• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-situ IR Monitoring the Synthesis of Amphiphilic Copolymery P(HEMA-co-tBMA)via ARGET ATRP☆

    2014-07-25 11:29:32WenjingLinYouqiangYangRuihaoChenXiufangWenYuQianChengzhiCaiLijuanZhang

    Wenjing Lin,Youqiang Yang,Ruihao Chen,Xiufang Wen,Yu Qian,Chengzhi Cai,Lijuan Zhang,*

    Materials and Product Engineering

    In-situ IR Monitoring the Synthesis of Amphiphilic Copolymery P(HEMA-co-tBMA)via ARGET ATRP☆

    Wenjing Lin1,Youqiang Yang1,Ruihao Chen1,Xiufang Wen1,Yu Qian1,Chengzhi Cai2,Lijuan Zhang1,*

    1School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,China2Department of Chemistry&Center for Materials Chemistry,University of Houston,Houston,TX 77204-5003,USA

    A R T I C L EI N F O

    Article history:

    In-situ IR monitoring

    Amphiphilic copolymer

    ARGET ATRP

    Conversion rate

    The amphiphilic copolymer poly(hydroxyethyl methacrylate-co-tert-butyl methacrylate)[P(HEMA-co-tBMA)] was synthesized by activators regenerated by electron transfer atom transfer radical polymerization(ARGET ATRP),with the synthesis process monitored by in-situ infrared spectroscopy(IR).The molecular weight,chemical structure and characteristics of the copolymer were determined by1H NMR,gas chromatography and gel permeation chromatography.The inf l uences of various parameters on the living polymerization were explored. Themolecularweightofthecopolymerwithnarrowmolecularweightdistribution(Mw/Mn<1.50)increasesapproximately linearly with the monomer conversion,indicating a good control of polymerization.In the reaction temperature range from 50°C to 90°C,the monomer conversion is higher at 60°C.The tBMA conversion rate decreases gradually with the increase of tBMA content,while the HEMA conversion is hardly affected by HEMA content.Weak polar solvent is more favorable to the polymerization compared to polar solvent.The molar ratio of reducing agent to catalyst has signif i cant effect on the polymerization and increasing the amount of reducing agent will accelerate the reaction rate but causes wider molecular weight distribution.It is indicated that in-situ IR monitoring contributes to a more in-depth understanding of the mechanism of methacrylate monomer copolymerization.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Amphiphilic copolymers have unique structures with hydrophilic and hydrophobic chains,and can self-assemble to form core/shell polymeric micelles due to solubility difference of chain segments in selective solvent[1,2].The outer hydrophilic shell of micelles provides a stable interface between the hydrophobic core and aqueous medium,and the inner hydrophobic core of micelles enhances the loading eff i ciency of hydrophobic drugs[3].The polymeric micelles are excellent candidate for the administration of hydrophobic drugs and provide a controlled and targeted way to deliver the encapsulated hydrophobic drugs[4].

    Activatorsregeneratedbyelectrontransferatomtransferradicalpolymerization(ARGET ATRP),which is a preferential technique from both industrial and environmental viewpoints,can lower the concentration of catalyst by using an excess amount of reducing agent to regenerate CuIfromCuIIand maintainingappropriate CuI/CuIIbalance[5-8].A varietyofmonomers,suchasmethylmethacrylate[9],styrene[10,11],butyl acrylate[12],and poly(hydroxyethyl methacrylate)[P(HEMA)][13], have been polymerized by ARGET ATRP.

    P(HEMA)contains pendant hydroxyl functionalities that render it hydrophilic,and has wide applications in areas of hydrogels[14], contact lenses[15],and drug delivery systems[16].Poly(tert-butyl methacrylate)[P(tBMA)]can be converted to poly(methacrylic acid) (PMAA)by selective hydrolysis of the tert-butyl groups[17].PMAA is a pH-responsive biomaterial,which contains carboxyls that are easily ionized above its pKa of 4.5 and affords the polymer pH-tunability for the controlled-release applications.Therefore,P(HEMA-co-MAA) derived from P(HEMA-co-tBMA)may serve as a pH-responsive amphiphilic carrier for drug delivery.Traditional copolymerization methods for creating hydrophilic HEMA and hydrophobic tBMA micelle networks offer little control over co-monomer distribution,molecular weight,or molecularweightdistribution,whichinturnrestrictsthedesignandsynthesisofhydrophilic/hydrophobicmicellesystems.Inthepresentwork,a linear P(HEMA-co-tBMA)random copolymer is synthesized by ARGET ATRP.The proposed mechanism is shown in Fig.1,using CuBr2/PMDETA as the catalyst and ethyl 2-bromoisobutyrate(EBriB)as the initiator with Sn(Oct)2as reducing agent.Temperature,monomer ratio,as well as the catalyst system will affect the structure of P(HEMA-co-tBMA),thusaffecting its further applications.In our current work,we will explore how those factors affect the polymerization monitored by in-situ IR.

    In recent years,the application of in-situ IR in monitoring reaction process has attracted extensive attention.For the polymerization, in-situ IR can monitor the change of monomer concentration,analyze the monomer conversion and product composition,determine the reaction end point timely and avoid blind operation,and explore the reaction mechanism[18,19].It is used for studying the formation of carbon-carbon and carbon-heteroatom bonds catalyzed by transition metals and exploring new synthesis technology[20].By detecting the starting and end points of reaction precisely and tracking the material accumulation,the in-situ IR can improve the safety of the operating process[21].It is also used to monitor the emulsion homopolymerization and copolymerization of butyl acetate,methyl methacrylate and vinyl acetate[22],and the emulsion crosslinking copolymerization kinetics of methyl acrylate and isobutyric acid [23].In the synthesis of phenol formaldehyde prepolymer,the online infrared can track the change of polymer structure and prevent the formation of byproducts[24].

    Herein,for the synthesis of P(HEMA-co-tBMA)with low molecular weight distribution using ARGET ATRP,the effects of temperature, monomer ratio,solvent,and molar ratio of reducing agent to the catalyst on the monomer conversion are monitored by in-situ IR.The reaction kinetics and mechanism of the copolymerization of hydrophilic HEMA/hydrophobic tBMA monomers are systematically investigated, which will provide the guidance for copolymerization of P(HEMA-cotBMA)and this kind of hydrophilic/hydrophobic monomers.

    Fig.1.The ARGET ATRP mechanism for P(HEMA-co-tBMA).

