• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of shock interacting with well-controlled gas cylinder generated by soap film

    2014-03-29 08:01:55LuoXishengWangXianshengChenMojunZhaiZhigang
    實(shí)驗(yàn)流體力學(xué) 2014年2期
    關(guān)鍵詞:通訊地址激波力學(xué)

    Luo Xisheng, Wang Xiansheng, Chen Mojun, Zhai Zhigang

    (Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China)

    0 Introduction

    The Richtmyer-Meshkov (RM) instability[1-2]occurs on an initially perturbed interface subjecting to a sudden acceleration by a shock. Due to the deposition of baroclinic vorticity, the initial perturbation will grow with time, which generally intensifies the mixing between fluids and eventually induces turbulence in flow. Because of its academic significance in vortex dynamics and turbulent mixing as well as wide applications ranging from inertial confinement fusion[3], supernova explosions[4]to supersonic combustion[5], the hydrodynamic instability becomes increasingly attractive. Specifically,several comprehensive reviews on this topic have been made[6-8]. As a basic and simple RM instability problem, the shock-gas cylinder interaction has been extensively studied in experiments[9-14]. A great challenge to perform such experiments is to form a well-defined initial interface. Most previous experimental studies are performed in shock tube environments with a discontinuous or continuous interface. The creation of a sharp interface generally adopts a nitrocellulosic membrane[2,15]or a soap film[9,16-19]to separate the test gas from the ambient gas. The advantage of using the membrane or film is that diffusion between the test gas and surrounding gas is eliminated. However, due to the absorption of the fluid kinetic energy, the remaining membrane/film pieces are found to be influential in the late-time evolution. It is also hard to obtain the exact shape of initial perturbations in the experiment. Therefore, the approximate initial conditions were employed in the past numerical attempts, and the wire mesh supports were often simply neglected. To avoid the influences of membrane and support, the technique of gas cylinder[10,14,20]to form a continuous interface is developed. However, this technique for continuous interface has its own drawbacks. Taking the gas cylinder of SF6(sulfur hexafluoride) for example, the SF6gas falls through the test section due to gravity. Therefore, the gases in and near the cylinder column will attain a vertical velocity. Due to diffusion and mixing, the gas composition is not uniformly distributed on longitudinal and radial directions. The cross section of the gas column may deviate from the desired circular symmetry during the experiment. Therefore, the exact initial conditions such as the distribution of the gas concentration and the small vertical velocity of the gas column have to be determined afterwards, and effects of them on the instability are not fully understood as these experimental uncertainties genuinely introduce three-dimensional (3D) influences[21]. In the present study, a novel method to create a discontinuous gaseous interface is developed by the soap film technique for the RM instability study. The formed interface by the new method is free of supporting mesh and its initial shape can be accurately described in mathematics. Therefore, the initial condition can be well controlled.

    (a)

    (b)

    1 Formation and feature of the initial interface

    As sketched in Fig.1(a), two circular wires (35mm in diameter) are embedded into two quartz glasses (200mm×140mm) which are mounted in the visualizing window face-to-face. The wires with a thickness of 0.5 mm are made of acrylic sheets in a computer-aided design. In order to mount the wires, the quartz glasses are engraved on two circular channels. Firstly, the lower (for SF6) or upper (for helium) quartz glass is uniformly wetted by the soap liquid (made of 78% distilled water, 2% sodium oleate and 20% glycerine by mass). Then, a soap bubble is inflated with the test gas (SF6or helium) by a thin blowing pipe placed between the circular wires. This soap bubble firstly becomes a hemisphere bounded by the wire on the lower (for SF6) or upper (for helium) quartz glass, and then is expanding to the other quartz glass. A gaseous cylinder is formed when the bubble contacts with the wire on the other quartz glass. Based on the property of the soap film, the shape of the cylinder is closely related to the pressure inside the bubble[22]. An IC camera (Nikon D90) is used to monitor the geometry of the cylinder. Fig.1(b) shows the images of the two-dimensional (2D) and 3D gaseous cylinders and the dashed lines represent the interface boundaries. The 2D cylinder is formed with a little overpressure inside the inhomogeneity using the similar strategy adopted by Haas and Sturtevant[9]. However, the current 2D cylinder is made of soap film, which is considered to be less influential on the flow than thin plastic membranes[16-17]. The 3D cylinder is formed through making the pressure inside the inhomogeneity equal to the outside. This is realized by puncturing the soap film through a small perforation (2 mm in diameter) at the center of the circular wire in the quartz glass. Because the gas at both sides of the interface is at the ambient pressure, the formed 3D soap film interface has a zero mean curvature, i.e. two principal curvatures at every point of the interface are in opposite direction. Therefore, the formed 3D cylinder has a minimum surface feature[22-23]as depicted in Fig.2 together with its front-view and top-view. The surface can be accurately described in mathematics by

    (1)

    wherer0is the radius of the circle at the symmetric plane (y=0) andr0measured from the initial image is 13.7mm which agrees well with the prediction by Eq.1.

