源| 亚洲精品aⅴ在线观看| 18禁在线播放成人免费| 国产精品麻豆人妻色哟哟久久| 中文天堂在线官网| 偷拍熟女少妇极品色| 乱人伦中国视频| 99视频精品全部免费 在线| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 十八禁网站网址无遮挡 | 午夜视频国产福利| 一区二区av电影网| 狂野欧美激情性bbbbbb| 欧美最新免费一区二区三区| 97在线视频观看| 99热全是精品| 日本黄色片子视频| a 毛片基地| 欧美 亚洲 国产 日韩一| 校园人妻丝袜中文字幕| 成人18禁高潮啪啪吃奶动态图 | 日韩,欧美,国产一区二区三区| 国产伦在线观看视频一区| 国产在线视频一区二区| 国产精品一区二区三区四区免费观看| 在线精品无人区一区二区三| 亚洲av二区三区四区| 欧美精品人与动牲交sv欧美| 我的女老师完整版在线观看| 男男h啪啪无遮挡| 久热久热在线精品观看| 国产精品国产三级国产专区5o| 在线观看一区二区三区激情| 天堂中文最新版在线下载| 大码成人一级视频| 国产老妇伦熟女老妇高清| 国产亚洲av片在线观看秒播厂| 国产精品.久久久| 91午夜精品亚洲一区二区三区| 国产成人免费观看mmmm| 久久综合国产亚洲精品| 五月天丁香电影| 18禁动态无遮挡网站| 18+在线观看网站| 在线天堂最新版资源| 国产精品偷伦视频观看了| av又黄又爽大尺度在线免费看| 免费观看性生交大片5| a 毛片基地| 又爽又黄a免费视频| 亚洲,欧美,日韩| 欧美精品一区二区大全| 国内揄拍国产精品人妻在线| 免费久久久久久久精品成人欧美视频 | 精品少妇黑人巨大在线播放| 欧美最新免费一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲av.av天堂| 国产精品一区二区在线不卡| 婷婷色综合www| 国产无遮挡羞羞视频在线观看| 国产色爽女视频免费观看| 国产成人精品福利久久| 美女大奶头黄色视频| 亚洲综合色惰| 欧美日韩视频高清一区二区三区二| 亚洲av免费高清在线观看| 三上悠亚av全集在线观看 | 国产成人免费观看mmmm| 国产黄片视频在线免费观看| 乱系列少妇在线播放| 乱码一卡2卡4卡精品| 国产精品.久久久| 亚洲欧美精品专区久久| 亚洲欧洲日产国产| av卡一久久| 欧美成人精品欧美一级黄| 中国美白少妇内射xxxbb| 久久久亚洲精品成人影院| xxx大片免费视频| 热re99久久国产66热| 99热全是精品| 日韩一区二区视频免费看| 夜夜看夜夜爽夜夜摸| 最黄视频免费看| av一本久久久久| 午夜老司机福利剧场| 亚洲国产成人一精品久久久| 国产色婷婷99| 一级毛片黄色毛片免费观看视频| 婷婷色综合大香蕉| 久久午夜综合久久蜜桃| 中文乱码字字幕精品一区二区三区| 十八禁高潮呻吟视频 | √禁漫天堂资源中文www| 最近手机中文字幕大全| 女的被弄到高潮叫床怎么办| 十八禁网站网址无遮挡 | 卡戴珊不雅视频在线播放| 麻豆精品久久久久久蜜桃| av视频免费观看在线观看| 亚洲第一区二区三区不卡| 99热网站在线观看| 嫩草影院入口| 亚洲精品456在线播放app| 久久精品国产亚洲av涩爱| 久久免费观看电影| 夫妻午夜视频| 美女cb高潮喷水在线观看| 伊人久久国产一区二区| 国产黄片美女视频| 久久99精品国语久久久| 日韩强制内射视频| 精品人妻熟女av久视频| 国产一区有黄有色的免费视频| 成年人免费黄色播放视频 | 一级毛片 在线播放| 热re99久久国产66热| 久久精品国产a三级三级三级| 欧美+日韩+精品| 街头女战士在线观看网站| 久久影院123| 99热全是精品| 两个人免费观看高清视频 | 大片免费播放器 马上看| 成年av动漫网址| 亚洲中文av在线| 搡女人真爽免费视频火全软件| 日日爽夜夜爽网站| 欧美成人午夜免费资源| h日本视频在线播放| 精品国产乱码久久久久久小说| 亚洲情色 制服丝袜| 久久精品国产亚洲网站| 少妇被粗大的猛进出69影院 | 亚洲欧洲精品一区二区精品久久久 | 男人和女人高潮做爰伦理| 国产一区有黄有色的免费视频| 亚洲成色77777| 国产成人91sexporn| 91久久精品国产一区二区三区| 成人免费观看视频高清| 亚洲精品日韩av片在线观看| 人人妻人人添人人爽欧美一区卜| 女性被躁到高潮视频| 观看免费一级毛片| 精品酒店卫生间| 精华霜和精华液先用哪个| 91精品伊人久久大香线蕉| 久久久久久久国产电影| 