    2.Experimental

    2.1.Materials

    Tert-butyl methacrylate(tBMA,TCI-EP)was washed with sodium hydroxide solution(10%),distilled from calcium hydride,and stored under argon at?20°C.2-Hydroxyethyl methacrylate(HEMA,99%, Aldrich)was purif i ed by passing through a neutral alumina column followed by distillation and stored under argon at?20°C.Toluene was distilled from calcium hydride.Ethyl 2-bromoisobutyrate(99%, Aldrich),N,N,N′,N″,N″-pentamethyldiethylenetriamine(PMDETA,99%, Aldrich),anisole,CuBr2,n-hexane,dichloromethane,stannous octoate (Sn(Oct)2),methanol,tetrahydrofuran(THF),acetone,and all other reagents were used as received.

    2.2.Measurements

    The number average molecular weight(Mn)and polydispersity index (Mw/Mn)were determined by gel permeation chromatography(GPC) adopting an Agilent 1200 series GPC system equipped with a LC quant pump,three columns including PL gel 5 mm 50 nm,1000 nm and 10000 nm columns in series and a RI detector.The column system was calibrated with a set of monodisperse polystyrene standards using HPLC gradeTHFas themobilephasewitha fl owrateof1.0 ml·min?1at30°C.

    1HNMRspectralmeasurementswereexecutedona BrukerAVANCE III 400 NMR spectrometer(Switzerland)operated at 400 MHz,using deuterated chloroform(CDCl3)as solvent and tetramethylsilane as the internal standard.The temperature was 25°C.

    Gas chromatography(GC)was carried out on an Agilent Technologies 6820 series II Network GC system equipped with a poly(dimethylsiloxane)capillary column(12 m×200 μm×0.25 μm)using H2as eluent at a fl ow rate of 1.5 ml·min?1and a temperature ramp rate of 10°C·min?1. The temperature of the injector and detector was kept constant at 250°C with a H2fl ow rate of 40 ml·min?1.Anisole(1/1 by volume to HEMA) was added to the polymerization medium as an internal GC standard. GC samples were diluted with acetone prior to characterization.

    2.3.In-situ IR

    A ReactIR iC10 reaction analysis system(Mettler-Toledo AutoChem, Switzerland)equipped with a light conduit and DiComp(diamond composite)insertion probe was used to collect mid-FTIR spectra of the condensation components.FTIR spectra were collected every minute in the wave number range between 4000 cm?1and 650 cm?1at a resolution of 8 cm?1.The reaction information was provided by in-situ IR detecting the disappearance of the C=C vibration peak(1638 cm?1) of the comonomers[25].The total conversion(α)of monomers HEMA and tBMA during the polymerization was calculated according to Eq.(1).The conversion of monomer HEMA or tBMA was obtained by ConcIRT?software(spectral region:800-1200 cm?1,time region: 0-60 min)[17].ConcIRT?,using a type of mathematical algorithm known as curve-resolution,is a powerful tool for analyzing a broad range of reactions because the characteristic peaks of HEMA and tBMA around 800-1200 cm?1are completely different,which can be used tocalculatetheconversionofHEMAandtBMAusingtheConcIRT?software.When adding the f i rst monomer tBMA,ConcIRT?will calculate the associated component spectrum and relative concentration prof i le. And ConcIRT?will re-analyze the former reaction spectra of tBMA and update theindividualcomponentspectra and prof i les when adding thesecondmonomerHEMA.Therefore,wecancalculatetheconversion of HEMA and tBMA through their concentration prof i les:

    where A0and Atare the peak heights at reaction times t=0 and 1638 cm?1,respectively.

    2.4.Synthesis of P(HEMA-co-tBMA)

    TheARGETATRPprocedureoftBMAandHEMAwas asfollows:CuBr2(11.1 mg,0.0500 mmol)was added to a dry 100 ml three-necked fl ask with a magnetic stirring bar,and the fl ask was evacuated and fl ushed with argon thrice,then the in-situ IR probe was placed into the reaction fl ask.Anhydrous toluene(18 ml),tBMA(5715 μl,35.2 mmol)and HEMA(1215 μl,10.00 mmol)were added to the fl ask using a degassed syringe and the mixture was homogenated by ultrasonic dispersion for 10 min,and PMDETA(105 μl,0.500 mmol)was then introduced into the fl askvia a syringe.After being stirred for10 min,Cu/PMDETAcatalyst complex formed.Then Sn(Oct)2(160 μl,0.500 mmol)in toluene(2 ml) was added to reduce the deactivator.Finally,EBriB(147 μl,1.00 mmol) was added and the fl ask was placed in a preheated oil bath maintained at 70°C.The in-situ IR probe was submerged into the solution and begantocollectthedataatthesametime.Samplesweretakenoutatcertain time intervals and analyzed by GC and GPC to follow the reaction process.After 2 h,the fl ask was removed from the oil bath and cooled to room temperature.THF(50 ml)was added into the fl ask and the mixture was then passed through a neutral alumina column to remove the catalyst.Finally,P(HEMA-co-tBMA)was recovered by precipitating the mixtureinto10-foldexcessofwater/methanol(1:1,byvolume)mixture, fi ltered,and dried under vacuum for 24 h.

    Fig.3.Total conversion versus time by in-situ IR and GC(temperature=60°C;[HEMA]: [tBMA]=40:40;[PMDETA]:[Sn(Oct)2]:[CuBr2]=10:10:1).

    3.Results and Discussion

    3.1.Polymerization kinetics of P(HEMA-co-tBMA)

    To investigate the polymerization kinetics of P(HEMA-co-tBMA) with in-situ IR by monitoring the change of C=C bond vibrations at the characteristic peak(1638 cm?1)of HEMA and tBMA,Fig.2 shows a typical three-dimensional IR spectrum(1661-1620 cm?1)during the copolymerization of HEMA and tBMA.The conversion of monomers asafunctionoftimecan bedeterminedbyConcIRT?software.Itcan be seen that the peak at 1638 cm?1decreases gradually as the reaction proceeds.Fig.3 shows the total conversions of HEMA and tBMA calculated by Eq.(1)and determined by GC analysis,both of which are consistent.The data from Fig.A1(see Appendix A)show a linear relation with time within 30 min of polymerization time,indicating f i rst-order kinetics with respect to monomer and constant radical concentrations throughout the polymerization.

    Fig.4 shows the relationship between Mnand Mw/Mnof the copolymer and the total conversion.The correlation between Mnand the conversion is approximately linear and Mw/Mnvalues are in the range of 1.2-1.4,indicating a living and well-controlled radical polymerization in the current work.