    (a) (b) (c)

    2 Experimental method

    Experiments are conducted in a horizontal shock tube, which consists of a 1.7m driver section, a 2.0m driven section and a 0.6m test-section with the cross-sectional area of 140mm×20mm. The open-end tube is employed mainly for taking photos of the initial interface by the IC. The distance between the center of the initial interface and the open-end of the shock tube is 312mm, which corresponds to a test time of 1.4ms. The height of the test section is small (2h=20mm) to minimize the gravity effect of the test gas and to ensure a 3D interface formed in the shock tube. Note that, in order to create a 3D cylinder, the height of the shock tube must satisfy Eq.1 for a fixed radius of the circular wire (In the current situation, the radius of the circular wire is 17.5mm and the resulting maximum height of the shock tube is less than 23.2mm). The schlieren photography is employed to visualize the interaction of the shock wave with the 2D and 3D gaseous cylinders as shown in Fig.3. In order to maintain the shapes of the initial interface, the visualizing windows are arranged in the vertical direction. The illumination, provided by a DC regulated light source (DCR III, SCHOTT North America, Inc., 200W), is made accessible through a pair of quartz glasses (200mm×140mm) mounted in the visualizing window. A high-speed video camera (FASTCAM SA5, Photron Limited) is equipped to record the sequences. The timing and triggering system involves a four channel delay generator (DG645, Stanford Research Systems), two piezoelectric pressure transducers, a charge amplifier, an oscilloscope and some accessories. The frame rate of the high-speed video camera is 3×104fps and the spatial resolution is 640×376 which implies 300mm/pixel. The local pressure and temperature are 101325Pa and 293K, respectively.

    Fig.3 The schematic of the schlieren system

    3 Results and discussion

    The morphologies of the shocked 2D cylinder with a diameter of 35mm and the corresponding 3D inhomogeneity with minimum surface feature are compared in Figs.4 and 5 by schlieren sequences. Helium or SF6is employed as the test gas in the cylinder, which produces a large density mismatching with the surrounding air. The incident shock wave propagates from left to right with a Mach number ofMs=1.2. All the records start when the incident shock wave collides with the gaseous cylinder. When the shock wave collides with the bubble either filled with helium or SF6, the incident shock bifurcates into a transmitted shock wave and a reflected wave whose type is either the shock, or the rarefaction due to the mismatch of acoustic impedance inside and outside the bubble. During the passage of the shock, the discrete inhomogeneity obtains the energy at a very short time and baroclinic vorticity is deposited on the interface due to the misalignment of the pressure and density gradients[8]. When the shock wave transmits away, the deposited vorticity drives the shear flow in the vicinity of the interface. The interface is then rolled up, and the vortex pairs gradually dominate the flow. Eventually, the flow becomes more turbulent and the mixing between fluids is greatly intensified. In general, the morphologies of the shocked 2D cylinders are similar with the observations in literature[9]. Therefore, a detail description of the interface evolution is skipped here. However, there are distinct improvements in our images. It can be found that there are fewer waves in the schlieren images and the evolving interface is more symmetric. These improvements can be ascribed to the new method of the interface formation. The formed interface is free of support and mesh, and, therefore, is free of disturbances caused by the support and mesh. The instability evolution on the 2D interface is found to be quite different from that in the case of continuous interfaces[14]. The main vortex and the secondary vortices are more pronounced in our results of the shocked 2D SF6cylinder, as shown in the inset of Fig.5 (at time 0.82ms). The jet is also stronger in our results. These phenomena can often be found in numerical simulations[24], but seldom seen in experiments.

    (a) (b)

    (a) (b)

    The 3D effects on the interface morphologies are significant which can be directly found from the comparison between the 2D and 3D shocked cylinders. In the helium case as shown in Fig.4, the 3D shocked cylinder presents two downstream interfaces denoted by ‘a(chǎn)’ and ‘b’ in the schlieren at time 0.21ms. The two downstream interfaces correspond to the interfaces at the symmetric (y=0) and boundary (y=±h) planes, respectively. Because of the 3D effects, the intermediate-time morphologies are also quite different in the two cases. The 3D shocked helium cylinder begins to roll up and the vortex pair forms at time 0.61 ms, which are earlier than those in the 2D case. In the SF6case as shown in Fig.5, there are also two downstream interfaces appearing in the 3D shocked cylinder at time 0.43ms. However, different from the helium case, most parts of the two interfaces coalesce to one interface as time proceeds except the central part (denoted by ‘c’). This central part belongs to the downstream interface at the boundary plane. Because of the curved shape (in vertical direction) of the downstream interface, the transmitted shock from the downstream interface (from SF6to air) will form a Mach reflection near the boundary and cause a relatively high pressure zone just outside the downstream interface. Driven by this high pressure, the central part, as shown in the inset of the schlieren image at time 0.63ms, becomes larger with time and moves more slowly than the upstream interface. Finally, the central part merges with the upstream interface.

