• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneity of Adsorption Sites and Adsorption Kinetics of n-Hexane on Metal-Organic Framework MIL-101(Cr)☆

    2014-07-25 11:29:31XuejiaoSunJinpengMiaoJingXiaoQibinXiaZhenxiaZhao

    Xuejiao Sun,Jinpeng Miao,Jing Xiao,Qibin Xia*,Zhenxia Zhao

    Separation Science and Engineering

    Heterogeneity of Adsorption Sites and Adsorption Kinetics of n-Hexane on Metal-Organic Framework MIL-101(Cr)☆

    Xuejiao Sun,Jinpeng Miao,Jing Xiao,Qibin Xia*,Zhenxia Zhao

    School of Chemistry&Chemical Engineering,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control,South China University of Technology, Guangzhou 510640,China

    The heterogeneity of adsorption sites and adsorption kinetics of n-hexane on a chromium terephthalate-based metal-organic framework MIL-101(Cr)were studied by gravimetric method and temperature-programmed desorption(TPD)experiments.The MIL-101 crystals were synthesized by microwave irradiation method.The adsorption isotherms and kinetic curves of n-hexane on the MIL-101 were measured.Desorption activation energiesofn-hexanefromtheMIL-101wereestimatedbyTPDexperiments.Theresultsshowedthatequilibrium amount of n-hexane adsorbed on the MIL-101 was up to 5.62 mmol·g?1at 298 K and 1.6×104Pa,much higher than that of some activated carbons,zeolites and so on.The isotherms of n-hexane on the MIL-101 could be well f i tted with Langmuir-Freundlich model.TPD spectra exhibit two types of adsorption sites on the MIL-101 with desorption activation energies of 39.41 and 86.69 kJ·mol?1.It ref l ects the surface energy heterogeneity on the MIL-101 frameworks for n-hexane adsorption.The diffusion coeff i cients of n-hexane are in the range of(1.35-2.35)×10?10cm2·s?1with adsorption activation energy of 16.33 kJ·mol?1.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    Adsorption

    Kinetics

    n-Hexane

    MIL-101

    Heterogeneity

    1.Introduction

    Volatile organic compounds(VOCs)are usually known as chemical pollutants as they are often noxious,malodorous and carcinogenic evenatverylowconcentrations[1,2].n-Hexaneisa typical and harmful VOC.In industry,it is widely used not only in the formulation of glues for shoes,leather products,and roof i ng,but also as organic solvent for extracting cooking oils from seeds,for cleansing and degreasing a variety of items,and in textile manufacturing.In addition,hexanes are signif i cant constituents of gasoline.It is frequently detected in gasoline depots,petrochemical facilities and chemical plants due to its emission. The emission of n-hexane causes air pollution and damage to human health such as occupational neuropathies in shoemakers,purse makers and furniture f i nishers.Therefore,the control and abatement of its emission are imperative.Various techniques have been proposed for the removal of VOCs,including thermal or catalytic oxidation, biof i ltration,absorption,adsorption,condensation,membrane separation,etc.[3-5].Among them,adsorption is one of the most effective techniques for VOC removal due to its easy operation and low cost, being able to selectively trap low concentration of VOCs[6-9].

    Adsorbent is the core of adsorptiontechnique.Adsorbents suchas zeolites,mesoporous silicas,adsorptive resins,and activated carbons have been studied widely for n-hexane removal[10-12].M?ller et al.[13] measured the adsorption capacity and diffusion coeff i cient for n-hexane and reported the maximum n-hexane uptakes of 1.54 mmol·g?1at 377 K and 1.09 mmol·g?1at 303 K on 5A-zeolite and ZSM-5,respectively.Zhao et al.[14]reported that the adsorption capacities of MCM-41,activated carbon and hydrophobic zeolite for n-hexane were 6.38, 3.59 and 2.32 mmol·g?1,respectively,at 295 K and 1.6×104Pa.

    Currently,metal organic frameworks are rapidly developed as potential adsorbents for VOCs due to their extra-rich porosity,regular porous structures,and manipulative pore sizes and chemical functionalities via the modif i cation of metal groups or organic linkers [15-18].Trung et al.[19]reported n-hexane uptakes of 2.98 and 2.24 mmol·g?1at 313 K on MIL-53(Cr)and MIL-53(Al),respectively. It is worthy of attention that MIL-101,one of the most porous materials to date[20-22],possesses an extra-high specif i c surface area and pore volume with the framework structure of microporous apertures and mesoporous cages.MIL-101alsoshows outstandingthermalandchemical stability.Therefore,MIL-101attractsmoreattentioninthepotential application of gas adsorption.Huang et al.[23]reported the n-hexane uptake of 0.07 mmol·g?1at 303 K and 2.25×102Pa on the MIL-101. Hong et al.[24]reported the maximum n-hexane adsorption capacity of 12.6 mmol·g?1at 303 K.However,the study on adsorption kinetics and desorption of n-hexane on MIL-101 is rare[23,25],while theadsorption kinetics and desorption properties are important for evaluating an adsorbent and designing adsorption process.

    The objective of this work is to investigate the adsorption equilibrium and kinetics of n-hexane on MIL-101,since n-hexane is widely used as organic solvent and is a model molecule representing a categoryofsmallnon-polarmolecules.TheMIL-101crystalsaresynthesized by the microwave irradiation method.The adsorption isotherms and kinetics of n-hexane on MIL-101 samples are measured by gravimetric method.The diffusion coeff i cients and adsorption activation energy of n-hexane on the MIL-101 are estimated.Temperature program desorption(TPD)experiments are conducted to evaluate the interaction between n-hexane and MIL-101.The adsorption and desorption characteristics of n-hexane on MIL-101 samples are reported.

    2.Experimental

    2.1.Materials

    Terephthalic acid(H2BDC,99%,A.R.)was purchased from Alfa Chemicals,chromium nitrate nonahydrate(Cr(NO3)3?9H2O,99%, A.R.)was purchased from Fuchen Chemicals Co.Ltd.of Tianjin (China),and hydrof l uoric acid(A.R.)was purchased from Guangzhou Chemicals Co.Ltd.(China).