    Fig.2.Three-dimensionalspectrumofthepeakat1638cm?1duringcopolymerizationvia in-situ IR(temperature=60°C;[HEMA]:[tBMA]=40:40;solvent:toluene;[PMDETA]: [Sn(Oct)2]:[CuBr2]=10:10:1).

    Fig.4.Dependence of Mnand Mw/Mnon the total conversion(temperature=60°C; [HEMA]:[tBMA]=40:40;[PMDETA]:[Sn(Oct)2]:[CuBr2]=10:10:1).

    3.2.Effect of temperature

    The total monomer conversions at different reaction temperatures (50-90°C)investigated with in-situ IR are shown in Fig.5(a)and Table 1.The polymerization rate increases with temperature,resulting in shorter equilibrium time[26].Too high or too low reaction temperature would reduce the total monomer conversion and increase Mw/Mn, which is also shown in Table 1.The highest conversion(90%-95%)is achieved at 60°C and 70°C.The Mnvalue of the copolymer is close to the theoretical value and Mw/Mnis the lowest.At 50°C,80°C and 90°C,the total conversions are much lower and Mw/Mnvalues are higher.The data in Fig.5(b)show linear time dependency within 30 min of polymerization time,indicating f i rst-order kinetics([M]0is the initial concentration and[M]is the concentration at time t).

    Tofurtherunderstandtheinf l uenceofreactiontemperatureonmonomer conversion,the total conversion is converted to the individual conversion rate of monomers HEMA and tBMA by ConcIRT?[20],as shown inFig.6.The conversions of HEMA are more than95%and hardly affected by temperature,while the reaction temperature exhibits strong inf l uence on the conversion of tBMA.The conversion of tBMA is 60%at 50°C,then increases as the temperatureincreases to70°C and decreases as the temperatureishigherthan80°C,droppingto50%at90°C.Thef i rst-orderkinetic plots ln([M]0/[M])versus time are linear during the f i rst 30 min of polymerization.The kinetic plots show a short induction period initially due to the solubility of catalyst at a relatively low temperature of 50°C. Increasing the temperature accelerates the polymerization slightly.

    Fig.5.Total conversion and ln([M]0/[M])with time at varied reaction temperatures([HEMA]:[tBMA]=40:40;[PMDETA]:[Sn(Oct)2]:[CuBr2]=10:10:1).

    Table 1Characterizations for P(HEMA-co-tBMA)at varied reaction temperatures

    The theoretical molecular weight(Mn,th)and molar ratio(ψIR)of HEMA to tBMA of the copolymer product are calculated according to Eqs.(2)and(3),respectively,also summarized in Table 1,showing that Mn,GPCvalues are in close agreement with Mn,th:

    whereαHMEAandαtBMAaretheconversionsof HEMAandtBMA,respectively,nHEMAand ntBMAare the mole numbers of HEMA and tBMA, respectively,and MHEMA,MtBMAand MEBriBare respectively the molar mass values of HEMA,tBMA and EBriB.

    The chemical structures and composition of the products at various reaction temperatures characterized by1H NMR spectroscopy are depictedin Fig.7.Thesignals at0.8-1.2 and1.7-2.0areascribedrespectivelyto-CCH3and-CH2-ofmethacrylatebackbone,whilethesignal at1.42is thecharacteristic resonanceof-C(CH3)3in thetBMA unit and the signals at 4.12 and 3.86 attribute to-CH2CH2O-and-CH2CH2O-in the HEMA unit,respectively.The1H NMR results suggest that the P(HEMA-co-tBMA)copolymer is successfully synthesized.From the integration ratio value of the signals originated from the HEMA unit at 3.86(Ib,2H,-CH2CH2O-)and tBMA unit at 1.42(Ic,9H,-C(CH3)3), the composition ratio of the copolymer(ψNMR)can be calculated according to Eq.(4)and the results are also listed in Table 1.

    It can be seen that ψNMRis consistent with ψIRcalculated by in-situ monitoring.The molar ratio of HEMA to tBMA is close to 1 at 60°C and 70°C,attributing to thecomplete transformation of the two monomers.Conversely,temperatures lower than 60°C or higher than 70°C cause incomplete conversion of tBMA and higher HEMA/tBMA ratios (>1).Therefore,60°C is an optimum reaction temperature and chosen for the follow-up studies.

    Fig.6.Conversion of HEMA and tBMA and ln([M]0/[M])with time at varied temperatures([HEMA]:[tBMA]=40:40;[PMDETA]:[Sn(Oct)2]:[CuBr2]=10:10:1).

    Fig.7.1H NMRspectraof P(HEMA-co-tBMA)polymerizedinCDCl3atvariedtemperatures ([HEMA]:[tBMA]=40:40;[PMDETA]:[Sn(Oct)2]:[CuBr2]=10:10:1).

    3.3.Effect of monomer ratio

    ThecopolymerizationatdifferentmonomerratiosofHEMAandtBMA conducted in toluene at 60°C at the molar ratio of[PMDETA]:[Sn(Oct)2]: [CuBr2]10:10:1isgiveninTable2.Theinf l uenceofmonomerratioonthe totalmonomerconversionisshowninFig.8.ForHEMAortBMApolymerization,the conversion is high,reaching 96%for tBMA and 91%for HEMA. For higher[HEMA]:[tBMA]molar ratio over 40:40,the copolymerization rate is faster compared to polymerization of tBMA with higher conversion.As the content of tBMA further increases at lower[HEMA]:[tBMA] molarratio(below40:40),thetotal conversion andthemolecularweight of the polymer products decrease gradually with the decrease of molar ratio[HEMA]:[tBMA].The f i rst-order kinetic plots ln([M]0/[M])versus time are linear,which could be seen in Fig.A2(see Appendix A).

    The total conversions converted to the conversions of HEMA and tBMA by the ConcIRT?software are shown in Fig.9.It can be seen that the HEMA conversion is hardly affected by the change of molar ratio [HEMA]:[tBMA],while the tBMA conversion shows obvious dependence on the molar ratio.When molar ratio[HEMA]:[tBMA]is below 40:40, tBMA conversiondecreases as theratio decreases,reducingthetotalconversion.It is well known that the polymerization rate of ARGET ATRP depends primarily on the free radical activity,and the radical activity of tBMA is relatively lower than that of HEMA because of larger steric hindrance of the tert-butyl group.As a result,the growth rate constant of tert-butylmethacrylateissmallerthanthatofHEMAunderthesameconditions.Since HEMA has the hydroxyl group-OH,we guess that the polarity and reactivity ratio of HEMA may be larger than those of tBMA.In the present work,the highest conversion of HEMA and tBMA is achieved atanequalmolaramountofHEMAand tBMA(40:40),andthemolecular weight of P(HEMA-co-tBMA)with narrow distribution determined by GPC(10382,Entry 3 in Table 2)is quite close to the theoretical value (10894,calculated from 100%conversion).The ln([M]0/[M])-time plots of all the reactions are linear(see Fig.A3 in Appendix A).

