• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics Analysis on Mixing Calcination Process of Fly Ash and Ammonium Sulfate☆

    2014-07-25 11:29:32PengWangLaishiLiDezhouWei

    Peng Wang*,Laishi Li,Dezhou Wei

    Energy,Resources and Environmental Technology

    Kinetics Analysis on Mixing Calcination Process of Fly Ash and Ammonium Sulfate☆

    Peng Wang*,1,2,Laishi Li2,Dezhou Wei1

    1College of Resources and Civil Engineering,Northeastern University,Shenyang 110819,China2Shenyang Aluminum and Magnesium Engineering and Research Institute,Shenyang 110001,China

    A R T I C L EI N F O

    Article history:

    Mixing calcinations

    Kinetics

    Activation energy

    Reaction mechanism

    The further development of the extraction of alumina that is produced in the calcination process of ammonium sulfate mixed with f l y ash was limited because of the lack of systematic theoretical study.In order to aggrandize theresearchofthecalcinationprocess,thekineticsandreactionmechanismofthecalcinationswerestudied.The result suggests that there are two stages in the calcination process,and the alumina extraction rate increases swiftly in the initial stage,but slows down increasing in the later stage.The apparent activation energy of the initial and later stages equals to 13.31 and 35.65 kJ·mol?1,respectively.In the initial stage,ammonium sulfate reacts directly with mullite in the f l y ash to form ammonium aluminum sulfate,while in the later stage,aluminum sulfate is formed by the reaction between ammonium aluminum sulfate and ammonium sulfate.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    At present,the f l y ash is mainly used in the f i eld of civil engineering as constructing material and agriculture in China,which belongs to utilizationwithlowaddedvalue,especiallyforf l yashwithaluminacontent higher than 30%.Themain components of f l y ashare silicon dioxide and alumina.Since the reserve of bauxite is not rich in China,it will not only promote the utilizing value of f l y ash,but also bring big economic benef i t and solve the problem of aluminum resource strain if the alumina contained in f l y ash can be used[1-3].The ammonia sulfate calcination method is an effective way to activate f l y ash.Fly ash is mixed with ammonia sulfate and calcined to activate the non-reactive substance for extracting the alumina using the non-reactive feature between silicon dioxide and acid[4,5].There are some advantages of treatingf l yashbythismethodsuchaslargeamountoff l yashtreatment, high extracting ratio,simple process,circulating use of ammonia sulfate and simple equipment,and thus it is easy for industrialization[6-10].At present,a fewstudyaboutthef l yashactivatedbythemethodof ammoniasulfatecalcinationsisreported.Park[11]usedtheammoniasulfateto extractthehighconcentratedaluminafromf l yashwiththelowtemperature sintering method and the recovery percentage of aluminum can reach 94.36%.Li[12]studied the process of extracting alumina from f l y ash via ammonia sulfate with the recovery percentage of 95.6%.Jin[13] studied the phase transformation of calcination products of f l y ash and ammonium sulfate.However,all these studies were focused on the alumina extraction technique and there was less care about the related theory.It lacked the systematic thermodynamics and kinetics analysis for the whole calcination process as well as the systematic analysis of factorsaffectingtheprocess.Allthesehindered the furtherdevelopment of alumina extraction from f l y ash via the ammonia method.

    In this study,the mixing calcinations of ammonia sulfate and f l y ash process are used to treat the high alumina f l y ash from a power plant in Liaoning,China.The thermodynamics and kinetics,and associated factors in calcination process are examined.This fundamental study shall be benef i cial to further understand the calcinations of ammonia sulfate and f l y ash,promoting the alumina extraction rate,improving the calcination condition,and optimizing the calcination mechanism. Italsoprovidessomeguidanceandreferenceforcomprehensiveutilization of high alumina f l y ash.

    2.Experimental

    2.1.Materials

    The f l y ash was taken from a power plant in Liaoning,China, anditschemical analysisislistedinTable1.Themajorchemicalcomponents of the f l y ash are Al2O3,SiO2and Fe2O3.Moreover,the sample is the kind of high aluminum f l y ash containing 40.7%Al2O3in the mass fraction.

    The X-ray diffraction(XRD)pattern of the f l y ash is shown in Fig.1. The main composition in f l y ash is mullite,crystal silica and vitrif i ed slag,while iron mainly exists in the form of hematite.The utilization of f l yashis relatively diff i cultbecausethe f l y ashis cooleddown rapidly from a high temperature and the chemical activity of aluminum and silicon is undermined.

    Ammonia sulfate used in the test is industrial grade,the water used is de-ionized water and the other reagents are analytical grade.

    2.2.Procedures

    The ammonium sulfate and f l y ash were mixed with a mass ratio of 7:1,and the mixture was placed in a ceramic crucible after thoroughly grinded in the ball mill.Then,the ceramic crucible was placed in a box oven to get the calcinations started.After that,the calcinate is placed in a beaker with a magnetic rotator,and an adequate amount of water was added to make the ratio of liquid to solid reach 10:1.The beaker was placed in the water-bath at the constant temperature of 90°C and the solution was stirred for 2 h.Finally,the leach liquor was f i ltered, and the residue was washed for 4 times usinghot water with a temperature of 90°C.The extraction rate of alumina is determined by the following equation:

    Table 1Chemical composition of f l y ash

    where A and B are themass ratios of aluminatosilicon dioxide in thef l y ash and residue,respectively.