    2.2.Synthesis of MIL-101 crystals

    MIL-101 was synthesized using microwave synthesis method,with the general procedure described elsewhere[26].Firstly,Cr(NO3)3·9H2O (2.395 g,6 mmol)and 1,4-benzene dicarboxylic acid(0.994 g,6 mmol) were dissolved in deionized water(24 mL),and hydrof l uoric acid(0.26 mL)wasaddedtothemixture.Secondly,thereactantmixturewasloaded intoaTef l onautoclave,whichwassealedandplacedinamicrowaveoven (Mars-5,CEM).Theautoclavewas heated to 483 K in 10 min and kept at this temperaturefor 60 min,and thencooledtoroom temperaturefor 3 h.Fine green colored powder was obtained as the major product,while a signif i cant amount of recrystallized H2BDC could be found.To acquire pure crystalline material with high porosity and surface area,a series of purif i cations were applied to remove unreacted H2BDC and other guest molecules in the sample.The green product was doubly f i ltered with glass f i lters to remove residual terephthalic acid.The product was washed with N,N-dimethylformamide,hot ethanol and NH4F solution(30 mmol·L?1),and dried at 423 K for 12 h.Finally,a crystalline material of MIL-101 was obtained.

    2.3.Characterization of MIL-101 crystals

    ThepowderX-raydiffraction(XRD)characterizationwasperformed on a D8 Advance diffractometer(Bruker,German)operating at 40 kV and 40 mA by using Cu-Kαradiation(λ=0.1540 nm)with a scan speed of 2(°)·min?1and a step size of 0.02°in 2θ.

    The textural parameters of MIL-101 crystals were measured on a Micrometrics gas adsorption analyzer ASAP 2010 instrument with commercial software for calculation and analysis.

    2.4.n-Hexane vapor adsorption experiments

    n-Hexane adsorption experiments were carried out by using the intelligent gravimetric analyzer(IGA-003,Hiden)for measurement of n-hexane isotherms.An ultra-sensitive microbalance of resolution 0.2 μg is mounted in the thermostated heatsink with high precision temperature control.The sample was about 40 mg for each run.Before measurements,the sample in the vessel of IGA-003 was vacuumed up to 3-5 Pa and outgassed at 423 K for about 5 h.The measurements were performed at four temperatures(288 K,298 K,308 K and 318 K) in terms of the built-in water baths.The uptakes of n-hexane on the sample can be calculated by

    q=1000( We?Wa)

    (1)

    e

    Wa

    q=1000( Wt?Wa)

    (2)

    t

    Wa

    where Weand Wtare the amounts of MIL-101 sample at equilibrium and time t,respectively,Wais the initial mass of sample,qeand qtare n-hexane amounts adsorbed per gram of adsorbent at equilibrium and time t,respectively.

    2.5.Temperature programmed desorption experiments

    In ordertoestimatedesorptionactivation energyof n-hexaneon the MIL-101 sample,TPD experiments were carried out with gas chromatography workstation(GC-9560,Haixin Company,China).TPD experiments were conducted at different heating rates from 4 to 9 K·min?1. For each run,the MIL-101 sample with adsorbed n-hexane vapor was packed in a stainless steel reaction tube with inner diameter of 0.3 cm and packed length of about 0.5 cm.The stainless tube was placed in a reaction furnace and heated in the high-purity N2fl ow at a constant fl ow rate of 50 mL·min?1.The desorbed n-hexane was measured on line by GC-9560 chromatograph with a fl ame ionization detector at theoutletofthereactiontubeandef fl uentcurves(TPDcurves)wererecorded.The detailed procedure can be found elsewhere[27-29].

    Fig.1.Powder XRD pattern(a)and nitrogen isotherms at 77 K(b)of synthesized MIL-101.

    Fig.2.Isotherms of n-hexane on MIL-101 crystals at different temperatures.Points—experimental data;solid curves—Langmuir-Freundlich equation.

    3.Results and Discussion

    3.1.Physical characteristics of MIL-101 crystals

    Fig.1(a)shows the powder XRD pattern of the synthesized MIL-101 sample.The main diffraction peaks appear at 2θ=3.29°,5.88°,8.44°, 9.06°,10.34°and 16.53°,consistent with those reported in[30], conf i rmingtheformationofMIL-101structure.Fig.1(b)showsnitrogen adsorption and desorption isotherms of the MIL-101,presentingtypical type-I prof i les with secondary uptakes,which is a characteristic of the two microporous windows[24].With the textural parameters measured and analysis on N2adsorption isotherms,the Langmuir surface area and BET surface area of the MIL-101 are obtained as 4792 and 3360 m2·g?1,respectively.

    3.2.Adsorption isotherms of n-hexane on MIL-101 crystals

    Fig.2 presents the adsorption isotherms of n-hexane vapor on the MIL-101.The n-hexane uptake increases drastically with pressure at low pressures,attributed to the micropore adsorption.At higher partial pressures,n-hexane adsorption capacities remain nearly the same at different temperatures,possibly due to the commensurate adsorption of n-hexane on the MIL-101,in which the molecular size and shape of guest molecule result in specif i c orientation and the adsorption uptake (at equilibrium)is compatible and self-consistent with the crystal symmetry and pore structure of MIL-101[31].n-Hexane presents an adsorption limit,so its adsorption capacity is no longer affected by temperature(288-318 K)at higher partial pressures.For comparison, Table1listsn-hexaneadsorptioncapacitiesofsomeadsorbents.Theadsorption capacity of n-hexane on the MIL-101 synthesized in this work is up to 5.62 mmol·g?1at 298 K and 1.6×104Pa,which is 1.9 times than that of MIL-53(Cr),1.6 times than that of activated carbon BPL, 2.4 times than that of hydrophobic zeolite Y,and 3.9 times than that of TNTs-S-2.At higher pressure,the adsorption capacity of the MIL-101 is lower than that of MCM-41,but at low pressure (7×102Pa),it is 8.8 times that of MCM-41,suggesting that the MIL-101 sample is suitable to capture n-hexane at low concentration due to its rich micropores.

    TheLangmuir-Freundlichequationisappliedtof i ttheexperimental isotherm data of n-hexane in order to describe the adsorption of n-hexane on the MIL-101.The equation can be expressed as

    Table 2Parameters of Langmuir-Freundlich model for n-hexane adsorption on the MIL-101 sample

    where q is the adsorbed amount in equilibrium with the concentration of adsorbate in gas phase,qmaxis the maximum adsorption amount,P is the equilibrium pressure of adsorbate in gas phase,K is equilibrium constant of adsorption,and n is the Langmuir-Freundlich coeff i cient.