    In order to compare the 2D and 3D cylinders quantitatively, the width and height of the interface structure are further measured, as given in Figs.6 and 7. All the quantities are normalized by the local characteristic length, which means that except that the width of the volume together with its time in the 3D helium case is normalized by the initial radius of the symmetric plane, other quantities are nondimensionalized by the initial radius of the cylinder, i.e. radius at the boundary plane. The reason is that the width in the 3D helium case is the distance between the upstream interface and the downstream interface at the symmetric plane (the interface denoted by ‘a(chǎn)’). It can be easily seen that the development of the shocked 3D cylinder is slower than that of the 2D counterpart, especially for the helium case. The pressure gradient and the baroclinic vorticity are supposed to be the driving mechanisms to account for the slowness, which is similar with the minimum surface case of 3D air/SF6interface in our previous study[23]. We shall first consider the width of the volume in the helium case. In the shock-helium in the helium case. In the shock-helium cylinder interaction, the direction of pressure gradient at pointIL/IR, induced by the reflected and transmitted waves in the horizontal (xz) plane, is to the left as depicted in Fig.8(a). However, in the cylinder with minimum surface feature, there is another pressure gradient, whose direction is to the right, induced by waves in the vertical (xy) plane. Therefore, the growth of perturbations at the symmetric plane tends to be suppressed by these opposite pressure gradients compared with the 2D counterpart. The baroclinic vorticity along the catenary line (OR-IR-OR′ orOL-IL-OL′) is also opposite to the one along the circular plane (xz), as illustrated in Fig.8(b), which also prevents the growth of the width at the symmetric plane. The slowness of the upstream height in the 3D helium case can be ascribed to these two factors. Because of the curved shape of the catenary lines of the 3D cylinder, there are ‘a(chǎn)dverse’ baroclinic vorticity and pressure gradients exerting on the upstream interface. Therefore, the height of the upstream interface in the 3D cylinder increases more slowly than that in the 2D case at the early stage. Because of the earlier formation of the vortex pair in the 3D case as indicated in the schlieren images, the height of the 3D upstream interface begins to decrease earlier than that of the 2D case. For the SF6case, the extra pressure gradients and baroclinic vorticity caused by the minimum surface feature also prevent the interface development. Therefore, the quantities of the 3D case are all smaller than the 2D counterparts. It should be noted that in the SF6case the interface height, not the height of upstream interface as used in the helium case, is used because the vortex pair in this heavy gas case stretches the upstream interface and subsequently the upstream interface connects to the vortex pair. We can find that the interface height first experiences a small decrease due to shock compression and then increases with time because of the instability.

    (a)

    (b)

    (a)

    (b)

    (a)

    (b)

    4 Conclusions

    A simple method of generating gas cylinders is proposed by using the soap film technique. The formed interface is free of supporting mesh and the initial shape can be accurately described in mathematics. As a result, the schlieren images of the shocked 2D cylinder have less disturbing waves and the evolving interfaces are more symmetric comparing with the results in literature. Because of the sharp interface, the main vortex and secondary instabilities are more pronounced in our 2D results. Therefore, the quality of the experiments of the shock-cylinder interaction is improved by using the well-controlled initial condition and can provide a good benchmark for numerical codes and analytical models. Special attention is then given to the 3D effects caused by the minimum surface feature on the interface evolution. It is found that there are two downstream interfaces both in the 3D helium and SF6cases. The development of the shocked 3D cylinder is slower than that of the 2D counterpart, which can be ascribed to ‘a(chǎn)dverse’ pressure gradients and baroclinic vorticity related to the 3D initial shape. Due to the 3D characteristic, the evolving interface at eachy-plane behaves differently and may interact with each other, which cannot be resolved by the integral visualizing method used in the present work. The effects of the liquid droplets produced by the soap film breakup, cylinder diameter, and shock Mach number on the RM instability also need further investigation.

    Acknowledgements:This research was carried out with the support of the National Natural Science Foundation of China, Grant No. 10972214 and by the Knowledge Innovation Program of the Chinese Academy of Sciences, Grant No. CX2090050020. The authors would like to thank Dr. Si Ting and Mr. Wang Minghu for the valuable help during the experiments.

    References:

    [1]Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Commun Pure Appl Math,1960, 13: 297-319.

    [2]Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dyn, 1969, 4: 101-104.

    [3]Lindl J D, Mccrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Phys Today, 1992, 45: 32-40.

    [4]Arnett W D, Bahcall J N, Kirshner R P, et al. Supernova 1987A[J]. Annu Rev Astron Astrophys, 1989, 27: 629-700.