    Table 2 Characterizations for P(HEMA-co-tBMA)at varied monomer ratios

    Fig.8.Total conversion with time in varied[HEMA]:[tBMA]ratios(temperature=60°C; [PMDETA]:[Sn(Oct)2]:[CuBr2]=10:10:1).

    3.4.Effect of solvent

    Fig.10 shows the effects of solvent polarity on the reaction process with four solvents(toluene,anisole,THF,and DMF)with different polarity as the polymerization media.The polymerization rate and total conversion decrease gradually with the increase of polarity of solvents. The totalconversionwasnearlyupto91%after30 min in non-polarsolvent toluene,while only about 18%after 60 min in strong-polar solvent DMF,indicating that the reaction is much faster and more effective in non-polar solvent than in polar solvent.The non-polar solvent is more suitable for the copolymerization of HEMA and tBMA.The molecular weight of P(HEMA-co-tBMA)decreases gradually and exhibits broader molecular weight distribution with the increase of polarity of solvents, as seen in Table 3.

    The conversions of HEMA and tBMA decrease gradually with the increase of polarity of solvents(Fig.10),resulting in a large decrease of the total monomer conversion.This result may be due to the reaction/ complexation of the reducing agent in the polar solvent.Toluene is a favorable solvent for the polymerization of HEMA and tBMA.The kinetics is f i rst-order in these four solvents(see Fig.A4 in Appendix A).

    3.5.Effect of reducing agent/catalyst ratio

    Compared to other controlled living polymerization techniques, ARGET ATRP has a unique advantage that the polymerization can be well controlled by a suff i ciently large excess of reducing agent and very low levels of catalyst[6].The concentration of reducing agent has a great inf l uence on the reduction rate and hence the polymerization rate.In the current work,the molar ratio of reducing agent Sn(Oct)2to catalyst CuBr2varies from 5:1 to 20:1.At[Sn(Oct)2]:[CuBr2]of 5:1,the total conversion was 80%in 60 min and the conversions of HEMA and tBMA were all relatively low[Fig.11(a)]with lower molecular weight (Table 4).When a 10-fold excess of reducing agent(10:1)was used, the polymerization rate speeded up and the total conversion was over 90%in40min[Fig.11(b)].Thepolymerizationratewasfurtherelevated byincreasingratio[Sn(Oct)2]:[CuBr2]to15:1and20:1,resultingineven broadermolecularweightdistributions.Thevalueof[CuI]/[CuII]wastoo small at the ratio[CuBr2]:[Sn(Oct)2]of 5:1,and was too large and unstable as the ratio maintained at 15:1 and 20:1,leading to broader molecular weight distribution[27].Increasing the concentration of reducing agent increases the polymerization rate as it will produce more Cu(I)Br and more radicals,which increases PDI since the number of monomers added per activation deactivation cycle will increase.The optimum[Sn(Oct)2]:[CuBr2]ratio is 10:1,which could maintain a higher conversion and narrow molecular weightdistribution.First-order kinetics were observed in varied[Sn(Oct)2]: [CuBr2]ratios(see Fig.A5 in Appendix A).

    Fig.9.HEMA and tBMA conversion with time in varied monomer ratios(temperature=60°C;[PMDETA]:[Sn(Oct)2]:[CuBr2]=10:10:1).

    Fig.10.Conversionoftotal,HEMA andtBMA with time invariedsolvents(temperature= 60°C;[HEMA]:[tBMA]=40:40;[PMDETA]:[Sn(Oct)2]:[CuBr2]=10:10:1).

    4.Conclusions

    Table 3Characterizations for P(HEMA-co-tBMA)in varied solvents

    Fig.11.HEMA and tBMA conversion with time in varied[Sn(Oct)2]:[CuBr2]ratios (temperature=60°C,[HEMA]:[tBMA]=40:40).

    Table 4Characterizations for P(HEMA-co-tBMA)at varied[Sn(Oct)2]:[CuBr2]ratios

    The amphiphilic copolymer P(HEMA-co-tBMA)was synthesized via ARGET ATRP.The copolymerization process showed a living and wellcontrolled f i rst-order kinetic characteristic.The effects of reaction parameters,such as temperature,monomer ratio,solvent,and reducing agent/ catalyst ratio on the ARGET ATRP of HEMA and tBMA were investigated by in-situ IR.The reaction temperature has a major impact on the copolymerization:too low or too high temperature could lower the conversion oftBMAandthusreducethetotalconversion.TheconversionoftBMAdecreases due to a tert-butyl steric hindrance effect when the concentrationof tBMA is higher than that of HEMA.The polarity of solvent also affects the polymerization rate and the conversion.Polar solvent is not suitable for the copolymerization of HEMA and tBMA.For the catalytic system, lower concentration of reducing agent will decrease the total monomer conversion,butlargerconcentrationcausesbroadermolecularweightdistribution of the copolymer.In-situ IR monitoring the polymerization process plays an important role for optimizing the reaction conditions and understanding the mechanism of polymerization reaction.

    Appendix A

    Fig.A1.First order kinetic plots versus time by in-situ IR and GC.

    Fig.A2.ln([M]0/[M])with time in varied monomer ratios.

    Fig.A3.HEMA and tBMA conversion and ln([M]0/[M])with time in varied monomer ratios.

    Fig.A4.Conversion of total,HEMA and tBMA and ln([M]0/[M])with time in varied solvents.

    Fig.A5.HEMA and tBMA conversion and ln([M]0/[M])with time in varied[Sn(Oct)2]:[CuBr2]ratios.

    [1]X.D.Guo,L.J.Zhang,Y.Chen,Y.Qian,Core/shellpH-sensitive micelles self-assembled from cholesterol conjugated oligopeptides for anticancer drug delivery,AICHE J.56 (2010)1922-1931.

    [2]X.J.Li,M.H.Yin,G.L.Zhang,F.B.Zhang,Study and characterization of novel temperature and pH responsive hydroxylpropyl cellulose-based graft copolymers,Chin.J. Chem.Eng.17(2009)145-149.

    [3]Y.N.Xue,Z.Z.Huang,J.T.Zhang,M.Liu,M.Zhang,S.W.Huang,R.X.Zhuo,Synthesis and self-assembly of amphiphilic poly(acrylic acid-b-DL-lactide)to form micelles for pH-responsive drug delivery,Polymer 50(2009)3706-3713.