    Table 2 lists theparameters of Langmuir-Freundlich model withlinear regression of n-hexane adsorption data on MIL-101 samples.The high regression coeff i cients R2indicate that the model represents the isotherms well.The value of K gradually decreases with temperature, suggesting that physisorption is dominant in this system.Coeff i cient n ref l ectsthedegreeofheterogeneityofanadsorbent.Forahomogeneous material,n=1 and the Langmuir-Freundlich equation become the Langmuir isotherm equation.If parameter n of a given system deviates from 1,the system is considered to be heterogeneous[36,37].In this work,n<1,indicating heterogeneous surfaces of MIL-101 sample. Fig.2 also shows that the Langmuir-Freundlich model is suitable to describe the adsorption behavior of n-hexane on the MIL-101.

    3.3.Desorption activation energy of n-hexane on the MIL-101

    Table 1Equilibrium amounts of n-hexane adsorbed on MIL-101 samples and other adsorbents

    TPD experiments were conducted to estimate desorption activation energy of n-hexane on the MIL-101 to see how strongly n-hexane is bound to the surface.Fig.3 presents TPD prof i les of n-hexane on the MIL-101,each with two desorption peaks representingtwo types of adsorptive sites.This is a direct ref l ection of the surface energy heterogeneity on the MIL-101 frameworks for n-hexane adsorption.These two types of sites are considered to correspond to the pore surfaces of framework and open Cr3+metal centers[38].The f i rst desorption peak at lower temperature comes from n-hexane desorption from the pore surfaces of MIL-101,while the second at higher temperature isfor n-hexane desorption from unsaturated Cr3+mental centers.The peak temperature Tpcorresponding to the desorption peak of TPD curve increases with the increase of heating rate.

    Knowinga seriesofTpatdifferentheatingrates,we can estimatedesorption activated energy Edof n-hexane on the MIL-101 sample by using Polanyi-Wigner equation,which is expressed as[3]

    Fig.3.TPD prof i les of n-hexane on the MIL-101 at different heating rates.

    Fig.4.Lineardependencebetweenln[(Tp2R)/βH]and1/TpforTPDofn-hexaneonMIL-101.

    whererdisthedesorptionrateofcomponentAfromunitmassofadsorbent,θAis the transient coverage of component A,t is the time,k0is the desorptionrate coeff i cient,mis theorderof desorptionprocess,and Ris the gas constant.

    It is assumed that the desorption process follows the f i rst order kinetics,so the following equation is deduced from Eq.(4)[3]for calculating the activation energy of desorption

    where βHis the heating rate.

    Fig.4 depicts the linear dependence between ln[(Tp2R)/βH]and 1/Tpfor estimation of desorption activation energy of n-hexane on the MIL-101.Edis obtainedfromtheslope Ed/R and k0isfrom the intercept.

    Table 3 lists the desorption activation energy Edof n-hexane corresponding to two types of adsorptive sites on the MIL-101 sample.The two desorption activation energies are 39.41 and 86.69 kJ·mol?1, corresponding to the n-hexane desorption on the pore surfaces of framework and on the open Cr3+metal centers,respectively[38].A comparison for the desorption activation energies of n-hexane on two types of adsorption sites indicates that the interaction between n-hexane and open Cr3+metal sites is much stronger than that between n-hexane and surfaces of framework pores.

    Fig.5.Kinetic curves of n-hexane adsorption on the MIL-101 crystals with different n-hexane partial pressures at 290.5 K.

    Fig.6.Fractional uptakes of n-hexane on the MIL-101 at different n-hexane partial pressures at 290.5 K.

    Table 3Desorption peak temperatures of n-hexane at different heating rates and desorption activation energies of hexane on the MIL-101 crystals

    3.4.n-Hexane adsorption kinetics

    Fig.5showsthekineticcurvesofn-hexaneadsorptiononMIL-101at different n-hexane pressures.The equilibrium adsorption capacity increases with pressure.In order to investigate the effects of partial pressure of n-hexane on diffusion rate,the adsorption kinetic curves are plotted as the fractional uptake,the ratio of uptake(qt)at time t to equilibrium uptake(qe),versus time t,as shown in Fig.6.The fractional transient adsorption curves of n-hexane at different n-hexane partial pressures ranging from 100 to 600 Pa are essentially the same, suggesting a negligible effect of n-hexane uptake on diffusivity within the MIL-101.

    Fig.7showstransientfractional uptakesof n-hexaneontheMIL-101 at different temperatures.Equilibrium adsorption of n-hexane can beachievedwithin9-12min.Accordingtothesekineticuptakecurves,the intracrystalline diffusion coeff i cient of n-hexane in the MIL-101 sample can be obtained.Assuming that the adsorbent is spherical particles,we candescribethetransientfractionuptakesbythefollowingequationfor fractional uptake qt/qeless than 70%[7,8]

    Fig.7.Fractional uptakes of n-hexane on MIL-101 at different temperatures and 600 Pa.

    Fig.8.Plots of fractional n-hexane uptakes(qt/qe)against the square root of adsorption time at different temperatures and 600 Pa.

    where DMis theintracrystallinediffusion coeff i cient and rcis thecrystal radius.

    AccordingtothedatainFig.7,Fig.8givesfractionaluptake(qt/qe)of n-hexane versus the square root of adsorption time at different temperatures on the basis of Eq.(6).The diffusion time constants(DM/rc2,s?1) are obtained from the slope of qt/qeversus t0.5,which are listed in Table 4.

    The data in Table 4 indicate that diffusion time constants(DM/rc2)of nhexane on the MIL-101 are in the range of(1.35-2.35)×10?4/s?1. Corresponding diffusion coeff i cients(DM)are(1.35-2.35)×10?10/cm2·s?1withtheaverageparticleradiusrcof10μm.Thediffusioncoeff i cientsincrease withtemperature.Itmeansthatn-hexanediffusionintheMIL-101isanactivated process.

    Table 4n-Hexane diffusion constants and diffusivity for MIL-101 measured in this work

    Fig.9.Arrhenius plot of n-hexane diffusivity in MIL-101 crystals.