    [5]Yang J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion[J]. AIAA J, 1993, 35: 854-862.

    [6]Zabusky N J. Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments[J]. Annu Rev Fluid Mech, 1999, 31: 495-536.

    [7]Brouillette M. The Richtmyer-Meshkov instability[J]. Annu Rev Fluid Mech, 2002, 34: 445-468.

    [8]Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions[J]. Annu Rev Fluid Mech, 2011, 43: 117-140.

    [9]Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. J Fluid Mech, 1987, 181: 41-76.

    [10] Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Phys Fluids, 1993, 5(9): 2239-2247.

    [11] Tomkins C, Prestridge K, Rightley P, et al. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders[J]. Phys Fluids, 2003, 15: 986-1004.

    [12] Kumar S, Orlicz G, Tomkins C, et al. Stretching of material lines in shock-accelerated gaseous flows[J]. Phys Fluids, 2005, 17: 082107.

    [13] Kumar S, Vorobieff P, Orlicz G, et al. Complex flow morphologies in shock-accelerated gaseous flows[J]. Physica D, 2007, 235: 21-28.

    [14] Tomkins C, Kumar S, Orlicz G C, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. J Fluid Mech, 2008, 611: 131-150.

    [15] Mariani C, Vanderboomgaerde M, Jourdan G, et al. Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces[J]. Phys Rev Lett, 2008, 100: 254503.

    [16] Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble[J]. Phys Fluids, 2009, 21: 074102.

    [17] Zhai Z, Si T, Luo X, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave[J]. Phys Fluids, 2011, 23: 084104.

    [18] Si T, Zhai Z, Yang J, et al. Experimental investigation of reshocked spherical gas interfaces[J]. Phys Fluids, 2012, 24: 054101.

    [19] Haehn N, Ranjan D, Weber C, et al. Reacting shock bubble interaction[J]. Combustion and Flame, 2012, 159: 1339-1350.

    [20] Zou L, Liu C, Tan D, et al. On interaction of shock wave with elliptic gas cylinder[J]. J Vis, 2010, 13: 347-353.

    [21] Weirs V G, Dupont T, Plewa T. Three-dimensional effects in shock-cylinder interactions[J]. Phys Fluids, 2008, 20: 044102.

    [22] Isenberg C. The science of soap films and soap bubbles[M]. New York: Dover publications, INC., 1992.

    [23] Luo X, Wang X, Si T. The Richtmyer-Meshkov instability of a three-dimensional air/SF6interface with a minimum-surface feature[J]. J Fluid Mech, 2013, 722, R2.

    [24] Niederhaus Jhj, Greenough J A, Oakley J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction[J]. J Fluid Mech, 2008, 594: 85-124.

    Authorbiography:

    羅喜勝(1971-),男,湖南沅江人,中國科學(xué)技術(shù)大學(xué)工程科學(xué)學(xué)院近代力學(xué)系教授、博士生導(dǎo)師。研究方向:高速流動(dòng)中的相變與多相流動(dòng)、激波管內(nèi)RM不穩(wěn)定性。通訊地址:安徽合肥中國科學(xué)技術(shù)大學(xué)工程科學(xué)學(xué)院近代力學(xué)系 (230027)。E-mail: xluo@ustc.edu.cn

