• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inherent Relations among the Three Representations of Radar Target Angular Glint

    2014-08-05 03:50:50YinHongchengWangChaoHuangPeikang
    雷達(dá)學(xué)報(bào) 2014年2期
    關(guān)鍵詞:殷紅電波電磁

    Yin Hong-cheng Wang Chao Huang Pei-kang

    (Science and Technology on Electromagnetic Scattering Laboratory,Beijing 100854,China)

    Inherent Relations among the Three Representations of Radar Target Angular Glint

    Yin Hong-cheng*Wang Chao Huang Pei-kang

    (Science and Technology on Electromagnetic Scattering Laboratory,Beijing 100854,China)

    Based on ElectroMagnetic (EM)theory and the monopulse radar angle measurement principle,the formulae of angular glint for complex target are proposed and generally applied to tackling practical problems. The inherent relations among the three representations of radar angular glint,i.e. the phase-front distortion concept,the energy-flow tilt concept,and the monopulse radar angular noise concept,are clearly demonstrated. The two existing concepts of angular glint are also revised. Thus,a firm theoretical foundation for understanding,modeling,simulating and suppressing the angular glint from complex radar targets is established.

    Angular glint; Echo phase; Radar target; ElectroMagnetic (EM)scattering; Radar Cross Section (RCS); Monopulse radar

    CLC index:TN957.52

    1 Introduction

    As an important ElectroMagnetic (EM)scattering signature of radar target other than Radar Cross Section (RCS),angular glint that often causes radar pointing to fall beyond the actual target extent[1]is the major error factors to severely affect the seeker tracking and homing guiding precision. Consequently,the reasonable modeling and simulation of the angle measurement error resulting from angular glint are of great importance for radar engineers to investigate the suppression techniques of angular glint in the design and evaluation of guidance systems.Attentions have been paid to the mechanism as well as calculation techniques of the angular glint for extended radar targets[2-14].

    The phase-front distortion concept of angular glint was initially proposed by Howard[2],who interpreted angular glint as the tilt of wavefront normal resulting from a distortion of target echo signal phase by analyzing the phase front of the echo signal from an extended target consisting of two or multiple collinear,isotropic reflectors. Lindsay[3]extended Howard’s concept to represent glint effect by the phase gradient. Later on,based on an analysis of the echo signal from a target model consisting of a collinear,nonuniform array of electric dipoles by the derivation of the Poynting vector,Dunn and Howard[4]proposed the energyflow tilt concept to explain angular glint as a tilt of the echo signal propagating in space,and showed that two concepts are equivalent. Since then,both concepts from the analysis of two special target models have been widely accepted to explain angular glint phenomenon. Correspondingly,two techniques,i.e. the Phase Gradient Method (PGM)and the Poynting Vector Method (PVM),were adopted to calculate the linear deviations of angular glint for complex target[4-14].

    Although no objection was raised against the correctness of the two concepts,there indeed exists an argument about the equivalence of them. Yin and Huang[15]noticed that the energy-flow propagating direction agrees with the wavefront normal under Geometrical Optics (GO)approximation,and firstly demonstrated that the equivalence between the two concepts exists only when GO approximation is made. Kajenski[16]showed that these two concepts yield identical results of angular glint by considering the polarization effect of the receiving antenna in Poynting vector analysis of a target model consisting of an electric dipole and a magnetic dipole. Further,Yin and Huang[17]analyzed the angular glint of a typical target consisting of two combined electric and magnetic dipoles with arbitrary orientation,and pointed out that both concepts yield identical results only when GO approximation is used and the receiving antenna is linearly polarized. As a complement and support of argumentation in Ref. [17],Wang et al.[18]provided a general discussion about the two concepts of radar target angular glint in view of ElectroMagnetic (EM)theory. From Refs. [2-4]and Refs. [15-17],it was concluded that both concepts are conditionally equivalent. This naturally motivates us to investigate a third problem: whether the angular glint calculated by either of the two concepts is consistent with the angular noise given by the angle error detector of a monopulse radar for an arbitrary target. The answer to the above question involves the joint formulation and analysis of EM scattering problem and monopulse radar angle measurement,and is certainly of great value for better understanding of the concepts as well as for reasonable modeling of angular glint.

    Based on the rigorous EM theory and monopulse radar angle measurement principle,this paper aims at discovering the relationship among phase-front distortion concept,energy-flow tilt concept,and monopulse radar angle measurement principle so as to establish a firm theoretical foundation for simulation and suppression of angular glint. The remainder of the paper is organized as follows. In Section 2,the general formulae of angle measurement errors for sumdifference amplitude-comparison and phasecomparison monopulse radars are derived from EM theory. In Section 3,angular glint deviations obtained by phase-front distortion concept and energy-flow tilt concept are compared and analyzed with the angular errors given by monopulse radar angle measurements. We conclude the paper in Section 4.

    2 Angular Glint in Terms of Monopulse Radar Angle Measurement

    The past literatures clearly demonstrated the equivalence of two concepts of angular glint only when GO approximation is made and the receiving antenna is linearly polarized. In such case,which one is more accurate,or whether the angular glint calculated by either one coincides with angle noise given by angle error detector of monopulse radar,is the problem concerned. Therefore,it is required for us to obtain the general formulae of angular glint for complex target from EM theory and monopulse radar angle measurement principle as a benchmark of the following comparison and analysis.

    Taking two representative cases for instance,the angular errors for sum-difference amplitudecomparison and phase-comparison monopulse radars[19]are formulated from EM theory in this section.