    [4]K.S.Soppimath,T.M.Aminabhavi,A.R.Kulkarni,W.E.Rudzinski,Biodegradable polymeric nanoparticles as drug delivery devices,J.Control.Release 70(2001)1-20.

    [5]P.V.Mendonca,A.C.Serra,J.F.J.Coelho,A.V.Popov,T.Guliashvili,Ambient temperature rapid ATRP of methyl acrylate,methyl methacrylate and styrene in polar solvents with mixed transition metal catalyst system,Eur.Polym.J.47(2011)1460-1466.

    [6]W.Jakubowski,K.Matyjaszewski,Activator generated by electron transfer for atom transfer radical polymerization,Macromolecules 38(2005)4139-4146.

    [7]J.Magnus,N.Daniel,N.Ove,M.Eva,Surface modif i cation of thermally expandable microspheres by grafting poly(glycidyl methacrylate)using ARGET ATRP,Eur. Polym.J.45(2009)2374-2382.

    [8]D.J.Siegwart,J.K.Oh,K.Matyjaszewski,ATRP in the design of functional materials for biomedical applications,Prog.Polym.Sci.37(2012)18-37.

    [9]K.Matyjaszewski,W.Jakubowski,K.Min,W.Tang,J.Huang,W.A.Braunecker,N.V. Tsarevsky,Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents,Proc.Natl.Acad.Sci.U.S.A.103(2006)15309-15314.

    [10]W.Jakubowski,B.Kirci-Denizli,R.R.Gil,K.Matyjaszewski,Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP, Macromol.Chem.Phys.209(2008)32-39.

    [11]W.Jakubowski,K.Min,K.Matyjaszewski,Activatorsregeneratedbyelectrontransfer for atom transfer radical polymerization of styrene,Macromolecules 39(2006) 39-45.

    [12]T.Pintauer,K.Matyjaszewski,Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes,Chem.Soc.Rev.37 (2008)1087-1097.

    [13]S.M.Paterson,D.H.Brown,T.V.Chirila,I.Keen,A.K.Whittaker,M.V.Baker,The synthesis of water-soluble PHEMA via ARGET ATRP in protic media,J.Polym.Sci.A Polym.Chem.48(2010)4084-4092.

    [14]Y.Q.Xiang,D.J.Chen,Preparation of a novel pH-responsive silver nanoparticle/ poly(HEMA-PEGMA-MAA)composite hydrogel,Eur.Polym.J.43(2007)4178-4187.

    [15]X.M.Li,Y.D.Cui,Study on synthesis and chloramphenicol release of poly(2-hydroxyethylmethacrylate-co-acrylamide)hydrogels,Chin.J.Chem.Eng.16(2008) 640-645.

    [16]M.D.P.Wilcox,N.Harmis,B.A.Cowell,T.Williams,B.A.Holden,Bacterial interactions with contact lenses:effects of lens material,lens wear and microbial physiology, Biomaterials 22(2001)3235-3247.

    [17]P.V.D.Wetering,E.E.Moret,N.M.E.Schuurmans-Nieuwenbroek,M.J.V.Steenbergen, W.E.Hennink,Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery,Bioconjug.Chem.10 (1999)589-597.

    [18]P.MacLaurin,N.C.Crabb,I.Wells,P.J.Worsfold,Quantitative in situ monitoring of an elevated temperature reaction using a water-cooled mid-infrared f i ber-optic probe, Anal.Chem.68(1996)1116-1123.

    [19]L.K.Breland,F.S.Robson,Polyisobutylene-based miktoarm star polymers via a combination of carbocationic and atom transfer radical polymerizations,Polymer 49 (2008)1154-1163.

    [20]Y.S.Zhao,H.B.Wang,X.H.Hou,Y.H.Hu,A.W.Lei,H.Zhang,L.Z.Zhu,Oxidative cross-coupling through double transmetallation:surprisingly high selectivity for palladium-catalyzed cross-coupling of alkylzinc and alkynylstannanes,J.Am. Chem.Soc.128(2006)15048-15049.

    [21]A.E.Enriquez,J.L.Templeton,Monomeric and dinuclear tungsten carbyne complexes containing benzyl,allyl,and alkenyl carbyne substituents,Organometallics 21(2002)852-863.

    [22]H.Hong,A.D.Marc,In-line monitoring of emulsion homo-and copolymerizations using ATR-FTIR spectrometry,Polym.React.Eng.10(2002)21-39.

    [23]A.Matsumoto,T.Otaka,H.Aota,In-situ kinetic pursuit of emulsion crosslinking copolymerizations of monomethacrylate and dimethacrylate by means of reactIR, Macromol.Rapid Commun.22(2001)607-610.

    [24]M.Krajnc,I.Poljansek,Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy,Acta Chim.Slov.52(2005)238-244.

    [25]J.Scherble,B.Ivan,R.Mulhaupt,Online monitoring of silicone network formation by means of in-situ mid-infrared spectroscopy,Macromol.Chem.Phys.203(2002) 1866-1871.

    [26]K.Tanaka,K.Matyjaszewski,Copolymerization of(meth)acrylates with olef i ns using activators regenerated by electron transfer for atom transfer radical polymerization(ARGET ATRP),Macromol.Symp.261(2008)1-9.

    [27]W.Jakubowski,K.Matyjaszewski,Activators regenerated by electron transfer for atom-transfer radical polymerization of(meth)acrylates and related block copolymers,Angew.Chem.Int.Ed.45(2006)4482-4486.

    3 July 2013

    ☆Supported by the National Natural Science Foundation of China(21176090,21136003), Team Project of Natural Science Foundation of Guangdong Province(S2011030001366), Science and Technology Foundation of Guangdong Province(2012B050600010),and Fundamental Research Funds for the Central Universities(2013ZP0010).

    *Corresponding author.