    猜你喜歡
    通訊地址激波力學(xué)
    力學(xué)
    弟子規(guī)·余力學(xué)文(十)
    快樂語文(2021年11期)2021-07-20 07:41:32
    中國兵工學(xué)會(huì)第二十二屆引信學(xué)術(shù)年會(huì)征文通知
    弟子規(guī)·余力學(xué)文(四)
    快樂語文(2020年30期)2021-01-14 01:05:28
    一種基于聚類分析的二維激波模式識(shí)別算法
    基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
    數(shù)字式汽車衡的實(shí)際應(yīng)用探究
    斜激波入射V形鈍前緣溢流口激波干擾研究
    適于可壓縮多尺度流動(dòng)的緊致型激波捕捉格式
    力學(xué) 等
    国产乱人视频| www.色视频.com| 少妇的逼水好多| 中文字幕制服av| 亚洲国产精品成人综合色| 国产成人福利小说| 亚洲精品日韩av片在线观看| av福利片在线观看| 国产激情偷乱视频一区二区| 免费黄网站久久成人精品| 禁无遮挡网站| 最近中文字幕高清免费大全6| 国产精品免费一区二区三区在线| 99视频精品全部免费 在线| 免费av观看视频| 国产色爽女视频免费观看| 久久精品久久久久久久性| 久久久久网色| 欧美激情在线99| 日韩强制内射视频| 长腿黑丝高跟| 99热网站在线观看| 91aial.com中文字幕在线观看| 国内精品美女久久久久久| 国产在线精品亚洲第一网站| 久久草成人影院| 1024手机看黄色片| 国产精品精品国产色婷婷| 精华霜和精华液先用哪个| 国产女主播在线喷水免费视频网站 | 乱人视频在线观看| 亚洲av男天堂| 亚洲精品自拍成人| 你懂的网址亚洲精品在线观看 | 精品久久久久久久久久免费视频| 一级黄片播放器| 国产精品久久久久久精品电影小说 | 亚洲欧美清纯卡通| 色综合站精品国产| 天天躁夜夜躁狠狠久久av| 国产成人精品一,二区 | 国产爱豆传媒在线观看| 一个人看的www免费观看视频| 国产伦在线观看视频一区| 人人妻人人看人人澡| 精品国内亚洲2022精品成人| 久久精品国产亚洲av天美| 日本欧美国产在线视频| 一夜夜www| 哪里可以看免费的av片| 一进一出抽搐gif免费好疼| 黄色日韩在线| 国产精品乱码一区二三区的特点| 青春草视频在线免费观看| 国产亚洲av片在线观看秒播厂 | 国产在线男女| 麻豆av噜噜一区二区三区| 久久九九热精品免费| 日韩av在线大香蕉| 欧美性感艳星| 中文字幕熟女人妻在线| 久久婷婷人人爽人人干人人爱| 欧美又色又爽又黄视频| 亚洲中文字幕一区二区三区有码在线看| 国产成人freesex在线| 亚洲欧美成人精品一区二区| av在线老鸭窝| 国产大屁股一区二区在线视频| 校园春色视频在线观看| 国产精品一二三区在线看| 热99re8久久精品国产| 麻豆成人午夜福利视频| 色哟哟·www| 91aial.com中文字幕在线观看| 99视频精品全部免费 在线| 少妇高潮的动态图| 亚洲性久久影院| 国内精品久久久久精免费| 久久久久久久久久久丰满| 日本黄色片子视频| 国产美女午夜福利| 国产美女午夜福利| 能在线免费观看的黄片| 老司机影院成人| 中国美女看黄片| 美女内射精品一级片tv| 我要搜黄色片| 欧美一区二区亚洲| 一区二区三区四区激情视频 | 一本精品99久久精品77| 久久精品国产亚洲av天美| 国产色爽女视频免费观看| 大又大粗又爽又黄少妇毛片口| 国产成人精品一,二区 | 亚洲成人精品中文字幕电影| 人人妻人人澡欧美一区二区| 97人妻精品一区二区三区麻豆| 国产一区二区三区av在线 | 日韩欧美精品免费久久| 99国产精品一区二区蜜桃av| 18禁在线播放成人免费| 最近视频中文字幕2019在线8| 久久久精品欧美日韩精品| 欧美zozozo另类| 免费大片18禁| 噜噜噜噜噜久久久久久91| 国产精品女同一区二区软件| 国国产精品蜜臀av免费| 男女边吃奶边做爰视频| 日韩三级伦理在线观看| 99久久精品热视频| 一区福利在线观看| 亚洲激情五月婷婷啪啪| 国内少妇人妻偷人精品xxx网站| 欧美日韩一区二区视频在线观看视频在线 | 国产一级毛片七仙女欲春2| 成人高潮视频无遮挡免费网站| 精品少妇黑人巨大在线播放 | 国产在线精品亚洲第一网站| 欧美极品一区二区三区四区| 亚洲av电影不卡..在线观看| 成年av动漫网址| 国产av一区在线观看免费| 精品久久久久久久久久久久久| 内地一区二区视频在线| 婷婷色av中文字幕| 午夜精品在线福利| 午夜福利在线观看吧| 日本爱情动作片www.