    According to the Arrhenius equation,the relationship between DMand activation energy(Ea)for n-hexane adsorption in the MIL-101 is expressed by

    Fig.9 shows that the Arrhenius plot of lnDMversus 1/T yields a line. The activation energy Eafor diffusion of n-hexane on MIL-101 is found to be 16.33 kJ·mol?1from the slope of straight line,which is higher than that of ethyl acetate on the MIL-101(8.36 kJ·mol?1)[7].

    4.Conclusions

    The adsorption isotherms of n-hexane on the MIL-101 f i t the Langmuir-Freundlich isotherm model well,where n<1 suggests a heterogeneous nature of MIL-101 surfaces for n-hexane adsorption.The amount of n-hexane adsorbed on the MIL-101 is up to 5.62 mmol·g?1at 298 K and 1.6×104Pa,much higher than some other adsorbents, suchasactivatedcarbonBPL,zeoliteY,andACC_864.TPDspectraexhibit two types of adsorption sites with desorption activation energies of 39.41 and 86.69 kJ·mol?1,corresponding to the surfaces of framework pores and Cr3+metal centers,respectively.This is a direct ref l ection of thesurfaceenergy heterogeneity.The diffusion coeff i cients of n-hexane on the MIL-101 are in the range of(1.35-2.35)×10?10cm2·s?1with the adsorption activation energy of 16.33 kJ·mol?1.

    Acknowledgments

    The authors gratefully thank Ms.Liyuan Tang at Sun Yat-sen University for her assistance with practical measurement.

    [1]E.Dimotakis,M.Cal,J.Economy,M.Rood,S.Larson,Chemically treated activated carbon cloths for removal of volatile organic carbons from gas streams:evidence for enhanced physical adsorption,Environ.Sci.Technol.29(7)(1995)1876-1880.

    [2]F.Qu,L.Z.Zhu,K.Yang,Adsorption behaviors of volatile organic compounds(VOCs) on porous clay heterostructures(PCH),J.Hazard.Mater.170(1)(2009)7-12.

    [3]Z.X.Zhao,X.M.Li,S.S.Huang,Q.B.Xia,Z.Li,Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation,Ind.Eng.Chem.Res.50(4)(2011)2254-2261.

    [4]S.K.Xian,X.L.Li,F.Xu,Q.B.Xia,Z.Li,Adsorption isotherms,kinetics,and desorption of 1,2-dichloroethane on chromium-based metal organic framework MIL-101,Sep. Sci.Technol.48(10)(2013)1479-1489.

    [5]P.Le Cloirec,Adsorption onto activated carbon f i ber cloth and electrothermal desorption of volatile organic compound(VOCs):a specif i c review,Chin.J.Chem. Eng.20(3)(2012)461-468.

    [6]V.K.Gupta,N.Verma,Removal of volatile organic compounds by cryogenic condensation followed by adsorption,Chem.Eng.Sci.57(14)(2002)2679-2696.

    [7]J.Shi,Z.X.Zhao,Q.B.Xia,Y.W.Li,Z.Li,Adsorption and diffusion of ethyl acetate on the chromium-based metal-organic framework MIL-101,J.Chem.Eng.Data 56(8) (2011)3419-3425.

    [8]Z.X.Zhao,X.M.Li,Z.Li,Adsorptionequilibriumandkineticsofp-xyleneonchromiumbased metal organic framework MIL-101,Chem.Eng.J.173(1)(2011)150-157.

    [9]X.Li,Z.Li,L.a.Luo,Adsorption kinetics of dibenzofuran in activated carbon packed bed,Chin.J.Chem.Eng.16(2)(2008)203-208.

    [10]X.S.Zhao,G.Q.Lu,X.Hu,Characterization of the structural and surface properties of chemically modif i ed MCM-41 material,Microporous Mesoporous Mater.41(1-3) (2000)37-47.

    [11]L.Zhang,X.F.Song,J.Wu,C.Long,A.M.Li,Q.X.Zhang,Preparation and characterization of micro-mesoporoushypercrosslinked polymericadsorbent andits application for the removal of VOCs,Chem.Eng.J.192(2012)8-12.

    [12]E.N.Rudisill,J.J.Hacskaylo,M.D.Levan,Coadsorption of hydrocarbons and water on BPL activated carbon,Ind.Eng.Chem.Res.31(4)(1992)1122-1130.

    [13]A.M?ller,A.Pessoa Guimaraes,R.Gl?ser,R.Staudt,Uptake-curves for the determination of diffusion coeff i cients and sorption equilibria for n-alkanes on zeolites, Microporous Mesoporous Mater.125(1)(2009)23-29.

    [14]X.S.Zhao,Q.Ma,G.Q.Lu,VOC removal:comparison of MCM-41 with hydrophobic zeolites and activated carbon,Energy Fuel 12(6)(1998)1051-1054.

    [15]N.Stock,S.Biswas,Synthesis of metal-organic frameworks(MOFs):routes to various MOF topologies,morphologies,and composites,Chem.Rev.112(2)(2012) 933-969.

    [16]R.Q.Snurr,J.T.Hupp,S.B.T.Nguyen,Prospects for nanoporous metal-organic materials in advanced separations processes,AICHE J.50(6)(2004)1090-1095.

    [17]Z.J.Zhang,S.S.Huang,S.K.Xian,H.X.Xi,Z.Li,Adsorption equilibrium and kinetics of CO2on chromium terephthalate MIL-101,Energy Fuel 25(2)(2011)835-842.

    [18]I.G.Georgiev,L.R.MacGillivray,Metal-mediated reactivity in the organic solid state: from self-assembled complexes to metal-organic frameworks,Chem.Soc.Rev.36 (8)(2007)1239-1248.

    [19]T.K.Trung,P.Trens,N.Tanchoux,S.Bourrelly,P.L.Llewellyn,S.Loera-Serna,C.Serre, T.Loiseau,F.Fajula,G.Férey,Hydrocarbon adsorption in the f l exible metal organic frameworks MIL-53(Al,Cr),J.Am.Chem.Soc.130(50)(2008)16926-16932.

    [20]B.Chen,N.W.Ockwig,A.R.Millward,D.S.Contreras,O.M.Yaghi,High H2adsorption in a microporous metal-organic framework with open metal sites,Angew.Chem. 117(30)(2005)4823-4827.

    [21]G.Férey,C.Mellot-Draznieks,C.Serre,F.Millange,J.Dutour,S.Surblé,I.Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area,Science 309(5743)(2005)2040-2042.