    E-mail address:celjzh@scut.edu.cn(L.Zhang).

    http://dx.doi.org/10.1016/j.cjche.2014.06.030

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 21 October 2013

    Accepted 1 November 2013

    Available online 1 July 2014

    人妻少妇偷人精品九色| 精品一区二区免费观看| 成人性生交大片免费视频hd| 超碰av人人做人人爽久久| avwww免费| 一级黄色大片毛片| 蜜桃久久精品国产亚洲av| 18禁在线无遮挡免费观看视频| www.色视频.com| 两个人的视频大全免费| 亚洲欧美日韩高清在线视频| 听说在线观看完整版免费高清| 少妇丰满av| 男女啪啪激烈高潮av片| 午夜精品国产一区二区电影 | kizo精华| 亚洲第一电影网av| 国产精品久久久久久精品电影小说 | 看十八女毛片水多多多| 美女被艹到高潮喷水动态| 极品教师在线视频| 中国国产av一级| 国产黄a三级三级三级人| 国产三级在线视频| 日本免费一区二区三区高清不卡| 午夜福利在线观看免费完整高清在 | 欧美最黄视频在线播放免费| 乱系列少妇在线播放| 欧美精品国产亚洲| eeuss影院久久| 久久久午夜欧美精品| 婷婷精品国产亚洲av| 亚洲欧美日韩东京热| 日韩大尺度精品在线看网址| 日本在线视频免费播放| av视频在线观看入口| 国产精品av视频在线免费观看| 国产黄片美女视频| 99热精品在线国产| 99热这里只有是精品在线观看| 中文精品一卡2卡3卡4更新| 99国产极品粉嫩在线观看| 黄色一级大片看看| 国产成人freesex在线| 成人性生交大片免费视频hd| 最近中文字幕高清免费大全6| av免费在线看不卡| 亚洲欧美精品专区久久| av.在线天堂| 伊人久久精品亚洲午夜| 国产成人精品一,二区 | 亚洲丝袜综合中文字幕| 级片在线观看| 99热全是精品| 午夜福利在线观看吧| 欧美一区二区国产精品久久精品| 久久久成人免费电影| 亚洲欧美精品自产自拍| 国内久久婷婷六月综合欲色啪| 99热这里只有精品一区| 国产精品女同一区二区软件| 亚洲中文字幕一区二区三区有码在线看| 特大巨黑吊av在线直播| 午夜爱爱视频在线播放| 亚洲五月天丁香| 国产黄片视频在线免费观看| 国产成人福利小说| 免费电影在线观看免费观看| 18禁黄网站禁片免费观看直播| 国产精品一区二区性色av| 美女脱内裤让男人舔精品视频 | 在线观看免费视频日本深夜| 国内精品久久久久精免费| 九九爱精品视频在线观看| 免费搜索国产男女视频| 69av精品久久久久久| 五月玫瑰六月丁香| 自拍偷自拍亚洲精品老妇| 欧美潮喷喷水| 日本在线视频免费播放| 午夜激情欧美在线| 成年女人永久免费观看视频| 日本五十路高清| 色5月婷婷丁香| 国产在线男女| 中国美白少妇内射xxxbb| 日韩视频在线欧美| 成人亚洲精品av一区二区| 午夜激情福利司机影院| 日韩高清综合在线| 偷拍熟女少妇极品色| 国产av不卡久久| 亚洲自拍偷在线| 国产精品无大码| 美女国产视频在线观看| 日韩强制内射视频| 亚洲精品国产av成人精品| 免费看日本二区| 亚洲三级黄色毛片| 亚洲精品456在线播放app| 亚洲av电影不卡..在线观看| 人妻系列 视频| 久久久国产成人免费| 校园人妻丝袜中文字幕| 久久婷婷人人爽人人干人人爱| 精品人妻视频免费看| 国产成人精品婷婷| 爱豆传媒免费全集在线观看| 91av网一区二区| 久久精品人妻少妇| 精品一区二区三区人妻视频| 日韩大尺度精品在线看网址| 国产v大片淫在线免费观看| 少妇人妻精品综合一区二区 | 偷拍熟女少妇极品色| 亚洲av.av天堂| 18禁黄网站禁片免费观看直播| 蜜臀久久99精品久久宅男| 不卡一级毛片| 国产成人精品久久久久久| 欧美区成人在线视频| 亚洲欧美日韩东京热| 一个人看视频在线观看www免费| 久久久久免费精品人妻一区二区| 看免费成人av毛片| 亚洲成av人片在线播放无| 成人一区二区视频在线观看| 日本三级黄在线观看| 久久精品国产99精品国产亚洲性色| 亚洲国产色片| 亚洲成人久久爱视频| 最近手机中文字幕大全| 深夜精品福利| 亚洲无线在线观看| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品电影| 久久99蜜桃精品久久| 精品人妻偷拍中文字幕| 国产免费一级a男人的天堂| 在线观看免费视频日本深夜| 精品不卡国产一区二区三区| 小说图片视频综合网站| 在线观看免费视频日本深夜| 精品不卡国产一区二区三区| 在线a可以看的网站| 国产探花极品一区二区| 欧美最新免费一区二区三区| av.在线天堂| 欧美不卡视频在线免费观看| 日本-黄色视频高清免费观看| av在线蜜桃| 人妻夜夜爽99麻豆av| 一个人看的www免费观看视频| 观看免费一级毛片| 乱码一卡2卡4卡精品| 午夜精品国产一区二区电影 | 精品国产三级普通话版| 床上黄色一级片| 狂野欧美激情性xxxx在线观看| 国产国拍精品亚洲av在线观看| 亚洲欧洲日产国产| 色综合站精品国产| 一级毛片久久久久久久久女| 在线观看午夜福利视频| 麻豆精品久久久久久蜜桃| 级片在线观看| 亚洲欧美成人精品一区二区| 久久久精品大字幕| 欧美一级a爱片免费观看看| 在线播放国产精品三级| 岛国在线免费视频观看| 久久久久久国产a免费观看| 欧美日本亚洲视频在线播放| 91久久精品电影网| 中文字幕av成人在线电影| 男女啪啪激烈高潮av片| 大型黄色视频在线免费观看| 日韩av不卡免费在线播放| 久久精品人妻少妇| 神马国产精品三级电影在线观看| 日本五十路高清| 深夜a级毛片| av免费观看日本| 欧美又色又爽又黄视频| 日本五十路高清| 最新中文字幕久久久久| 国产精品久久久久久精品电影| 亚洲精品粉嫩美女一区| 国产国拍精品亚洲av在线观看| 久久人人爽人人爽人人片va| 国国产精品蜜臀av免费| 久久久久久久久久黄片| 久久精品综合一区二区三区| 超碰av人人做人人爽久久| 