在线观看| 亚洲最大成人av| av在线天堂中文字幕| 欧美精品国产亚洲| 亚洲国产欧洲综合997久久,| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲不卡免费看| 晚上一个人看的免费电影| 美女 人体艺术 gogo| 亚洲欧美清纯卡通| 男人的好看免费观看在线视频| 最后的刺客免费高清国语| 好男人在线观看高清免费视频| 99热6这里只有精品| 国产精品嫩草影院av在线观看| 日本欧美国产在线视频| 又爽又黄无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 嘟嘟电影网在线观看| 欧美另类亚洲清纯唯美| 国产成人a区在线观看| 在线播放无遮挡| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区免费观看| 亚洲在久久综合| 变态另类成人亚洲欧美熟女| 欧美+亚洲+日韩+国产| 精品国产三级普通话版| 高清日韩中文字幕在线| 少妇的逼好多水| 亚洲av一区综合| 男人和女人高潮做爰伦理| 国产黄色视频一区二区在线观看 | 91久久精品国产一区二区成人| 最近手机中文字幕大全| 久久中文看片网| 久久久久久久久久黄片| 九色成人免费人妻av| 国产精品精品国产色婷婷| 嫩草影院入口| 最近的中文字幕免费完整| 如何舔出高潮| 国产又黄又爽又无遮挡在线| 成人一区二区视频在线观看| 搡老妇女老女人老熟妇| 狠狠狠狠99中文字幕| 一本久久中文字幕| 少妇人妻精品综合一区二区 | 午夜视频国产福利| h日本视频在线播放| 亚洲欧美精品自产自拍| 亚洲精品日韩在线中文字幕 | 蜜桃亚洲精品一区二区三区| 亚洲天堂国产精品一区在线| 欧美日本视频| 欧美+日韩+精品| 中文亚洲av片在线观看爽| 只有这里有精品99| 深夜精品福利| 搡老妇女老女人老熟妇| 午夜福利视频1000在线观看| 特大巨黑吊av在线直播| 黄色欧美视频在线观看| 亚洲在久久综合| 久久精品人妻少妇| 亚洲欧洲国产日韩| 哪里可以看免费的av片| 狠狠狠狠99中文字幕| 午夜福利视频1000在线观看| 国产精品久久久久久久久免| 亚洲在线自拍视频| 久久鲁丝午夜福利片| 精品人妻偷拍中文字幕| 色噜噜av男人的天堂激情| 床上黄色一级片| 国产黄色小视频在线观看| 99在线视频只有这里精品首页| 国产精品久久电影中文字幕| 日韩欧美在线乱码| 精品日产1卡2卡| 日韩欧美精品免费久久| 成年女人永久免费观看视频| 一个人观看的视频www高清免费观看| 久久久精品欧美日韩精品| 91久久精品国产一区二区成人| 狂野欧美白嫩少妇大欣赏| 乱码一卡2卡4卡精品| 国产精品国产高清国产av| 99久久久亚洲精品蜜臀av| 精华霜和精华液先用哪个| avwww免费| 蜜臀久久99精品久久宅男| 成人美女网站在线观看视频| 深爱激情五月婷婷| 一区二区三区高清视频在线| 成年av动漫网址| 欧美极品一区二区三区四区| 午夜精品一区二区三区免费看| av在线亚洲专区| 亚洲成人av在线免费| 国产av在哪里看| 亚洲自偷自拍三级| 一区二区三区四区激情视频 | 欧美不卡视频在线免费观看| 在线观看av片永久免费下载| 久久亚洲精品不卡| 国产精品女同一区二区软件| 国内精品宾馆在线| 午夜福利成人在线免费观看| 在线国产一区二区在线| 天堂中文最新版在线下载 | 欧美日韩国产亚洲二区| 国产午夜福利久久久久久| 国产一区二区在线观看日韩| 色哟哟·www| 最后的刺客免费高清国语| 嘟嘟电影网在线观看| 成人美女网站在线观看视频| 色综合色国产| 久久99蜜桃精品久久| 哪里可以看免费的av片| 91在线精品国自产拍蜜月| 51国产日韩欧美| 日本一本二区三区精品| av天堂中文字幕网| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| 可以在线观看的亚洲视频| 成人亚洲精品av一区二区| av在线亚洲专区| 国产高潮美女av| 欧美精品国产亚洲| 午夜福利在线观看吧| 婷婷色av中文字幕| 18+在线观看网站| 午夜福利高清视频| 亚洲av.av天堂| 能在线免费看毛片的网站| 亚洲国产色片| 国产麻豆成人av免费视频| 乱码一卡2卡4卡精品| 在线观看66精品国产| 亚洲美女视频黄频| 国产成人a∨麻豆精品| 免费看日本二区| 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 有码 亚洲区| 亚洲最大成人手机在线| 高清在线视频一区二区三区 | 亚洲成人久久爱视频| 国产色爽女视频免费观看| 欧美区成人在线视频| 欧美日韩精品成人综合77777| 中文字幕熟女人妻在线| 能在线免费观看的黄片| 免费一级毛片在线播放高清视频| 成人毛片a级毛片在线播放| 精品久久国产蜜桃| 老司机影院成人| 男女那种视频在线观看| 欧美三级亚洲精品| 我的女老师完整版在线观看| 