    [22]Y.K.Hwang,D.Y.Hong,J.S.Chang,S.H.Jhung,Y.K.Seo,J.Kim,A.Vimont,M.Daturi,C. Serre,G.Férey,Amine grafting on coordinatively unsaturated metal centers of MOFs:consequences for catalysis and metal encapsulation,Angew.Chem.Int.Ed. 47(22)(2008)4144-4148.

    [23]C.Y.Huang,M.Song,Z.Y.Gu,H.F.Wang,X.P.Yan,Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance,Environ.Sci.Technol.45(10)(2011)4490-4496.

    [24]D.Y.Hong,Y.K.Hwang,C.Serre,G.Ferey,J.S.Chang,Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites:surfacefunctionalization,encapsulation,sorption and catalysis,Adv.Funct.Mater.19(10)(2009)1537-1552.

    [25]T.K.Trung,N.A.Ramsahye,P.Trens,N.Tanchoux,C.Serre,F.Fajula,G.Férey,Adsorption of C5-C9 hydrocarbons in microporous MOFs MIL-100(Cr)and MIL-101(Cr):a manometric study,Microporous Mesoporous Mater.134(1)(2010)134-140.

    [26]S.H.Jhung,J.H.Lee,J.W.Yoon,C.Serre,G.Ferey,J.S.Chang,Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability,Adv.Mater.19 (1)(2007)121-124.

    [27]Z.J.Zhang,S.K.Xian,H.X.Xi,H.H.Wang,Z.Li,Improvement of CO2adsorption on ZIF-8 crystals modif i ed by enhancing basicity of surface,Chem.Eng.Sci.66(20) (2011)4878-4888.

    [28]J.C.Fang,X.Chen,Q.B.Xia,H.X.Xi,Z.Li,Effect of relative humidity on catalytic combustion of toluene over copper based catalysts with different supports,Chin.J.Chem. Eng.17(5)(2009)767-772.

    [29]M.X.Yu,Z.Li,Q.B.Xia,H.X.Xi,S.W.Wang,Desorption activation energy of dibenzothiophene on the activated carbons modif i ed by different metal salt solutions,Chem.Eng.J.132(1-3)(2007)233-239.

    [30]J.F.Yang,Q.Zhao,J.P.Li,J.X.Dong,Synthesis of metal-organic framework MIL-101in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,Microporous Mesoporous Mater.130(1-3)(2010)174-179.

    [31]H.Wu,Q.Gong,D.H.Olson,J.Li,Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks,Chem.Rev.112(2)(2012)836.

    [32]H.Xu,B.Yang,J.Jiang,L.Jia,M.He,P.Wu,Post-synthesis and adsorption properties of interlayer-expanded PLS-4 zeolite,Microporous Mesoporous Mater.169(2012) 88-96.

    [33]W.Makowski,M.Le?ańska,M.Mańko,J.W?och,Porosity and surface properties of mesoporous silicas and their carbon replicas investigated with quasi-equlibrated thermodesorption of n-hexane and n-nonane,J.Porous.Mater.17(6)(2010) 737-745.

    [34]M.Ramos,P.Bonelli,A.Cukierman,M.Ribeiro Carrott,P.Carrott,Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor,J.Hazard.Mater.177(1)(2010)175-182.

    [35]C.K.Lee,S.K.Fen,H.P.Chao,S.S.Liu,F.C.Huang,Effects of pore structure and surface chemical characteristics on the adsorption of organic vapors on titanate nanotubes, Adsorption 18(2012)1-9.

    [36]S.Sharma,G.P.Agarwal,Interactions of proteins with immobilized metal ions:a comparative analysis using various isotherm models,Anal.Biochem.288(2) (2001)126-140.

    [37]R.J.Umpleby,S.C.Baxter,Y.Chen,R.N.Shah,K.D.Shimizu,Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm,Anal.Chem. 73(19)(2001)4584-4591.

    [38]P.Chowdhury,C.Bikkina,S.Gumma,Gas adsorption properties of the chromiumbased metal organic framework MIL-101,J.Phys.Chem.C 113(16)(2009) 6616-6621.

    17 July 2013

    ☆Supported by the National Natural Science Foundation of China(21276092),the Research Foundation of State Key Lab of Subtropical Building Science of China (C713001z),the Science and Technology Research Foundation of Guangzhou City,China (200910814001)andGuangdongProvincialKeyLaboratoryofAtmospheric Environment and Pollution Control(2011A060901011),and the Fundamental Research Funds for the Central Universities(2013ZZ0060 and 2013ZM0056).

    *Corresponding author.

    E-mail address:qbxia@scut.edu.cn(Q.Xia).