    Fig. 1 ACS definition

    Fig. 2 TCS definition and its relation to ACS

    2.1 Angle measurement error formulation of sumdifference amplitude-comparison monopulse radar

    Assuming that radar antenna axis initially points toward target center o,after radar begins to track target,the interference between echoes from the radiated sources of target makes it no longer aim at point o,and the corresponding angle deviation is namely angular glint of radar target. Let us consider the case in the elevation plane,where the directional functions of two antenna beams are identical to be Fθ(α),α is angle between scattered wave and principal axis of beam,and α0is angle of each principal axis deviated from antenna axis,as shown in Fig. 3.

    For scattered wave with elevation angle ψ,the direction functions of sum beam and difference beam of the receiving antenna are respectively

    From Eqs. (11a)and (11c)in Ref. [18],the received signals in sum and difference channels are respectively

    where k=2π/ λ is the wave number,?==r/r is the radial unit vector of scattering direction,and A(r',θ,?)is defined as the receiving factor which describes polarization effect of the receiving antenna versus the radiated sources or the equivalent currents at r',see also Eq. (11c)in Ref. [18].

    Fig. 3 Antenna beams of sum-difference amplitudecomparison monopulse radar

    The elevation angle ψ and the azimuth angle ξ at r' in ACS can be respectively represented as

    When radar tracks target,ψ(r')is usually very small (less than 2°),then the directional function of the receiving antenna in elevation plane is approximately

    So the received signals in sum and difference channels in elevation plane are given by

    Then,the normalized voltage output by phase detector in elevation plane is

    For sum-difference amplitude-comparison monopulse radar,angle measurement error ψ and the normalized voltage satisfy that

    Using the first order Taylor series expansion,Eq. (8)is approximated as

    From Eqs. (7)and (9),the angle measurement error is

    So angular glint linear deviation in elevation plane is

    Similarly,angular glint linear deviation in azimuth plane is

    2.2 Angle measurement error formulation of sum-difference phase-comparison monopulse radar

    In Fig. 4,the four receiving antennas of sum-difference phase-comparison monopulse radar are respectively located at four vertexes of a square with length 2a. The directional functions of four antenna beams are identical to be F(ψ,ξ),the principal axis of beam is chosen to be X direction.

    The electric field received by No. 1 antenna at

    where R1denotes the distance from the integral source point r' at target to point P1,R1≈r for computing the field amplitudes,and for computing the field phase,

    Fig. 4 Geometry of four antennas of sum-difference phase-comparison monopulse radar

    So the electric field received by No.1 antenna is approximated as

    The electric fields received by Nos. 2,3,4 antennas can be also obtained by similar derivation,which are not given here as the length of paper is limited. In far-field zone of target,ψ(r')and ξ(r')are usually very small,and let F0≈F[ψ(r'),ξ(r')],then

    So the received signals in sum and difference channels are given by

    Considering π/2 phase shift introduced in difference channel,the normalized voltage outputs by phase detectors in elevation plane and azimuth plane are respectively

    For sum-difference phase-comparison monopulse radar,angle measurement error and the normalized voltage satisfy that

    From Eqs. (19)and (20),we obtain angular glint linear deviations as

    2.3 Comparison and analysis of two angle measurement error formulae

    Comparison between Eqs. (11),(12)and (21a),(21b)shows that,angular glint linear deviations are the same for two kinds of angle measurement systems of monopulse radar,which means that angular glint only depends on target itself. The above formulae,which have never been presented in any published radar textbooks as far as we know,are easier to be implemented by the widely used high frequency techniques[20]or numerical methods[21,22]for solving EM scattering problems,and constitute the general expressions of angular glint linear deviations of complex target for arbitrary polarization of the receiving antenna.

    From Eq. (21),the denominator in Re[?]operator is the far-field integral of the radiated source of target,i.e. the total scattered field,and the numerator in Re[?]operator is the far-field integral of this source weighted with its displace-ment from target center in elevation or azimuth plane,named as the source position vector projection weighted scattered field,all sensed by radar antenna,so angular glint linear deviation is shown to be the real part of the ratio of both them.

    The N-point target as a collection of N isotropic point scatterers arbitrarily distributed in space given in radar textbook[23]is adopted to verify Eq. (21). In this case,the receiving factor and the position vectors of the ith scatterer are Aiand ri(i=0,1,…,N),respectively,the observation angles are (θ,?),then the integrals of Eqs. (21a)and (21b)are simplified into the sum of all discrete sources,i.e.

    For an isotropic point scatterer,Aican be given by

    where Eiis the constant amplitude of scatterer,δiis the fixed initial phase of scatterer,and -k? riis the phase delay caused by the path difference of incident wave. Let

    Substituting Eqs. (23)and (24)into Eq. (22),after simplification,Eqs. (22a)and (22b)become

    Eqs. (25a)and (25b)are the well-known conventional expressions of angular glint linear deviations,which verify the correctness of Eq. (21)indirectly. For the N-point target consisting of N anisotropic point scatterers[11],Eq. (21)may be also similarly verified.

    3 Inherent Relationships among the Three Representations

    The expressions of angular glint linear deviation in Section 2,which are obtained from specific angle measurement radar systems based on rigorous EM theory,are general and can be used as benchmark to compare the related concepts and calculation methods.