一本久久精品| 亚洲在线自拍视频| 成年女人看的毛片在线观看| 国产av不卡久久| 国产精品久久久久久精品电影小说 | 国产白丝娇喘喷水9色精品| 菩萨蛮人人尽说江南好唐韦庄 | 国产蜜桃级精品一区二区三区| 97热精品久久久久久| 校园春色视频在线观看| 国语自产精品视频在线第100页| 少妇被粗大猛烈的视频| av视频在线观看入口| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 最新中文字幕久久久久| 99国产精品一区二区蜜桃av| 婷婷色av中文字幕| 少妇熟女aⅴ在线视频| 国产一区二区在线观看日韩| 欧美在线一区亚洲| 欧美成人免费av一区二区三区| 岛国毛片在线播放| 亚洲美女视频黄频| 日日摸夜夜添夜夜爱| 日本在线视频免费播放| 一个人看的www免费观看视频| 免费观看a级毛片全部| а√天堂www在线а√下载| 99热这里只有精品一区| 精品不卡国产一区二区三区| 久久这里只有精品中国| 一级毛片我不卡| 久久人妻av系列| 午夜福利在线观看免费完整高清在 | 校园人妻丝袜中文字幕| 女人被狂操c到高潮| 欧美人与善性xxx| 日韩精品青青久久久久久| 久久综合国产亚洲精品| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 男女下面进入的视频免费午夜| 男插女下体视频免费在线播放| 国内精品久久久久精免费| 亚洲精品亚洲一区二区| 我要看日韩黄色一级片| 国产亚洲欧美98| 老熟妇乱子伦视频在线观看| 在线观看一区二区三区| 成人无遮挡网站| 国内精品久久久久精免费| 亚洲精品乱码久久久久久按摩| 成人漫画全彩无遮挡| 国产91av在线免费观看| 国产精品1区2区在线观看.| 国产高清视频在线观看网站| 麻豆国产av国片精品| 啦啦啦观看免费观看视频高清| 悠悠久久av| 最近视频中文字幕2019在线8| 在线免费观看不下载黄p国产| 久久久久久久久久成人| 久久精品国产自在天天线| 色播亚洲综合网| 国产大屁股一区二区在线视频| 麻豆久久精品国产亚洲av| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久久电影| 国产成人福利小说| 成人鲁丝片一二三区免费| 亚洲在久久综合| www.色视频.com| 国产片特级美女逼逼视频| 精品久久久久久久人妻蜜臀av| 国产极品天堂在线| 性插视频无遮挡在线免费观看| 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 久久精品国产清高在天天线| 麻豆国产av国片精品| 午夜视频国产福利| 美女大奶头视频| 亚洲精品久久国产高清桃花| 日本一本二区三区精品| 久久久午夜欧美精品| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 蜜臀久久99精品久久宅男| 99久久无色码亚洲精品果冻| 日韩大尺度精品在线看网址| 国产三级在线视频| 中文字幕熟女人妻在线| 校园春色视频在线观看| 成年女人看的毛片在线观看| 精品久久国产蜜桃| 又爽又黄无遮挡网站| 国产极品精品免费视频能看的| 有码 亚洲区| 成人二区视频| 在线观看免费视频日本深夜| 亚洲18禁久久av| 韩国av在线不卡| 国语自产精品视频在线第100页| 一本久久中文字幕| 国产日韩欧美在线精品| 日本与韩国留学比较| 日韩欧美精品免费久久| 中国美白少妇内射xxxbb| 热99在线观看视频| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 国产精品一及| 美女 人体艺术 gogo| av天堂中文字幕网| 成人特级av手机在线观看| 国产精品蜜桃在线观看 | 国产精品无大码| 日韩欧美精品免费久久| 免费av观看视频| 免费av毛片视频| 成人av在线播放网站| 欧美激情久久久久久爽电影| 国产成人精品婷婷| 麻豆av噜噜一区二区三区| 夜夜看夜夜爽夜夜摸| 久久综合国产亚洲精品| 亚洲在线观看片| 深夜a级毛片| 久久久久网色| 欧美不卡视频在线免费观看| АⅤ资源中文在线天堂| 精品日产1卡2卡| 亚洲第一区二区三区不卡| 我要搜黄色片| 精品久久久噜噜| 3wmmmm亚洲av在线观看| 国产精品嫩草影院av在线观看| av在线亚洲专区| 亚洲av免费在线观看| 亚洲成a人片在线一区二区| 夫妻性生交免费视频一级片| a级毛片a级免费在线| 国产av一区在线观看免费| 神马国产精品三级电影在线观看| 午夜福利在线观看吧| 尾随美女入室| 亚洲av成人av| 免费黄网站久久成人精品| 色哟哟哟哟哟哟| 免费搜索国产男女视频| 中文字幕av在线有码专区| 日韩制服骚丝袜av| 美女 人体艺术 gogo| 九九在线视频观看精品| 国产视频首页在线观看| 