久久韩国三级中文字幕| 插阴视频在线观看视频| 岛国在线免费视频观看| 好男人视频免费观看在线| 亚洲精品国产av成人精品| 欧美xxxx性猛交bbbb| 少妇熟女欧美另类| 成人鲁丝片一二三区免费| 老司机福利观看| 麻豆av噜噜一区二区三区| 麻豆av噜噜一区二区三区| 老司机福利观看| 高清在线视频一区二区三区 | 国产精品不卡视频一区二区| 国产在线男女| av福利片在线观看| 成人毛片a级毛片在线播放| 18禁黄网站禁片免费观看直播| 3wmmmm亚洲av在线观看| 亚洲综合色惰| 成年女人永久免费观看视频| 美女xxoo啪啪120秒动态图| 校园人妻丝袜中文字幕| 插阴视频在线观看视频| 少妇人妻精品综合一区二区 | 国产午夜精品一二区理论片| 欧美激情久久久久久爽电影| 男的添女的下面高潮视频| 美女大奶头视频| 一级毛片电影观看 | 九九久久精品国产亚洲av麻豆| 国产高清视频在线观看网站| 亚洲av熟女| 久99久视频精品免费| 麻豆av噜噜一区二区三区| 午夜久久久久精精品| 伦精品一区二区三区| 国产精品一区二区在线观看99 | 亚洲欧洲国产日韩| 亚洲无线在线观看| 久久久国产成人免费| 国产视频内射| 欧美一级a爱片免费观看看| 国产老妇女一区| 国产精品久久久久久亚洲av鲁大| 深夜a级毛片| a级毛片a级免费在线| 一本久久精品| 国产精品永久免费网站| 国产探花极品一区二区| 免费av不卡在线播放| 欧美潮喷喷水| 伊人久久精品亚洲午夜| 欧美日韩国产亚洲二区| or卡值多少钱| 天堂√8在线中文| 国产精品爽爽va在线观看网站| 丝袜美腿在线中文| 一本一本综合久久| 久久精品久久久久久久性| 国产av一区在线观看免费| 青春草视频在线免费观看| 搞女人的毛片| 身体一侧抽搐| 蜜臀久久99精品久久宅男| www.色视频.com| or卡值多少钱| 一边摸一边抽搐一进一小说| 亚洲成人久久爱视频| 在线播放国产精品三级| 欧美区成人在线视频| 91麻豆精品激情在线观看国产| 69av精品久久久久久| 国产老妇伦熟女老妇高清| 一级av片app| 看黄色毛片网站| 全区人妻精品视频| av在线蜜桃| 99热只有精品国产| 日韩三级伦理在线观看| 国产一区二区在线av高清观看| 一区二区三区四区激情视频 | 在线播放无遮挡| 国产亚洲精品久久久久久毛片| 午夜福利在线在线| 国产精品人妻久久久影院| av视频在线观看入口| 欧美xxxx性猛交bbbb| 一本精品99久久精品77| www.av在线官网国产| 日韩欧美精品v在线| 最近中文字幕高清免费大全6| 干丝袜人妻中文字幕| 日韩视频在线欧美| 岛国毛片在线播放| 国产乱人视频| 免费av毛片视频| 少妇裸体淫交视频免费看高清| 欧美xxxx黑人xx丫x性爽| 在线免费观看不下载黄p国产| 精品人妻一区二区三区麻豆| 欧美日韩国产亚洲二区| 国内精品美女久久久久久| 26uuu在线亚洲综合色| 九九热线精品视视频播放| 欧美xxxx黑人xx丫x性爽| 成人亚洲精品av一区二区| 久久久久久久亚洲中文字幕| 中文字幕人妻熟人妻熟丝袜美| 午夜免费男女啪啪视频观看| 欧美三级亚洲精品| 久久这里只有精品中国| 综合色丁香网| 在线免费十八禁| 十八禁国产超污无遮挡网站| 国产色爽女视频免费观看| 色哟哟哟哟哟哟| 国产黄a三级三级三级人| 国产精品久久久久久精品电影小说 | 91狼人影院| 男人舔奶头视频| a级毛片a级免费在线| 亚洲国产色片| 国产探花在线观看一区二区| 日本成人三级电影网站| 久久久久久伊人网av| 最后的刺客免费高清国语| 夜夜夜夜夜久久久久| 少妇的逼水好多| 国产三级中文精品| 欧美性猛交黑人性爽| 午夜激情福利司机影院| 在线国产一区二区在线| 村上凉子中文字幕在线| a级毛片免费高清观看在线播放| 国产精品嫩草影院av在线观看| 亚洲av成人精品一区久久| 国产白丝娇喘喷水9色精品| 国产午夜精品久久久久久一区二区三区| 成人漫画全彩无遮挡| 色视频www国产| kizo精华| 国产精品福利在线免费观看| 综合色av麻豆| 精品一区二区三区视频在线| 久久人妻av系列| 99精国产麻豆久久婷婷| 99热国产这里只有精品6| 午夜免费鲁丝| 久久精品国产亚洲网站| 在线观看免费视频网站a站| 天堂中文最新版在线下载| 亚洲国产av新网站| 免费观看无遮挡的男女| 如何舔出高潮| 中国美白少妇内射xxxbb| a级毛片在线看网站| 啦啦啦中文免费视频观看日本| 亚洲少妇的诱惑av| 色网站视频免费| 草草在线视频免费看| 啦啦啦视频在线资源免费观看| 超碰97精品在线观看| 91精品一卡2卡3卡4卡| 大话2 男鬼变身卡| 夫妻午夜视频| 久久精品国产亚洲av天美| 午夜福利,免费看| 日韩av在线免费看完整版不卡| 在线观看三级黄色| videossex国产| 国产在线一区二区三区精| 国产免费现黄频在线看| 欧美人与性动交α欧美精品济南到 | 91国产中文字幕| 成人影院久久| 老熟女久久久| 97超碰精品成人国产| 汤姆久久久久久久影院中文字幕| 久久久久人妻精品一区果冻| 亚洲国产欧美日韩在线播放| 欧美三级亚洲精品| 国产视频首页在线观看| 欧美 日韩 精品 国产| 精品国产露脸久久av麻豆| 精品午夜福利在线看| 丝袜美足系列| 欧美性感艳星| 国产精品久久久久久精品古装| 十八禁网站网址无遮挡| 少妇被粗大猛烈的视频| 91精品伊人久久大香线蕉| 精品亚洲成a人片在线观看| 肉色欧美久久久久久久蜜桃| 久久人人爽人人爽人人片va| 久久久久精品性色| 精品亚洲乱码少妇综合久久| 久久久久久久久久久久大奶| 黑人欧美特级aaaaaa片| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| av福利片在线| 国产精品久久久久久av不卡| 高清毛片免费看| 精品国产一区二区三区久久久樱花| 国产成人免费观看mmmm| 丰满少妇做爰视频| 欧美精品高潮呻吟av久久| 亚洲国产精品一区二区三区在线| 国产国拍精品亚洲av在线观看| 熟女人妻精品中文字幕| 18+在线观看网站| 91国产中文字幕| av在线播放精品| 久久久久久久久久久丰满| 肉色欧美久久久久久久蜜桃| √禁漫天堂资源中文www| 