少妇高潮的动态图| 99久久精品热视频| 精品卡一卡二卡四卡免费| 中文字幕制服av| 国产成人freesex在线| 成人国产麻豆网| 大片免费播放器 马上看| 自线自在国产av| 看免费成人av毛片| 国产精品一区二区性色av| 国产一区亚洲一区在线观看| 久久国内精品自在自线图片| 老女人水多毛片| 高清午夜精品一区二区三区| 久久久国产一区二区| 国产 精品1| 午夜视频国产福利| 日本与韩国留学比较| 久久综合国产亚洲精品| 在线亚洲精品国产二区图片欧美 | 在线播放无遮挡| av在线观看视频网站免费| 在线观看美女被高潮喷水网站| 色视频www国产| 三级经典国产精品| 成人国产麻豆网| 国产黄色视频一区二区在线观看| 亚洲国产精品999| 久久久亚洲精品成人影院| 亚洲精品国产色婷婷电影| 免费黄网站久久成人精品| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 中文字幕av电影在线播放| 十八禁高潮呻吟视频 | 亚洲,一卡二卡三卡| 日韩精品免费视频一区二区三区 | 成人二区视频| 国产高清不卡午夜福利| 色哟哟·www| 午夜精品国产一区二区电影| 肉色欧美久久久久久久蜜桃| 男女国产视频网站| 三上悠亚av全集在线观看 | 好男人视频免费观看在线| 久久国产精品男人的天堂亚洲 | 亚洲成人一二三区av| 亚洲av二区三区四区| 精品一区二区免费观看| 日韩成人av中文字幕在线观看| 纯流量卡能插随身wifi吗| 人妻制服诱惑在线中文字幕| 国产欧美日韩综合在线一区二区 | 乱系列少妇在线播放| 国产欧美日韩精品一区二区| 男女边摸边吃奶| 18禁在线播放成人免费| 在线免费观看不下载黄p国产| 国产在线男女| 亚洲一区二区三区欧美精品| 国产精品欧美亚洲77777| a 毛片基地| 波野结衣二区三区在线| 久久久精品94久久精品| 国产精品国产三级国产专区5o| 91精品一卡2卡3卡4卡| 中文欧美无线码| 国产成人a∨麻豆精品| 涩涩av久久男人的天堂| 在线观看av片永久免费下载| 成人影院久久| 精品99又大又爽又粗少妇毛片| 久久人妻熟女aⅴ| 一级毛片久久久久久久久女| 国产成人精品一,二区| 亚洲精品乱码久久久久久按摩| av在线播放精品| 男女无遮挡免费网站观看| 亚洲精品日韩av片在线观看| 高清欧美精品videossex| 两个人免费观看高清视频 | 少妇人妻精品综合一区二区| 三级经典国产精品| 伦理电影免费视频| 高清在线视频一区二区三区| 一级,二级,三级黄色视频| 国产免费视频播放在线视频| 少妇精品久久久久久久| 国产精品国产三级专区第一集| 91久久精品国产一区二区成人| 午夜免费观看性视频| 免费播放大片免费观看视频在线观看| 下体分泌物呈黄色| 女性生殖器流出的白浆| 国国产精品蜜臀av免费| 久久久久久久大尺度免费视频| 91久久精品电影网| 高清不卡的av网站| 18+在线观看网站| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 男女边摸边吃奶| 久久精品国产亚洲网站| 日韩中字成人| 涩涩av久久男人的天堂| 一边亲一边摸免费视频| 中国美白少妇内射xxxbb| 青春草亚洲视频在线观看| 尾随美女入室| 亚洲av电影在线观看一区二区三区| 日韩成人伦理影院| 久久ye,这里只有精品| kizo精华| 亚洲精品久久午夜乱码| 成人亚洲欧美一区二区av| 欧美 亚洲 国产 日韩一| 国产免费一级a男人的天堂| 曰老女人黄片| 亚洲精品日韩在线中文字幕| 三级国产精品片| 亚洲av国产av综合av卡| 建设人人有责人人尽责人人享有的| 街头女战士在线观看网站| 久热久热在线精品观看| 桃花免费在线播放| 日韩精品免费视频一区二区三区 | 一级,二级,三级黄色视频| 丰满饥渴人妻一区二区三| 国产一区有黄有色的免费视频| 丰满人妻一区二区三区视频av| 免费少妇av软件| 91久久精品国产一区二区三区| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 纯流量卡能插随身wifi吗| 26uuu在线亚洲综合色| 晚上一个人看的免费电影| 日本午夜av视频| 97在线人人人人妻| 一级片'在线观看视频| 亚洲欧美成人精品一区二区| 色视频在线一区二区三区| 亚洲中文av在线| 日韩欧美精品免费久久| a级毛片在线看网站| 超碰97精品在线观看| 国产一区二区在线观看日韩| 