    A closed comparison between Eq. (24)in Ref. [18]and Eq. (21)shows that,the results obtained by PGM differ from those by monopulse radar angle measurement analysis,which evidently deviates from Howard’s authoritative explanation based on the phase-front distortion concept of angular glint[2]. However,due to the isotropic point scatterer assumption in Howard’s analysis,both the partial derivatives of A(r',θ,?)with respect to θ and ? in Eq. (24)in Ref. [18]equal to zero,the results of PGM are just degenerated into ones of angle measurement analysis. Since scattering element has relation to observation angle in general case,Howard’s phase-front distortion concept should be revised to be that angular glint results from the phase-front distortion of echo signal caused by the variation rate of wave pathdifference of the radiated source of target with observation angle. Furthermore,the first term in Eq. (24a)or Eq. (24b)in Ref. [18]is identical to the result of angle measurement analysis,the additional second term is proportional to k-1and vanishes for k→∞. Therefore,the results of PGM are equivalent to those of angle measurement analysis under GO approximation (k→∞).

    On the other hand,a comparison between Eq. (25)in Ref. [18]and Eq. (21)shows that,the results obtained by PVM differ from those by angle measurement analysis,too. However,if linearly polarized receiver (sin2θr=0 or sinδr=0)is used in Eq. (25)in Ref. [18],both are equivalent. Therefore,the energy-tilt concept should be restated as follows: angular glint of extended target may be represented by the energy-flow direction tilt of the echo signal propagating in space from the radial direction for a linearly polarized receiver.

    For supporting the above discussion,as shown in Fig. 5,we consider an helicopter model with length 17.4 m,width 12.7 m,and height 6.1 m,and illuminated by a plane EM wave with an electric polarization vectorat 10 GHz propagating in the xoy plane,and calculate the appropriate azimuth and elevation data of angular glint linear deviations from Eqs. (24),(25)in Ref. [18]and Eq. (21)by using highfrequency method[24]. The predicted mono-static angular glint linear deviations of this model as a function of azimuth angle ? are respectively presented in Figs. 6 and 7 for linearly and elliptically polarized receivers with??in30°andwhere the differences between the results by PGM or PVM and monopulse radar angle measurement (MRAM)respectively are also given in order to distinguish the discrepancy between the said two results more remarkably. For a linearly polarized receiver,PVM and MRAM lead to the same result,but there is a significant difference between them for an elliptically polarized receiver,and thus PVM can’t give correct results. For any large k,PGM gives the results deviated from MRAM,although the deviations,which depend on observation angle,frequency,polarization,etc.,are relatively small in most situations and can be neglected. Evidently,the inherent relationships among the three representations as mentioned are also indicated.

    Fig. 5 Geometry of a helicopter model

    Fig. 6 Angular glint linear deviation of a helicopter model as a function of azimuth angle ? for a linearly polarized receiver

    Fig. 7 Angular glint linear deviation of a helicopter model as a function of azimuth angle ? for an elliptically polarized receiver

    To summarize,when PGM is applied to calculate angular glint of complex target,there is always a difference between PGM prediction and real value as long as λ≠0,because the rate of change of the amplitude and phase of the radiated source with observation angle is usually unable to be separated from echo signal of target. On the other hand,PVM can yield the same results as angle measurement analysis for the determined linear polarization reception. In this sense,it may be thought that PVM is accurate than PGM. In general,the formulae of angular errors derived from rigorous EM theory and monopulse radar angle measurement principle,i.e. Eqs. (11),(12)or Eqs. (21a),(21b),are suggested to be adopted in tackling practical problems.

    4 Conclusions

    The formulae of angular errors for sumdifference amplitude-comparison and phasecomparison monopulse radars obtained from rigorous EM theory are presented,and may be generally applied to tackling practical problems,from which angular glint linear deviation is shown to be the real part of the ratio of the source position vector projection weighted scattered field and the total scattered field,all received by the radar antenna. Further comparison and discussion about phase-front distortion concept,energy-flow tilt concept,and angle measurement error are given to demonstrate that angular glint of an extended target may be explained as the phasefront distortion of echo signal caused by the variation rate of wave path-difference of the radiated source of target as a function of observation angle,or as a distortion or tilt of the echo signal propagating in space when the receiving antenna is linearly polarized. PGM yields the same results of angular glint as angle measurement analysis under GO approximation,and so does PVM under linearly polarized receiving antenna. This work establishes a theoretical foundation for researchers to reasonably understand,model and simulate the angular glint of complex radar targets.

    Acknowledgment The authors thank Professor Xiaojian Xu of Behang University for his kind assistance in polishing of this paper.

    [1]Barton D K. Modern Radar System Analysis[M]. Dedham,MA: Artech House,1988.

    [2]Howard D D. Radar target glint in tracking and guidance system based on echo signal phase distortion[C]. National Electronics Conference,USA,1959: 840-849.

    [3]Lindsay J E. Angular glint and the moving,rotating,complex radar target[J]. IEEE Transactions on Aerospace and Electronic Systems,1968,4(2): 164-173.

    [4]Dunn J H and Howard D D. Radar target amplitude,angle,and Doppler scintillation from analysis of the echo signal propagating in space[J]. IEEE Transactions on Microwave Theory and Techniques,1968,16(9): 715-728.

    [5]Wright J W. On the statistical modeling of radar targets[D]. [Ph.D. dissertation],University of Illinois,1972.

    [6]Mittra R,Lee S W,and Chuang C A. Analytic radar target modeling[R]. Antenna Laboratory Report,University of Illinois,1972.

    [7]Borden B. A statistical glint/radar cross section model[J]. IEEE Transactions on Aerospace and Electronic Systems,1983,19(5): 781-785.