    http://dx.doi.org/10.1016/j.cjche.2014.06.031

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 9 December 2013

    Accepted 6 January 2014

    Available online 1 July 2014

    高潮久久久久久久久久久不卡| 国产精品1区2区在线观看.| 最近最新中文字幕大全电影3 | 高清在线国产一区| 操美女的视频在线观看| 国产欧美日韩一区二区精品| 亚洲人成电影观看| 亚洲一区二区三区欧美精品| 日韩高清综合在线| 亚洲五月婷婷丁香| 日韩大码丰满熟妇| 男人的好看免费观看在线视频 | 国产伦人伦偷精品视频| 99精国产麻豆久久婷婷| 两个人免费观看高清视频| avwww免费| 国产在线观看jvid| 啦啦啦免费观看视频1| 午夜a级毛片| 国产精品香港三级国产av潘金莲| 国产av一区二区精品久久| 亚洲成人国产一区在线观看| 三级毛片av免费| 久久久精品欧美日韩精品| 91av网站免费观看| 黄频高清免费视频| 大型av网站在线播放| 亚洲黑人精品在线| 亚洲一码二码三码区别大吗| a在线观看视频网站| 欧美乱妇无乱码| 18禁黄网站禁片午夜丰满| 性少妇av在线| 两性夫妻黄色片| 亚洲色图 男人天堂 中文字幕| 真人一进一出gif抽搐免费| 国产亚洲欧美98| 一级片'在线观看视频| 亚洲欧洲精品一区二区精品久久久| 成人影院久久| 黑人欧美特级aaaaaa片| 高潮久久久久久久久久久不卡| 热re99久久国产66热| 成人精品一区二区免费| 9191精品国产免费久久| 国产乱人伦免费视频| 丰满饥渴人妻一区二区三| 免费在线观看视频国产中文字幕亚洲| 国产免费男女视频| 午夜激情av网站| 热re99久久精品国产66热6| 少妇 在线观看| 悠悠久久av| 国产精品影院久久| 人人妻,人人澡人人爽秒播| 亚洲伊人色综图| 国产真人三级小视频在线观看| 日韩欧美一区视频在线观看| 亚洲成人国产一区在线观看| 美女高潮到喷水免费观看| 一个人免费在线观看的高清视频| 满18在线观看网站| 日韩高清综合在线| 国产欧美日韩一区二区精品| 老司机午夜十八禁免费视频| 久久草成人影院| 高清在线国产一区| 日韩大尺度精品在线看网址 | 老司机亚洲免费影院| 亚洲 欧美 日韩 在线 免费| 亚洲精品在线观看二区| 国产主播在线观看一区二区| 国产精品一区二区三区四区久久 | 欧美人与性动交α欧美精品济南到| 日韩一卡2卡3卡4卡2021年| 婷婷丁香在线五月| 久久影院123| 亚洲色图综合在线观看| 咕卡用的链子| 久久久久国产精品人妻aⅴ院| av电影中文网址| 99精品在免费线老司机午夜| 9色porny在线观看| 欧美成人免费av一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩高清在线视频| 亚洲av片天天在线观看| 高清欧美精品videossex| 欧美精品亚洲一区二区| 身体一侧抽搐| 日本欧美视频一区| 亚洲成人国产一区在线观看| 成人亚洲精品一区在线观看| 久久久久久大精品| 在线看a的网站| 午夜精品在线福利| 三级毛片av免费| 午夜成年电影在线免费观看| 窝窝影院91人妻| av电影中文网址| 侵犯人妻中文字幕一二三四区| 欧美亚洲日本最大视频资源| 亚洲国产精品999在线| 国产91精品成人一区二区三区| 亚洲精品国产精品久久久不卡| 欧美日韩乱码在线| 久久久久久久久久久久大奶| 欧美色视频一区免费| 午夜精品在线福利| 桃色一区二区三区在线观看| 国产精品永久免费网站| 在线观看免费高清a一片| 欧美乱码精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成网站在线播放欧美日韩| 999久久久国产精品视频| 国产三级在线视频| 国产精品香港三级国产av潘金莲| 亚洲中文av在线| 亚洲国产欧美一区二区综合| 国产极品粉嫩免费观看在线| 大码成人一级视频| 久久久久久久久免费视频了| 久久久国产成人免费| 欧美成狂野欧美在线观看| 亚洲免费av在线视频| 黄色丝袜av网址大全| 中文字幕高清在线视频| 757午夜福利合集在线观看| 亚洲成人久久性| 亚洲国产精品sss在线观看 | 国产伦人伦偷精品视频| tocl精华| 成年女人毛片免费观看观看9| 久久国产精品人妻蜜桃| 色播在线永久视频| 久久久久国产精品人妻aⅴ院| 999精品在线视频| 一区福利在线观看| 五月开心婷婷网| cao死你这个sao货| 三级毛片av免费| 黄色丝袜av网址大全| 好看av亚洲va欧美ⅴa在| 一级a爱视频在线免费观看| 嫩草影视91久久| 免费在线观看完整版高清| 久久中文字幕人妻熟女| 精品福利永久在线观看| 亚洲色图 男人天堂 中文字幕| 性欧美人与动物交配| 50天的宝宝边吃奶边哭怎么回事| 欧美激情久久久久久爽电影 | 亚洲成人免费电影在线观看| 久久人人97超碰香蕉20202| 久热这里只有精品99| 亚洲av日韩精品久久久久久密| 亚洲五月天丁香| 精品熟女少妇八av免费久了| 人妻久久中文字幕网| 脱女人内裤的视频| 亚洲欧美一区二区三区久久| 欧美人与性动交α欧美软件| 丝袜在线中文字幕| 国产精品香港三级国产av潘金莲| 色综合站精品国产| 一级片免费观看大全| 女人精品久久久久毛片| 亚洲精品久久午夜乱码| 老司机在亚洲福利影院| 国产欧美日韩一区二区三区在线| 国产主播在线观看一区二区| 中文字幕人妻丝袜制服| 国产极品粉嫩免费观看在线| 成人18禁高潮啪啪吃奶动态图| 曰老女人黄片| 国产野战对白在线观看| 久久精品影院6| 高清毛片免费观看视频网站 | 国产欧美日韩一区二区精品| 男女高潮啪啪啪动态图| 国产伦一二天堂av在线观看| 黄色 视频免费看| 男女下面进入的视频免费午夜 | 伦理电影免费视频| 美国免费a级毛片| 国产高清视频在线播放一区| 午夜福利一区二区在线看| 51午夜福利影视在线观看| 精品熟女少妇八av免费久了| 正在播放国产对白刺激| 又黄又爽又免费观看的视频| 成人国产一区最新在线观看| 亚洲av美国av| 欧美在线一区亚洲| 桃色一区二区三区在线观看| 