日韩一区二区三区影片| 伦理电影大哥的女人| 日韩三级伦理在线观看| 青春草国产在线视频| 九九在线视频观看精品| 丰满迷人的少妇在线观看| 九九爱精品视频在线观看| 国产黄频视频在线观看| 丝袜脚勾引网站| 久久久久久久久久人人人人人人| 天堂8中文在线网| 久久国产精品男人的天堂亚洲 | 亚洲国产精品专区欧美| 晚上一个人看的免费电影| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 美女xxoo啪啪120秒动态图| 久久这里有精品视频免费| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| 插逼视频在线观看| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 精品熟女少妇av免费看| av天堂久久9| 久久精品国产a三级三级三级| 国产精品国产三级专区第一集| 激情五月婷婷亚洲| 九九爱精品视频在线观看| 久久免费观看电影| 王馨瑶露胸无遮挡在线观看| h视频一区二区三区| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 免费av不卡在线播放| 国产亚洲最大av| 国产高清三级在线| 中文欧美无线码| 久久国产亚洲av麻豆专区| 久久国产精品男人的天堂亚洲 | 国产成人精品久久久久久| 国产日韩一区二区三区精品不卡 | 日韩熟女老妇一区二区性免费视频| 在线观看三级黄色| 18禁观看日本| a级毛片在线看网站| 99九九在线精品视频| 久久鲁丝午夜福利片| 国国产精品蜜臀av免费| 丝袜喷水一区| 亚洲伊人久久精品综合| 国产成人免费无遮挡视频| 人妻系列 视频| 人人妻人人澡人人爽人人夜夜| 久久久久久伊人网av| 狂野欧美白嫩少妇大欣赏| 少妇高潮的动态图| 国产成人精品婷婷| 亚洲精品中文字幕在线视频| 全区人妻精品视频| 制服人妻中文乱码| 国产乱人偷精品视频| 亚洲精品日韩在线中文字幕| 免费观看无遮挡的男女| 日韩精品免费视频一区二区三区 | 成人免费观看视频高清| xxxhd国产人妻xxx| 乱人伦中国视频| 91aial.com中文字幕在线观看| 午夜老司机福利剧场| 亚洲欧美成人精品一区二区| 亚洲国产av新网站| 狂野欧美白嫩少妇大欣赏| 久久精品人人爽人人爽视色| 色哟哟·www| 熟妇人妻不卡中文字幕| 精品人妻偷拍中文字幕| 男男h啪啪无遮挡| 少妇的逼水好多| 美女国产视频在线观看| 国产日韩欧美视频二区| 人体艺术视频欧美日本| 99九九线精品视频在线观看视频| videos熟女内射| 欧美精品一区二区免费开放| 美女cb高潮喷水在线观看| 在线精品无人区一区二区三| 亚洲伊人久久精品综合| 婷婷成人精品国产| 美女大奶头黄色视频| 一区二区三区免费毛片| 亚洲三级黄色毛片| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲网站| 成年美女黄网站色视频大全免费 | 久久av网站| 欧美另类一区| 久久久久久久亚洲中文字幕| av免费观看日本| 狂野欧美激情性bbbbbb| 全区人妻精品视频| 亚洲,一卡二卡三卡| 另类亚洲欧美激情| 一本—道久久a久久精品蜜桃钙片| 蜜桃国产av成人99| 久久热精品热| 亚洲av免费高清在线观看| 亚洲成色77777| 精品少妇久久久久久888优播| 成人午夜精彩视频在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲人成网站在线播| 亚洲美女黄色视频免费看| 欧美精品亚洲一区二区| 欧美三级亚洲精品| 国模一区二区三区四区视频| 日本黄色日本黄色录像| 99九九线精品视频在线观看视频| 亚洲人成网站在线观看播放| 啦啦啦在线观看免费高清www| 久久精品国产亚洲av天美| 亚洲美女黄色视频免费看| 国产 精品1| 日本-黄色视频高清免费观看| 久久韩国三级中文字幕| 人妻一区二区av| 色哟哟·www| 少妇精品久久久久久久| 久久久久精品久久久久真实原创| 久久99热6这里只有精品| av网站免费在线观看视频| 亚洲精品国产av成人精品| 性高湖久久久久久久久免费观看| 18禁在线播放成人免费| 99久久精品一区二区三区| 97超视频在线观看视频| 亚洲精品乱码久久久v下载方式| 欧美日韩视频精品一区| 51国产日韩欧美| 中文天堂在线官网| 一本一本综合久久| 国产永久视频网站| 久久精品国产亚洲网站| 成人黄色视频免费在线看| 欧美成人午夜免费资源| 亚洲综合色惰| 精品久久久噜噜| 久久久精品94久久精品| 人妻一区二区av| 久久 成人 亚洲| 九九在线视频观看精品| 男人爽女人下面视频在线观看| 午夜福利网站1000一区二区三区| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 亚洲国产色片| 中文天堂在线官网| 午夜激情av网站| 22中文网久久字幕| 久久精品夜色国产| 2022亚洲国产成人精品| 亚洲五月色婷婷综合| 两个人的视频大全免费| 免费日韩欧美在线观看| 永久网站在线| 日本欧美国产在线视频| 国产免费福利视频在线观看| 国产在视频线精品| 在线天堂最新版资源| 一级毛片我不卡| 国产视频首页在线观看| 黄色欧美视频在线观看| 亚洲精品色激情综合| 国产一区有黄有色的免费视频| 日本wwww免费看| 中文字幕免费在线视频6| 免费高清在线观看视频在线观看| 亚洲四区av| 国产午夜精品一二区理论片| 又粗又硬又长又爽又黄的视频| 亚洲国产精品国产精品| 美女主播在线视频| 亚洲五月色婷婷综合| 亚洲国产精品一区二区三区在线| av国产久精品久网站免费入址| 亚洲中文av在线| 国产精品久久久久久av不卡| 色94色欧美一区二区| 99久久综合免费| 女人久久www免费人成看片| 亚洲精品久久午夜乱码| 熟女av电影| 自拍欧美九色日韩亚洲蝌蚪91| 韩国av在线不卡| 交换朋友夫妻互换小说| 亚洲四区av| 国产有黄有色有爽视频| 国产精品久久久久久av不卡| 在线精品无人区一区二区三| 久久影院123| 一区二区日韩欧美中文字幕 | 久久精品夜色国产|