    [8]Sandhu G S and Saylor A V. A real-time statistical radar target model glint/radar cross section model[J]. IEEE Transactions on Aerospace and Electronic Systems,1985,21(4): 490-507.

    [9]Huang P K and Yin H C. Angular glint of the extended targets[J]. Journal of Systems Engineering and Electronics,1990,12(12): 1-17.黃培康,殷紅成. 擴(kuò)展目標(biāo)的角閃爍[J]. 系統(tǒng)工程與電子技術(shù),1990,12(2): 1-17.

    [10]Sacchini J J. Simulation of a dynamic aircraft radar signature[R]. Air Force Institute of Technology,1996.

    [11]Yin H C,Deng S H,Ruan Y Z,et al.. On the conditions for obtaining angular glint by backscattering echo relative phase[J]. Acta Electronica Sinica,1996,24(9): 36-40.殷紅成,鄧書輝,阮穎錚,等. 利用后向散射回波相對(duì)相位推求角閃爍的條件[J]. 電子學(xué)報(bào),1996,24(9): 36-40.

    [12]Xia Y Q,Yang H L,Xu P G,et al.. Predicting and calculating the glint of radar targets[J]. Journal of Radio Science,2003,18(1): 111-115.夏應(yīng)清,楊河林,徐鵬根,等. 雷達(dá)目標(biāo)角閃爍預(yù)估和計(jì)算[J].電波科學(xué)學(xué)報(bào),2003,18(1): 111-115.

    [13]Wang T,Wang X S,and Xiao S P. Suppressing the angular glint of polarimetric radar[J]. Journal of Radio Science,2004,19(6): 702-707.王濤,王雪松,肖順平. 一種極化測(cè)量雷達(dá)的角閃爍抑制方法[J]. 電波科學(xué)學(xué)報(bào),2004,9(6): 702-707.

    [14]Sui M and Xu X J. Angular glint calculation via adaptive cross approximation algorithm[C]. IEEE International Symposium on Antennas and Propagation,Spokane,Washington,USA,2011: 2746-2749.

    [15]Yin H C and Huang P K. Unification and comparison between two concepts of radar target angular glint[J]. IEEE Transactions on Aerospace and Electronic Systems,1995,31(2): 778-783.

    [16]Kajenski P J. Comparison of two theories of angle glint: polarization consideration[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1): 206-210.

    [17]Yin H C and Huang P K. Further comparison between two concepts of radar target angular glint[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(1): 372-380.

    [18]Wang C,Yin H C,and Huang P K. Comparison between two concepts of angular glint: general considerations[J]. Journal of Systems Engineering and Electronics,2008,19(4): 635-642.

    [19]Leonov A I. Monopulse Radar[M]. Beijing: National Defense Industry Press,1974.列昂諾夫 А И. 單脈沖雷達(dá)(中譯本)[M]. 北京: 國防工業(yè)出版社,1974.

    [20]Weinmann F. Ray Tracing with PO/PTD for RCS modeling of large complex objects[J]. IEEE Transactions on Antennas and Propagation,2006,54(6): 1797-1806.

    [21]Rao S M,Wilton D R,and Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation,1982,30(5): 409-418.

    [22]Song J M and Chew W C. Multilevel fast—multipole algorithm for solving combined field integral equations of electromagnetic scattering[J]. Microwave and Optical Technology Letter,1995,10(10): 14-19.

    [23]Huang P K,et al.. Radar Target Signature Signal[M]. Beijing: Aerospace Press,1993.黃培康,等. 雷達(dá)目標(biāo)特征信號(hào)[M]. 北京: 宇航出版社,1993.

    [24]Wang C. High frequency EM scattering modeling and its application[D]. [Ph.D. dissertation],Communication University of China,2009.王超. 高頻電磁散射建模方法及其工程應(yīng)用[D]. [博士論文],中國傳媒大學(xué),2009.

    Yin Hong-cheng (1967-)was born in Yujiang,Jiangxi province. He received the Ph.D. degree from Southeast University in 1993. He is now a research scientist of Science and Technology on EM Scattering Laboratory. His research interests include EM scattering modeling and radar target signatures.

    E-mail: yinhc207@126.com

    Wang Chao (1979-)was born in Xi’an,Shanxi province. He received the Ph.D. degree from Communication University of China in 2009. He is now a senior engineer of Science and Technology on EM Scattering Laboratory. His research interests include EM scattering modeling and radar target signatures.

    E-mail: wangc207@126.com

    Huang Pei-kang (1935-)was born in Shanghai. He received the B.S. degree from Nanjing Institute of Technology in 1956. He is now an academician of the Chinese Academy of Engineering and director of academic committee of Science and Technology on EM Scattering Laboratory. His research interests include radar target signatures and automatic target recognition.

    E-mail: peikanghuang@vip.sina.com

    雷達(dá)目標(biāo)角閃爍三種表示的內(nèi)在聯(lián)系

    殷紅成 王 超 黃培康

    (電磁散射重點(diǎn)實(shí)驗(yàn)室 北京 100854)

    該文利用嚴(yán)格的電磁散射理論,推導(dǎo)了基于振幅和差式和相位和差式單脈沖雷達(dá)測(cè)角原理的復(fù)雜目標(biāo)角閃爍的一般表達(dá)式,對(duì)雷達(dá)目標(biāo)角閃爍的兩種物理概念提出了新的解釋和認(rèn)識(shí),揭示出波前畸變概念、能流傾斜概念和雷達(dá)角噪聲產(chǎn)生原理三者之間的內(nèi)在關(guān)系。該文工作為角閃爍的正確理解、建模仿真和抑制提供了理論依據(jù)。

    角閃爍;回波相位;雷達(dá)目標(biāo);電磁散射;雷達(dá)散射截面(RCS);單脈沖雷達(dá)

    TN957.52

    A

    2095-283X(2014)02-0119-10

    10.3724/SP.J.1300.2014.14025

    Manuscript received January 29,2014; revised January 29,2014. Published online March 6,2014.

