孫仁斌
(中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢 430074)
本文討論如下具有奇性反應(yīng)函數(shù)的半線性拋物型方程的初邊值問題:
(1)
(2)
為了得到問題(1)的解在有限時(shí)刻猝滅的結(jié)果,需要函數(shù)f(w)、g(t)滿足一些基本條件,設(shè):
f′(w)>0,f″(w)>0,1 (3) 存在正常數(shù)c0,使g(t)≥c0,t>0. (4) 定理1 設(shè)f(s),g(t)滿足(3),(4)式,m>0,則當(dāng)區(qū)域Ω充分大,使得特征值問題(2)的第一特征值λ1 (5) 則問題(1)的解會(huì)在有限時(shí)刻發(fā)生猝滅,且猝滅時(shí)刻T滿足: (6) (7) 由Green公式及邊界條件,有: -λ1y(t),因此,由(4)、(7)式可得: 如果問題(1)的解是整體存在的,則t可以任意大,與條件(5)矛盾,因此一定存在有限時(shí)刻T,使問題(1)的解u(x,t)關(guān)于t只存在于[0,T]上,在時(shí)刻T,解發(fā)生猝滅,令t→T-,得到T滿足(6)式,定理1證畢. 下面在定理1的條件滿足的情況下,討論在猝滅時(shí)刻ut的爆破性質(zhì). 引理1 設(shè)初值函數(shù)u0(x)與g(t)滿足: (8) g′(t)>0,t>0. (9) 則ut(x,t)>0,(x,t)∈Ω×(0,T). 證明令v(x,t)=ut(x,t),在方程兩邊對(duì)t求導(dǎo)得: 利用(8),(9)式與極大值原理,得證. 引理2 在定理1的條件下,問題(1)的猝滅點(diǎn)集是Ω的一個(gè)緊子集. 證明我們可以假設(shè)初值函數(shù)u0(x)滿足: (10) 否則,只要將初始時(shí)刻增加一些即可,其中n是?Ω上的單位外法向量. 本段在球形區(qū)域內(nèi)討論解的整體存在性,設(shè)Ω={x∈RN,|x| (11) (12) (13) 則問題(1)的解是整體存在的. (14) 參 考 文 獻(xiàn) [1] Kawarada H.On solutions of initial-boundary value problem forut=uxx+1/(1-u)[J]. Publ Res Inst Math Sci, 1975,10:729-736. [2] Chang C Y, Chen C S. A numerical method for semilinear singular parabolic quenching problems[J]. Quart Appl Math, 1989,47:45-57. [3] Deng C K, Levine H A.On the blow-up ofutat quenching[J]. Proc Amer Math Soc, 1989,106: 1045-1056. [4] Guo J S.On the quenching behavior of the solution of a semilinear parabolic equation[J]. J Math Anal Appl, 1990,151:58-79. [5] Dai Q Y, Gu Y G.A short note on quenching phenomena for semilinear parabolic equations[J]. J Differential Equations, 1997,137:240-250. [6] Salin T.On quenching with logarithmic singularity[J].Nonlinear Analysis,2003,52:261-289. [7] Zhi Y H , Mu C L, Yuan D M.The quenching phenomenon of a nonlocal semilinear heat equation with a weak singularity [J].Appl Math Comput, 2008, 201:701-709. [8] Zhi Y H , Mu C L.The quenching behavior of a nonlocal parabolic equation with nonlinear boundary outflux [J].Appl Math Comput,2007,184:624-630. [9] Zhi Y H.The boundary quenching behavior of a semilinear parabolic equation[J].Appl Math Comput,2011,218:233-238. [10] Zhou S M, Mu C L, Du Q L, et al.Quenching for a reaction-diffusion equation with nonlinear memory[J].Communl Nonlinear Sci Numer Simulat,2012,17:754-763. [11] Chan W Y.Quenching for nonlinear degenerate parabolic problems[J].J Comp Appl Math,2011,235:3831-3840. [12] Yang Y , Yin J X, Jin C H.A quenching phenomenon for one-dimensionalp-Laplacian with singular boundary flux[J].Appl Math Lett,2010,23:955-959. [13] Marcelo M.Complete quenching for singular parabolic problems[J].J Math Anal Appl,2011, 384:591-596. [14] Chan C Y, Boonklurb R.Solution profikes beyond quenching for a radially symmetric multi-dimensional parabolic problem[J].Nonlinear Analysis, 2013, 76:68-79. [15] Jacques G, Paul S, Sergey S.Complete quenching for a quasilinear parabolic equation[J].J Math Anal Appl,2014, 410:607-624.2 解的整體存在性