欧美精品高潮呻吟av久久| 有码 亚洲区| 欧美人与善性xxx| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久久大奶| 丝袜在线中文字幕| 99久久中文字幕三级久久日本| av线在线观看网站| 26uuu在线亚洲综合色| 亚洲成人一二三区av| 亚洲精品一二三| 日日啪夜夜撸| 国产在视频线精品| 在线看a的网站| 熟女人妻精品中文字幕| 欧美+日韩+精品| 久久影院123| 亚洲av成人精品一区久久| 波野结衣二区三区在线| 国产精品女同一区二区软件| 另类亚洲欧美激情| 五月玫瑰六月丁香| 日韩电影二区| 菩萨蛮人人尽说江南好唐韦庄| 另类精品久久| 国产极品天堂在线| 亚洲va在线va天堂va国产| 插逼视频在线观看| 卡戴珊不雅视频在线播放| 国产在线视频一区二区| 国产成人91sexporn| 又爽又黄a免费视频| 七月丁香在线播放| 亚洲国产成人一精品久久久| 一区在线观看完整版| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 91精品伊人久久大香线蕉| 99re6热这里在线精品视频| 中文精品一卡2卡3卡4更新| 国产在线一区二区三区精| 一级毛片 在线播放| 精品人妻一区二区三区麻豆| 69精品国产乱码久久久| 曰老女人黄片| 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| av不卡在线播放| 三级经典国产精品| 国产精品一区二区在线不卡| 人人妻人人看人人澡| 色94色欧美一区二区| 在线观看免费日韩欧美大片 | 日韩伦理黄色片| 午夜精品国产一区二区电影| 边亲边吃奶的免费视频| 国产成人aa在线观看| 伦理电影大哥的女人| 春色校园在线视频观看| 永久免费av网站大全| 久久国内精品自在自线图片| 在线看a的网站| 亚洲色图综合在线观看| 成人免费观看视频高清| 国产亚洲午夜精品一区二区久久| 日韩一区二区视频免费看| 久久久精品94久久精品| 成人美女网站在线观看视频| 国产精品人妻久久久影院| 极品少妇高潮喷水抽搐| 两个人的视频大全免费| 男男h啪啪无遮挡| 中国美白少妇内射xxxbb| 七月丁香在线播放| 青春草国产在线视频| 亚洲欧美精品专区久久| 亚洲av综合色区一区| 91久久精品电影网| 下体分泌物呈黄色| 国产av精品麻豆| 久久97久久精品| 免费看不卡的av| 中国三级夫妇交换| 欧美精品高潮呻吟av久久| 亚洲国产精品专区欧美| 国产色爽女视频免费观看| 黑人高潮一二区| 99热这里只有精品一区| 亚洲国产精品专区欧美| 精品99又大又爽又粗少妇毛片| 99久久精品热视频| videossex国产| 岛国毛片在线播放| 毛片一级片免费看久久久久| 色5月婷婷丁香| 综合色丁香网| 在线观看免费视频网站a站| 国产日韩一区二区三区精品不卡 | 一级二级三级毛片免费看| 欧美激情极品国产一区二区三区 | 日韩制服骚丝袜av| 亚洲精品日本国产第一区| 国产成人freesex在线| 91精品伊人久久大香线蕉| 国产精品99久久久久久久久| 卡戴珊不雅视频在线播放| 日韩在线高清观看一区二区三区| 日本av手机在线免费观看| 岛国毛片在线播放| 久久综合国产亚洲精品| 高清视频免费观看一区二区| 伦理电影免费视频| 伦精品一区二区三区| 国产精品秋霞免费鲁丝片| 国产免费又黄又爽又色| 99热网站在线观看| 欧美变态另类bdsm刘玥| 日日爽夜夜爽网站| 岛国毛片在线播放| 精品卡一卡二卡四卡免费| 久久久久久久久久成人| 国产高清国产精品国产三级| 99国产精品免费福利视频| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 97超碰精品成人国产| 久久精品久久精品一区二区三区| 97超碰精品成人国产| av国产精品久久久久影院| 午夜福利,免费看| 中文字幕av电影在线播放| 蜜桃在线观看..| 久久6这里有精品| 精品国产一区二区三区久久久樱花| av国产久精品久网站免费入址| 边亲边吃奶的免费视频| 欧美精品亚洲一区二区| 日韩伦理黄色片| 国产色婷婷99| 777米奇影视久久| 伊人久久精品亚洲午夜| 王馨瑶露胸无遮挡在线观看| 男女免费视频国产| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 精品人妻一区二区三区麻豆| 97在线视频观看| av视频免费观看在线观看|