    Supported by the National Government Foundation of China.

    *Corresponding author: Yin Hong-cheng.

    E-mail: yinhc207@126.com.

    猜你喜歡
    殷紅電波電磁
    例談高考有機(jī)化學(xué)考查中的新考點(diǎn)
    永遠(yuǎn)的紅色電波
    中國記者(2021年11期)2021-12-11 09:05:04
    The Speed of Light
    父愛
    那張被口罩勒傷的臉
    瞌睡電波
    幽默大師(2019年11期)2019-11-23 08:47:58
    三維多孔電磁復(fù)合支架構(gòu)建與理化表征
    “電波衛(wèi)士”在行動(dòng)
    掌握基礎(chǔ)知識(shí) 不懼電磁偏轉(zhuǎn)
    月朦朧
    遼河(2015年12期)2016-04-20 03:26:24
    美女视频免费永久观看网站| 欧美日韩一级在线毛片| 欧美变态另类bdsm刘玥| 色婷婷久久久亚洲欧美| 99热网站在线观看| 90打野战视频偷拍视频| 亚洲国产成人一精品久久久| 久久97久久精品| 亚洲国产av影院在线观看| 日韩不卡一区二区三区视频在线| 欧美人与善性xxx| 国产成人欧美| 美女福利国产在线| 操出白浆在线播放| 老汉色av国产亚洲站长工具| 老司机靠b影院| 日本av手机在线免费观看| 日韩av不卡免费在线播放| 18禁国产床啪视频网站| 韩国av在线不卡| 亚洲国产精品国产精品| 久久精品国产综合久久久| 少妇的丰满在线观看| 伊人亚洲综合成人网| 亚洲精华国产精华液的使用体验| 97精品久久久久久久久久精品| 黑人欧美特级aaaaaa片| 中文字幕人妻熟女乱码| 大陆偷拍与自拍| 国产探花极品一区二区| 国产精品久久久久久久久免| 卡戴珊不雅视频在线播放| 少妇人妻久久综合中文| 在线天堂最新版资源| avwww免费| 亚洲精品在线美女| 9191精品国产免费久久| 日韩中文字幕视频在线看片| 天天操日日干夜夜撸| 亚洲成人国产一区在线观看 | 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 亚洲天堂av无毛| 欧美日韩亚洲综合一区二区三区_| 妹子高潮喷水视频| 欧美精品亚洲一区二区| 好男人视频免费观看在线| 精品一区在线观看国产| 亚洲欧美成人综合另类久久久| 久久久亚洲精品成人影院| 黄色一级大片看看| 日韩视频在线欧美| 男人舔女人的私密视频| 老司机影院成人| 两个人看的免费小视频| 人人妻人人澡人人看| 久久久久久久久久久久大奶| 国产精品国产av在线观看| 校园人妻丝袜中文字幕| 免费高清在线观看日韩| 亚洲国产成人一精品久久久| 国产人伦9x9x在线观看| 操出白浆在线播放| 日韩人妻精品一区2区三区| 成年人免费黄色播放视频| 国产乱人偷精品视频| 久久久久网色| 日本爱情动作片www.在线观看| 在线观看三级黄色| 少妇被粗大猛烈的视频| 国产免费福利视频在线观看| 亚洲国产精品999| 国产精品麻豆人妻色哟哟久久| 亚洲精品在线美女| 99久久99久久久精品蜜桃| 夫妻午夜视频| 别揉我奶头~嗯~啊~动态视频 | 国产一区亚洲一区在线观看| 男女边摸边吃奶| 黄色视频不卡| 国产精品香港三级国产av潘金莲 | 水蜜桃什么品种好| 免费观看性生交大片5| 777米奇影视久久| 国产精品无大码| 大陆偷拍与自拍| 欧美激情 高清一区二区三区| 亚洲国产精品999| 中文字幕制服av| 国产精品久久久久成人av| 成人影院久久| 亚洲熟女精品中文字幕| 免费观看av网站的网址| 国产又色又爽无遮挡免| 中文字幕亚洲精品专区| 日韩欧美精品免费久久| 成人18禁高潮啪啪吃奶动态图| 少妇人妻久久综合中文| 国产极品天堂在线| 99久久99久久久精品蜜桃| xxx大片免费视频| 欧美日韩视频精品一区| 天堂中文最新版在线下载| 欧美人与善性xxx| 天天影视国产精品| 啦啦啦啦在线视频资源| 婷婷色综合www| 色视频在线一区二区三区| 久久久久视频综合| 亚洲天堂av无毛| 久久久久久久久久久久大奶| 看十八女毛片水多多多| 国产精品久久久人人做人人爽| 男人舔女人的私密视频| 99热全是精品| 不卡av一区二区三区| 啦啦啦视频在线资源免费观看| av福利片在线| 日韩欧美一区视频在线观看| 卡戴珊不雅视频在线播放| 久久免费观看电影| 久久精品国产a三级三级三级| 伦理电影免费视频| 你懂的网址亚洲精品在线观看| 国产亚洲一区二区精品| 爱豆传媒免费全集在线观看| 欧美人与善性xxx| 