国产大屁股一区二区在线视频| 村上凉子中文字幕在线| 美女cb高潮喷水在线观看| 麻豆成人av视频| 91麻豆精品激情在线观看国产| 成人av在线播放网站| 亚洲经典国产精华液单| 国产一区二区激情短视频| 日韩欧美 国产精品| 热99在线观看视频| 青春草国产在线视频 | 久久婷婷人人爽人人干人人爱| 色视频www国产| 麻豆久久精品国产亚洲av| 亚洲婷婷狠狠爱综合网| 尾随美女入室| 天堂√8在线中文| 欧美高清性xxxxhd video| 欧美+亚洲+日韩+国产| 男插女下体视频免费在线播放| 婷婷亚洲欧美| 日本免费a在线| 免费一级毛片在线播放高清视频| 日韩制服骚丝袜av| 日本黄色片子视频| 男女啪啪激烈高潮av片| 国产亚洲av嫩草精品影院| 老熟妇乱子伦视频在线观看| 黄色视频,在线免费观看| 可以在线观看毛片的网站| 丰满人妻一区二区三区视频av| 成熟少妇高潮喷水视频| 2022亚洲国产成人精品| 日韩亚洲欧美综合| 九草在线视频观看| 少妇裸体淫交视频免费看高清| 午夜精品一区二区三区免费看| 国产一区二区在线观看日韩| 人妻系列 视频| 久久精品人妻少妇| 美女cb高潮喷水在线观看| h日本视频在线播放| 少妇裸体淫交视频免费看高清| 国产激情偷乱视频一区二区| 国产精品,欧美在线| 亚洲人成网站在线播| 亚洲欧美精品专区久久| 欧美xxxx性猛交bbbb| 12—13女人毛片做爰片一| videossex国产| 亚洲国产精品合色在线| 一级毛片久久久久久久久女| 亚洲精华国产精华液的使用体验 | 亚洲av不卡在线观看| 成人三级黄色视频| 一级黄片播放器| 精品一区二区三区人妻视频| 成人无遮挡网站| 黄色配什么色好看| 欧美性感艳星| 国产成人午夜福利电影在线观看| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 丰满的人妻完整版| 国产老妇伦熟女老妇高清| 国产极品精品免费视频能看的| 日韩高清综合在线| av天堂中文字幕网| 久久6这里有精品| 欧美+日韩+精品| 亚洲av一区综合| 亚洲,欧美,日韩| 欧美日本亚洲视频在线播放| 久久99热这里只有精品18| 成人二区视频| 国产av在哪里看| 99久久久亚洲精品蜜臀av| 18禁在线无遮挡免费观看视频| 麻豆av噜噜一区二区三区| 自拍偷自拍亚洲精品老妇| 干丝袜人妻中文字幕| 深夜a级毛片| 非洲黑人性xxxx精品又粗又长| 欧美+亚洲+日韩+国产| 少妇熟女欧美另类| 免费看a级黄色片| 一级av片app| 久久精品久久久久久噜噜老黄 | 久久久久久久久久久丰满| 美女国产视频在线观看| 真实男女啪啪啪动态图| 亚洲精品色激情综合| 大又大粗又爽又黄少妇毛片口| 国产一区二区激情短视频| 久久久久久久久中文| 我要搜黄色片| 大香蕉久久网| 国产成人影院久久av| 亚洲一区二区三区色噜噜| 成人性生交大片免费视频hd| 日韩人妻高清精品专区| a级毛色黄片| www日本黄色视频网| 亚洲精品乱码久久久v下载方式| 美女国产视频在线观看| 精品久久久噜噜| 一级毛片电影观看 | 日韩视频在线欧美| 97在线视频观看| 国产白丝娇喘喷水9色精品| 狂野欧美白嫩少妇大欣赏| 精品一区二区免费观看| 欧美高清成人免费视频www| 日韩欧美精品免费久久| 村上凉子中文字幕在线| 成人综合一区亚洲| 夜夜爽天天搞| av天堂在线播放| 国产色爽女视频免费观看| 一夜夜www| 国产精品综合久久久久久久免费| 别揉我奶头 嗯啊视频| 我要看日韩黄色一级片| 亚洲第一区二区三区不卡| 晚上一个人看的免费电影| 国产一区二区激情短视频| 变态另类成人亚洲欧美熟女| 日本黄色片子视频| 天堂√8在线中文| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久精品电影小说 | 看非洲黑人一级黄片| 亚洲av中文字字幕乱码综合| 一级毛片我不卡| 美女大奶头视频| 国产精品野战在线观看| 日韩欧美精品免费久久| 国产 一区精品| 国产欧美日韩精品一区二区| 国模一区二区三区四区视频| 国产真实伦视频高清在线观看| 国产精品电影一区二区三区| 好男人视频免费观看在线| 亚洲欧美精品专区久久| 啦啦啦韩国在线观看视频| 嫩草影院入口| 亚洲成人精品中文字幕电影| 国产欧美日韩精品一区二区| 能在线免费看毛片的网站| 91av网一区二区| 午夜视频国产福利| 美女cb高潮喷水在线观看| 看非洲黑人一级黄片| 欧美高清成人免费视频www| 午夜精品在线福利| 亚洲美女视频黄频| 国产成人一区二区在线| 成人性生交大片免费视频hd| 高清日韩中文字幕在线| 看免费成人av毛片| 99热全是精品| 国产成人精品婷婷| 在线观看66精品国产| 蜜桃亚洲精品一区二区三区| 国产精品日韩av在线免费观看| 成人特级黄色片久久久久久久| 亚洲人成网站在线播|