窝窝影院91人妻| 亚洲精品国产区一区二| 久久精品国产亚洲av香蕉五月| 香蕉丝袜av| 国产成人一区二区三区免费视频网站| 亚洲在线自拍视频| 少妇 在线观看| 一区二区日韩欧美中文字幕| 免费女性裸体啪啪无遮挡网站| 无人区码免费观看不卡| 黄色a级毛片大全视频| 岛国在线观看网站| 国产精品久久久av美女十八| 久久久久久久午夜电影 | 国产精品免费视频内射| 国产又爽黄色视频| 亚洲性夜色夜夜综合| 在线观看日韩欧美| 久久人妻av系列| 国产精品99久久99久久久不卡| 在线视频色国产色| 国产精品av久久久久免费| 在线观看免费午夜福利视频| 成人影院久久| 在线观看66精品国产| 国产三级在线视频| 久久久国产精品麻豆| 日韩大码丰满熟妇| 成人18禁在线播放| 久久久久国产精品人妻aⅴ院| 免费少妇av软件| 国产亚洲精品久久久久5区| 很黄的视频免费| 91精品国产国语对白视频| 国产无遮挡羞羞视频在线观看| 在线免费观看的www视频| 久久亚洲真实| 欧美一级毛片孕妇| 欧美日韩瑟瑟在线播放| 搡老岳熟女国产| 亚洲一码二码三码区别大吗| 女警被强在线播放| 伦理电影免费视频| 777久久人妻少妇嫩草av网站| 亚洲美女黄片视频| 黑丝袜美女国产一区| 操出白浆在线播放| 窝窝影院91人妻| 亚洲 国产 在线| 视频区欧美日本亚洲| 大香蕉久久成人网| 黑人猛操日本美女一级片| 曰老女人黄片| 精品国产一区二区三区四区第35| 午夜福利免费观看在线| 国产精品美女特级片免费视频播放器 | 看免费av毛片| 99久久久亚洲精品蜜臀av| 欧美日本中文国产一区发布| 成人手机av| 久久人人爽av亚洲精品天堂| 亚洲成人免费电影在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美乱妇无乱码| 亚洲欧美日韩高清在线视频| 三上悠亚av全集在线观看| 欧美黑人精品巨大| 夜夜爽天天搞| 黄色丝袜av网址大全| 少妇 在线观看| 久热这里只有精品99| 日韩大码丰满熟妇| 成人影院久久| 亚洲人成网站在线播放欧美日韩| 一区福利在线观看| 日韩高清综合在线| 黄片播放在线免费| 老汉色∧v一级毛片| 99在线人妻在线中文字幕| 热99re8久久精品国产| 精品高清国产在线一区| av天堂在线播放| 国产亚洲精品久久久久5区| 亚洲免费av在线视频| 国产亚洲精品一区二区www| 免费看a级黄色片| 日日干狠狠操夜夜爽| 美女扒开内裤让男人捅视频| 岛国在线观看网站| 亚洲欧美日韩无卡精品| 免费人成视频x8x8入口观看| 亚洲欧洲精品一区二区精品久久久| 久久香蕉精品热| 女性生殖器流出的白浆| 美女 人体艺术 gogo| 黄色毛片三级朝国网站| 亚洲精品一区av在线观看| а√天堂www在线а√下载| 色综合欧美亚洲国产小说| 国产精品一区二区精品视频观看| 婷婷六月久久综合丁香| 18美女黄网站色大片免费观看| 国产高清videossex| 在线观看免费视频日本深夜| 日韩欧美三级三区| 波多野结衣一区麻豆| 黄色怎么调成土黄色| 亚洲少妇的诱惑av| 精品免费久久久久久久清纯| 精品日产1卡2卡| 国产精品99久久99久久久不卡| 亚洲精品美女久久久久99蜜臀| 国产极品粉嫩免费观看在线| 香蕉久久夜色| 在线观看一区二区三区激情| 视频在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 日韩免费av在线播放| 国产精品自产拍在线观看55亚洲| 老司机福利观看| 一二三四在线观看免费中文在| 亚洲激情在线av| 一级作爱视频免费观看| 国产伦一二天堂av在线观看| 日韩欧美一区视频在线观看| 亚洲人成电影观看| 亚洲精品av麻豆狂野| 亚洲美女黄片视频| 亚洲精华国产精华精| 精品国产乱子伦一区二区三区| 欧美日韩亚洲高清精品| 黄色视频,在线免费观看| 久久久久国产一级毛片高清牌| 老熟妇乱子伦视频在线观看| 久久天堂一区二区三区四区| 18禁黄网站禁片午夜丰满| 成人永久免费在线观看视频| 80岁老熟妇乱子伦牲交| 久久性视频一级片| 咕卡用的链子| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 黑人操中国人逼视频| 亚洲激情在线av| 老司机午夜十八禁免费视频| 欧美日韩av久久| 99国产精品免费福利视频| 亚洲成a人片在线一区二区| 97人妻天天添夜夜摸| 午夜福利,免费看| 午夜精品久久久久久毛片777| 亚洲av成人一区二区三| 两个人免费观看高清视频| 国产欧美日韩综合在线一区二区| 黑人操中国人逼视频| 另类亚洲欧美激情| 国产精品秋霞免费鲁丝片| 在线十欧美十亚洲十日本专区| 欧美激情 高清一区二区三区| bbb黄色大片| 成年版毛片免费区| 日本黄色日本黄色录像| e午夜精品久久久久久久| 又黄又爽又免费观看的视频| 亚洲成人国产一区在线观看| 欧美色视频一区免费| 色婷婷久久久亚洲欧美| 88av欧美| 久久这里只有精品19| 岛国在线观看网站| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 不卡一级毛片| 嫩草影院精品99| 亚洲精品国产色婷婷电影| 亚洲伊人色综图| 一区二区三区精品91| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 手机成人av网站| a级片在线免费高清观看视频| 夜夜夜夜夜久久久久| 少妇 在线观看| 视频区欧美日本亚洲| 午夜成年电影在线免费观看| 91字幕亚洲| 中亚洲国语对白在线视频| 丝袜美足系列| 另类亚洲欧美激情| 国产成人一区二区三区免费视频网站| 欧美日韩瑟瑟在线播放| 欧美在线黄色| 在线看a的网站| 午夜精品久久久久久毛片777| 久久久国产一区二区| 中文字幕高清在线视频| www日本在线高清视频| 成人国产一区最新在线观看| 在线永久观看黄色视频| 亚洲一码二码三码区别大吗| 日韩一卡2卡3卡4卡2021年| 高潮久久久久久久久久久不卡| 欧美成人午夜精品| 亚洲精品美女久久av网站| 亚洲成国产人片在线观看| 精品少妇一区二区三区视频日本电影| 亚洲人成77777在线视频| 欧美大码av| 免费少妇av软件| 