亚洲国产精品成人久久小说| bbb黄色大片| 亚洲国产精品999| 下体分泌物呈黄色| 国产精品亚洲av一区麻豆 | 观看美女的网站| 国产精品 欧美亚洲| 最近最新中文字幕免费大全7| 少妇被粗大猛烈的视频| 久久性视频一级片| 亚洲精品视频女| 纵有疾风起免费观看全集完整版| 免费女性裸体啪啪无遮挡网站| videosex国产| 国产探花极品一区二区| 亚洲成人国产一区在线观看 | 波野结衣二区三区在线| 久久女婷五月综合色啪小说| 亚洲成av片中文字幕在线观看| 考比视频在线观看| 天天影视国产精品| 男女午夜视频在线观看| 免费黄网站久久成人精品| 天堂俺去俺来也www色官网| 水蜜桃什么品种好| 在线 av 中文字幕| 无限看片的www在线观看| 中文字幕高清在线视频| 日本av手机在线免费观看| 国产日韩一区二区三区精品不卡| 大片电影免费在线观看免费| 99热网站在线观看| 精品久久久久久电影网| 久久久久精品久久久久真实原创| 男人操女人黄网站| 91国产中文字幕| 婷婷色麻豆天堂久久| 1024视频免费在线观看| 欧美精品一区二区大全| 免费女性裸体啪啪无遮挡网站| 精品国产一区二区三区久久久樱花| 国产成人精品福利久久| 国产欧美亚洲国产| 国产探花极品一区二区| 男女床上黄色一级片免费看| 亚洲欧美成人精品一区二区| 亚洲人成网站在线观看播放| 精品免费久久久久久久清纯 | 久久韩国三级中文字幕| 亚洲精品久久午夜乱码| xxxhd国产人妻xxx| 久久99热这里只频精品6学生| 国产精品女同一区二区软件| 成人漫画全彩无遮挡| 成人影院久久| 中国国产av一级| 国产视频首页在线观看| 久久午夜综合久久蜜桃| 成人18禁高潮啪啪吃奶动态图| 美女主播在线视频| 中文字幕人妻熟女乱码| bbb黄色大片| 精品久久久久久电影网| 极品人妻少妇av视频| 亚洲av男天堂| 操美女的视频在线观看| 操美女的视频在线观看| 成人国产av品久久久| 男女免费视频国产| 亚洲国产精品一区二区三区在线| 满18在线观看网站| 纵有疾风起免费观看全集完整版| 伊人亚洲综合成人网| 亚洲天堂av无毛| 精品国产一区二区久久| bbb黄色大片| 七月丁香在线播放| 99热网站在线观看| 爱豆传媒免费全集在线观看| 亚洲综合色网址| 多毛熟女@视频| 搡老乐熟女国产| 欧美日韩视频高清一区二区三区二| 久久久久久久精品精品| 啦啦啦视频在线资源免费观看| 午夜日韩欧美国产| 中文字幕精品免费在线观看视频| 美国免费a级毛片| 欧美 亚洲 国产 日韩一| 曰老女人黄片| 亚洲三区欧美一区| 中文字幕亚洲精品专区| 久久人人97超碰香蕉20202| 国产在线一区二区三区精| 91成人精品电影| 久久婷婷青草| 尾随美女入室| 美女高潮到喷水免费观看| 国产熟女欧美一区二区| 亚洲欧美一区二区三区黑人| 男的添女的下面高潮视频| 欧美日韩成人在线一区二区| 别揉我奶头~嗯~啊~动态视频 | 天天躁夜夜躁狠狠躁躁| 丁香六月天网| 精品人妻在线不人妻| 宅男免费午夜| 成人免费观看视频高清| 肉色欧美久久久久久久蜜桃| 午夜福利网站1000一区二区三区| 汤姆久久久久久久影院中文字幕| 午夜av观看不卡| 久久这里只有精品19| 啦啦啦在线观看免费高清www| 午夜久久久在线观看| 久久影院123| 少妇猛男粗大的猛烈进出视频| 大片免费播放器 马上看| 在线 av 中文字幕| 韩国高清视频一区二区三区| 亚洲美女搞黄在线观看| 国产xxxxx性猛交| 国产成人一区二区在线| 久久久久久久久久久免费av| 欧美xxⅹ黑人| 大香蕉久久成人网| 国产一区二区在线观看av| 免费久久久久久久精品成人欧美视频| 精品第一国产精品| 午夜91福利影院| 久久久久国产精品人妻一区二区| 久久久久久人人人人人| tube8黄色片| 尾随美女入室| 人体艺术视频欧美日本| 亚洲一区二区三区欧美精品| 国产极品粉嫩免费观看在线| 天美传媒精品一区二区| 纯流量卡能插随身wifi吗| 黄色视频不卡| 一级片'在线观看视频| 99热全是精品| 在线精品无人区一区二区三| 欧美人与性动交α欧美精品济南到| 看免费av毛片| 国产日韩欧美亚洲二区| 男女下面插进去视频免费观看| 亚洲欧洲日产国产| 9热在线视频观看99| 亚洲五月色婷婷综合| 一区福利在线观看| 尾随美女入室| 久久天躁狠狠躁夜夜2o2o | 国产极品天堂在线| 一区在线观看完整版| 亚洲综合色网址| 国产av国产精品国产| 另类精品久久| 天天影视国产精品| 精品少妇黑人巨大在线播放| 国产精品av久久久久免费| 一区二区av电影网| 一级毛片电影观看| 亚洲五月色婷婷综合| 国产一区有黄有色的免费视频| 一区二区日韩欧美中文字幕| videosex国产| 1024视频免费在线观看| 亚洲美女视频黄频| 欧美少妇被猛烈插入视频| 国产1区2区3区精品| 老司机在亚洲福利影院| 熟妇人妻不卡中文字幕| 两个人免费观看高清视频| 夫妻性生交免费视频一级片| av福利片在线| 欧美国产精品一级二级三级| 丝袜美足系列| 青春草国产在线视频| 日韩欧美一区视频在线观看| 人人妻人人澡人人爽人人夜夜| 日韩av不卡免费在线播放| 极品人妻少妇av视频| 天美传媒精品一区二区| 欧美 亚洲 国产 日韩一| 国产精品蜜桃在线观看| 久久狼人影院| 午夜福利在线免费观看网站| 一区二区三区精品91| 亚洲av福利一区| 99久久综合免费| 天堂俺去俺来也www色官网| 天天影视国产精品| videosex国产| 国产精品无大码| 国产成人啪精品午夜网站| 丰满少妇做爰视频| 国产一级毛片在线| 亚洲精华国产精华液的使用体验| 免费女性裸体啪啪无遮挡网站| 99香蕉大伊视频| 亚洲精品国产色婷婷电影| 色婷婷久久久亚洲欧美| 丝瓜视频免费看黄片| 高清视频免费观看一区二区| 中文天堂在线官网| 久久久久国产一级毛片高清牌| 久久 成人 亚洲| 性色av一级| 巨乳人妻的诱惑在线观看| 性高湖久久久久久久久免费观看| 这个男人来自地球电影免费观看 | 自线自在国产av| 中文字幕人妻丝袜一区二区 | 2021少妇久久久久久久久久久| 啦啦啦啦在线视频资源| 人妻 亚洲 视频| 在线看a的网站| 七月丁香在线播放| 卡戴珊不雅视频在线播放| 韩国高清视频一区二区三区| 国产精品久久久人人做人人爽| 国产成人精品久久久久久| 99久久精品国产亚洲精品| 黄色毛片三级朝国网站| 婷婷色av中文字幕| 美女午夜性视频免费| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕人妻熟女乱码| 日韩欧美精品免费久久| 男人舔女人的私密视频| 十八禁网站网址无遮挡| 免费人妻精品一区二区三区视频| 青青草视频在线视频观看| 在线免费观看不下载黄p国产| 国产精品香港三级国产av潘金莲 | 精品福利永久在线观看| 亚洲国产av新网站| 久久精品久久精品一区二区三区| 亚洲精品成人av观看孕妇| 国产一卡二卡三卡精品 | 一本色道久久久久久精品综合| 亚洲婷婷狠狠爱综合网| 18禁观看日本| 国产探花极品一区二区| 在线观看免费日韩欧美大片| 亚洲精品国产色婷婷电影| 日韩 亚洲 欧美在线| 欧美日本中文国产一区发布| 只有这里有精品99| 中文字幕最新亚洲高清| 亚洲精品第二区| 尾随美女入室| 成人手机av| 中国国产av一级| 亚洲熟女毛片儿| 国产不卡av网站在线观看| 视频在线观看一区二区三区| 国产精品欧美亚洲77777| 日韩 亚洲 欧美在线| 秋霞伦理黄片| 亚洲精品,欧美精品| 国产成人欧美在线观看 | 哪个播放器可以免费观看大片| 丰满迷人的少妇在线观看| 麻豆精品久久久久久蜜桃| a级片在线免费高清观看视频| 男女边摸边吃奶| 国产高清国产精品国产三级| 国产片特级美女逼逼视频| 国产又爽黄色视频| 色网站视频免费| 日韩大片免费观看网站| av电影中文网址| 日本91视频免费播放| 欧美最新免费一区二区三区| 少妇被粗大猛烈的视频| 夜夜骑夜夜射夜夜干| 精品亚洲成国产av| 老司机影院毛片| 色婷婷av一区二区三区视频| 啦啦啦中文免费视频观看日本| 久久狼人影院| 操出白浆在线播放| 毛片一级片免费看久久久久| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 一二三四中文在线观看免费高清| 韩国精品一区二区三区| 亚洲av日韩精品久久久久久密 | 国产精品久久久人人做人人爽| 老鸭窝网址在线观看| 男女高潮啪啪啪动态图| 丝袜在线中文字幕| 岛国毛片在线播放| 精品久久久久久电影网| 亚洲国产最新在线播放| 精品亚洲成a人片在线观看| 香蕉丝袜av| 自拍欧美九色日韩亚洲蝌蚪91| www日本在线高清视频| 在线观看一区二区三区激情| 免费观看人在逋| 亚洲精品国产一区二区精华液| 国产精品熟女久久久久浪| 欧美av亚洲av综合av国产av | 人妻人人澡人人爽人人| 少妇精品久久久久久久| 黄频高清免费视频| 激情五月婷婷亚洲| 亚洲国产欧美日韩在线播放| 九草在线视频观看| 亚洲国产av影院在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品久久久av美女十八| 亚洲av欧美aⅴ国产| av天堂久久9| 亚洲国产欧美日韩在线播放| 女人久久www免费人成看片| 狂野欧美激情性xxxx| 久热爱精品视频在线9| 一本一本久久a久久精品综合妖精| 国产精品一国产av| 亚洲成人手机| 久热这里只有精品99| 日韩大码丰满熟妇| 黑人欧美特级aaaaaa片| 日韩视频在线欧美| 