97超级碰碰碰精品色视频在线观看| 国产亚洲av高清不卡| 亚洲狠狠婷婷综合久久图片| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999在线| 别揉我奶头~嗯~啊~动态视频| 美女国产高潮福利片在线看| 国产三级黄色录像| 正在播放国产对白刺激| 欧美日本亚洲视频在线播放| 欧美精品一区二区免费开放| 国产精品久久久久成人av| 黄色视频不卡| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 国产欧美日韩一区二区三| 国产亚洲欧美98| 老司机靠b影院| 狠狠狠狠99中文字幕| 亚洲国产欧美网| 午夜免费观看网址| 中出人妻视频一区二区| 老司机靠b影院| 国产精品久久久久久人妻精品电影| 真人做人爱边吃奶动态| 亚洲精品一二三| 亚洲男人的天堂狠狠| 国产亚洲精品第一综合不卡| 后天国语完整版免费观看| 亚洲一区中文字幕在线| 视频区欧美日本亚洲| 成人18禁在线播放| 亚洲国产精品999在线| 视频区图区小说| 精品少妇一区二区三区视频日本电影| 久久人妻熟女aⅴ| 在线国产一区二区在线| 91精品三级在线观看| 色尼玛亚洲综合影院| 91成人精品电影| 在线观看免费午夜福利视频| 在线观看66精品国产| 日本a在线网址| 亚洲午夜理论影院| 亚洲第一青青草原| 高清av免费在线| 无遮挡黄片免费观看| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| 老汉色av国产亚洲站长工具| 亚洲全国av大片| 久久香蕉国产精品| 国产精品一区二区免费欧美| 日韩欧美一区二区三区在线观看| 欧美一级毛片孕妇| 91成人精品电影| 很黄的视频免费| 好男人电影高清在线观看| 波多野结衣一区麻豆| 亚洲 欧美 日韩 在线 免费| 国产精品 国内视频| 久久精品亚洲熟妇少妇任你| 99在线人妻在线中文字幕| 人人澡人人妻人| 亚洲视频免费观看视频| 亚洲第一欧美日韩一区二区三区| ponron亚洲| 在线观看免费日韩欧美大片| 又紧又爽又黄一区二区| 最近最新中文字幕大全免费视频| 色播在线永久视频| 国产午夜精品久久久久久| 9色porny在线观看| 丰满的人妻完整版| 多毛熟女@视频| 日韩欧美一区视频在线观看| 老司机福利观看| 精品一区二区三卡| 成人亚洲精品av一区二区 | 一个人观看的视频www高清免费观看 | 国产精品久久久av美女十八| av片东京热男人的天堂| 亚洲国产欧美日韩在线播放| 两性夫妻黄色片| 亚洲 欧美 日韩 在线 免费| 日韩大码丰满熟妇| 亚洲专区国产一区二区| 欧美在线一区亚洲| 高清欧美精品videossex| 国产av精品麻豆| 久久精品国产综合久久久| 国产免费现黄频在线看| 亚洲精品av麻豆狂野| 国产欧美日韩精品亚洲av| 精品国产乱子伦一区二区三区| 亚洲成av片中文字幕在线观看| 丰满迷人的少妇在线观看| 国产蜜桃级精品一区二区三区| √禁漫天堂资源中文www| 亚洲片人在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久亚洲精品不卡| 老司机福利观看| 精品一区二区三卡| 久久久国产成人精品二区 | 精品一区二区三区四区五区乱码| 亚洲全国av大片| 99精品久久久久人妻精品| ponron亚洲| 久9热在线精品视频| 中文亚洲av片在线观看爽| 超色免费av| 可以免费在线观看a视频的电影网站| 最好的美女福利视频网| 操美女的视频在线观看| 婷婷精品国产亚洲av在线| 国产麻豆69| av天堂在线播放| 成人国语在线视频| 国产真人三级小视频在线观看| 久久久久国产一级毛片高清牌| 精品国产一区二区三区四区第35| 国产激情久久老熟女| 在线永久观看黄色视频| 久久午夜综合久久蜜桃| 88av欧美| 啦啦啦在线免费观看视频4| 露出奶头的视频| 好看av亚洲va欧美ⅴa在| 天堂中文最新版在线下载| 免费日韩欧美在线观看| 狠狠狠狠99中文字幕| 国产精品一区二区精品视频观看| 在线观看午夜福利视频| 一边摸一边做爽爽视频免费| 亚洲五月婷婷丁香| 亚洲精品国产区一区二| 一进一出抽搐动态| 国产亚洲精品第一综合不卡| 亚洲欧美精品综合久久99| 男女做爰动态图高潮gif福利片 | 美女 人体艺术 gogo| 免费看a级黄色片| 中出人妻视频一区二区| 在线观看免费视频网站a站| xxx96com| 成人免费观看视频高清| 一本综合久久免费| 国产成人精品久久二区二区91| 精品国产亚洲在线| 国产单亲对白刺激| 在线天堂中文资源库| 无限看片的www在线观看| 真人一进一出gif抽搐免费| 日韩 欧美 亚洲 中文字幕| 久久人人爽av亚洲精品天堂| 国产一区二区三区在线臀色熟女 | 精品无人区乱码1区二区| 亚洲激情在线av| 无限看片的www在线观看| 国产欧美日韩一区二区精品| 亚洲片人在线观看| 亚洲欧美一区二区三区久久| 欧美乱妇无乱码| 久久狼人影院| 看黄色毛片网站| 超色免费av| 在线观看一区二区三区激情| 中文字幕av电影在线播放| 久久精品91无色码中文字幕| 国产亚洲精品第一综合不卡| 日韩大尺度精品在线看网址 | 黄色丝袜av网址大全| 欧美日韩亚洲综合一区二区三区_| 亚洲精品中文字幕在线视频| www.精华液| 国产精品自产拍在线观看55亚洲| 国产99白浆流出| 人妻久久中文字幕网| 久久久久久大精品| 亚洲精品在线美女| 欧美成人免费av一区二区三区| 久久精品人人爽人人爽视色| 黄网站色视频无遮挡免费观看| 精品欧美一区二区三区在线| 久久久国产精品麻豆| 夜夜看夜夜爽夜夜摸 | 91成人精品电影| 精品国内亚洲2022精品成人| 1024视频免费在线观看| 天天躁狠狠躁夜夜躁狠狠躁| av国产精品久久久久影院| 午夜福利在线观看吧| 亚洲国产精品999在线| 看片在线看免费视频| 黄片大片在线免费观看| av在线播放免费不卡| 搡老熟女国产l中国老女人| 69精品国产乱码久久久| 国产欧美日韩一区二区三| 欧美国产精品va在线观看不卡| 三级毛片av免费| 国产成年人精品一区二区 | 操出白浆在线播放| 亚洲成人国产一区在线观看| 日韩精品中文字幕看吧| 亚洲欧美激情综合另类| 亚洲精品美女久久av网站|