三上悠亚av全集在线观看| 热99久久久久精品小说推荐| 国产成人精品福利久久| 纵有疾风起免费观看全集完整版| 亚洲天堂av无毛| 高清av免费在线| 国产精品久久久久成人av| 欧美亚洲日本最大视频资源| 巨乳人妻的诱惑在线观看| 久久鲁丝午夜福利片| 最近最新中文字幕大全免费视频 | 夫妻性生交免费视频一级片| 亚洲综合色网址| 亚洲熟女毛片儿| 国产精品av久久久久免费| 一级片'在线观看视频| 热re99久久精品国产66热6| 国产在线免费精品| 成人国产av品久久久| 天美传媒精品一区二区| 韩国精品一区二区三区| 狠狠婷婷综合久久久久久88av| 精品午夜福利在线看| 麻豆乱淫一区二区| 欧美激情极品国产一区二区三区| 18禁裸乳无遮挡动漫免费视频| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 看非洲黑人一级黄片| 中文字幕精品免费在线观看视频| 欧美黄色片欧美黄色片| 人人妻人人澡人人看| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 亚洲天堂av无毛| 亚洲欧美中文字幕日韩二区| 尾随美女入室| 国产一区二区在线观看av| 久久久久精品性色| 亚洲精品美女久久久久99蜜臀 | bbb黄色大片| 国产精品嫩草影院av在线观看| 国产成人精品福利久久| 国产一区二区 视频在线| 亚洲精品久久成人aⅴ小说| 国产一区二区三区av在线| 国产老妇伦熟女老妇高清| 不卡视频在线观看欧美| 99久久精品国产亚洲精品| 国产黄色视频一区二区在线观看| 深夜精品福利| 高清av免费在线| 国产一级毛片在线| 成年美女黄网站色视频大全免费| 搡老乐熟女国产| 免费黄网站久久成人精品| 汤姆久久久久久久影院中文字幕| 日日摸夜夜添夜夜爱| 天天影视国产精品| 国产精品成人在线| 亚洲欧美一区二区三区久久| 亚洲男人天堂网一区| 国产麻豆69| 色婷婷久久久亚洲欧美| 亚洲国产精品999| 久久亚洲国产成人精品v| 国产一区二区在线观看av| 午夜激情av网站| 啦啦啦 在线观看视频| 国产精品欧美亚洲77777| 熟妇人妻不卡中文字幕| 亚洲精品日韩在线中文字幕| 午夜福利影视在线免费观看| 国产一卡二卡三卡精品 | 啦啦啦中文免费视频观看日本| 精品视频人人做人人爽| 精品国产乱码久久久久久小说| 18禁观看日本| 精品一区二区免费观看| 自线自在国产av| 国产麻豆69| 精品亚洲成国产av| 亚洲精品乱久久久久久| 欧美av亚洲av综合av国产av | 精品亚洲成a人片在线观看| 亚洲成国产人片在线观看| 欧美精品高潮呻吟av久久| 国产一区亚洲一区在线观看| 国产色婷婷99| 一级毛片 在线播放| 亚洲第一av免费看| xxx大片免费视频| 中文字幕制服av| 视频在线观看一区二区三区| 久久精品国产综合久久久| 尾随美女入室| 久久久久视频综合| 男人舔女人的私密视频| 亚洲精品日韩在线中文字幕| 亚洲国产最新在线播放| 国产精品二区激情视频| 美女扒开内裤让男人捅视频| 18禁观看日本| 国产精品久久久久久人妻精品电影 | 亚洲精品久久久久久婷婷小说| 国产人伦9x9x在线观看| 国产乱来视频区| 岛国毛片在线播放| 日日撸夜夜添| 9热在线视频观看99| 久久毛片免费看一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产99久久九九免费精品| 成年av动漫网址| 国产成人精品久久久久久| 国产男女内射视频| 亚洲熟女毛片儿| 日本黄色日本黄色录像| 桃花免费在线播放| 欧美日韩av久久| 久久鲁丝午夜福利片| 免费不卡黄色视频| 成年人午夜在线观看视频| 亚洲精品一二三| 别揉我奶头~嗯~啊~动态视频 | 最新的欧美精品一区二区| 亚洲一区中文字幕在线| 美女脱内裤让男人舔精品视频| 91精品伊人久久大香线蕉| 亚洲,欧美,日韩| 黑人欧美特级aaaaaa片| h视频一区二区三区| 一边亲一边摸免费视频| 女人高潮潮喷娇喘18禁视频| 少妇人妻 视频| 国产精品久久久久久久久免| 久久99精品国语久久久| 少妇人妻精品综合一区二区| av网站免费在线观看视频| a级毛片黄视频| 制服丝袜香蕉在线| 国语对白做爰xxxⅹ性视频网站| 19禁男女啪啪无遮挡网站| 观看美女的网站| 亚洲国产精品999| 亚洲情色 制服丝袜| 少妇被粗大的猛进出69影院| 大片电影免费在线观看免费| 日韩一区二区视频免费看| 在线观看三级黄色| 一个人免费看片子| 亚洲欧美成人综合另类久久久| 天天躁夜夜躁狠狠躁躁| av福利片在线| 丁香六月天网| 国产97色在线日韩免费| 国产野战对白在线观看| 中文字幕色久视频| 午夜影院在线不卡| 少妇的丰满在线观看|