    X-ray Fluorescence(XRF,Bruker S8-TIGER)spectrometry is used for chemical composition analysis.A Ricoh D/max-RB XRD is used for examining the phase composition of solid matter.The JEOL JSM-6360LV SEM is used for observing SEM images of microstructure.

    3.Results and Discussion

    3.1.Effect of calcination temperature and time on the extraction rate of alumina

    In order to discover the calcination kinetics of ammonium sulfate and f l y ash,the law of the change in alumina extraction rate of f l y ash in different calcining times and temperatures is studied.The result is shown in Fig.2.

    Fig.1.XRD pattern of f l y ash.

    Fig.2.Effect on alumina extraction rate in different temperatures and durations.

    Accordingto Fig.2,the factor of temperature is more affective on the alumina extraction rate,leading to a higher alumina extraction at a higher temperature.In the range of the studied temperature(773-873 K),the f l y-ash-alumina extraction rate grows rapidly in 0-90 min, but slows down between 90 and 210 min.At 873 K,the rate is up to 75.56%,however,it increases by only 6.62%at 210 min.In conclusion, the process of mixing calcinations can be divided into two stages: rapid reaction and slow reaction.

    3.2.Calcination reaction kinetics analysis

    Shrinking core model has some features as following:(1)There is a solid interface between unreacted solid phase and solid product; (2)the reaction takes place at the interface;(3)the reaction surface shrinks continuously from the outside to the center of the particle; (4)unreacted solid particles continuously shrink inward;and(5)the solid product layer will be constantly expanded inward which increases the thickness.The calcination system is a typical gas-liquid-solid heterogeneous reaction system and any part of the reaction could be the control step.However,in general,the reaction process is completely in the category of solid-solid and f l uid-solid reactions.Therefore,the kineticscanbedescribedin themodelofthesetworeactions,asis mentioned above[14-17].Assuming that the f l y ash is a spherical particle that the mesh size and the surface activity are homogeneous and the volume of the solid sample in calcination process changes little,the calcination reaction kinetics can be determined according to the shrinking core model,in which the reaction is controlled by internal and external diffusion aswell asthechemistryreaction.Thus,thealuminaextraction rateXanddurationtshouldf i tintoEqs.(2),(3)and(4),asismentioned below.The control step of the reaction is judged by if the relationship of durations and extraction f i ts into these specialized equations well [15-19].

    where X is alumina extraction rate,k is the overall rate constant of reaction,t is reaction time.

    To reveal the control step of the calcination process,the alumina extraction at various reaction times at 873 K is plotted,calculated by the left parts of Eqs.(2),(3)and(4).The result is shown below in Fig.3.

    AccordingtoFig.3(a),whenprocessingthedataofaluminaextraction rate in the calcinations based on the shrinking core model,all the controlling-model-based characteristic functions and durations are not in the linear relationship.There is a deviation in every function at the time of 90-100 min,dividing the curve into two parts.It means that the rate control step or the reaction mechanism has changed during the calcinationprocess.Fittingthealuminaextractionrateat873Kincalcination reaction initial stage(0-90 min)and later stage(100-210 min)into all the controlling-model-based characteristic functions,and employing the linear regression analysis of the characteristic functions and reaction timebytheleastsquaremethod,theresultisshowninFig.3(b)and3(c). It is clear that in the initial stage characteristic function 1?(1?X)1/3= ktisthemostlinearrelatedwithtimet,whileinthelaterstagecharacteristic function 1?2X/3?(1?X)2/3=kt is the most linear related with time t.Thus,at the temperature of 873 K,the calcination process is controlled f i rst by chemical reaction and f i nally by interface diffusion.

    To determine the kinetics parameters in different phases of the calcination process,the alumina extraction at various reaction temperatures is plotted based on the characteristic functions of 1?(1?X)1/3= kt and 1?2X/3?(1?X)2/3=kt in initial stage and later stage, respectively.The result is shown in Fig.4.

    According to Fig.4,at the range of 727-827 K,the relationship between the extraction rate in the initial and later stages and the duration isthesamewiththelinearrelationshipshowninEqs.(3)and(4),which indicates that the initial stage f i ts in the chemical-reaction-controlled model,while the later stage suits the interface-diffusion-controlled model.Theapparentreactionrateconstantkintwostagescan bedetermined by the slope of the curves,as is listed in Table 2,in which k is higher in the initial stage than that in the later stage by one magnitude. Therefore,in the range of the temperature studied,the reaction mechanism does change during the calcination process.

    Based on the apparent reaction rate constant of the initial and later stages measured in different temperatures,the apparent reaction energy of activation in each stage can be calculated according to Arrhenius formula(5)[20,21]:

    where k0is the pre-exponential factor and Eais the apparent activation energy in the unit of J·mol?1.R is the molar gas constant which equals to 8.314 J·mol?1·K?1,while T is the thermodynamic temperature. Formula(6)is the natural logarithm form of formula(5):

    The plot of reaction rate constant versus different temperatures is showninFig.5.Basedontheslopeofthecurves,theapparentactivation energy of the initial and later stages can be determined,which equals to 13.31 and 35.65 kJ·mol?1,respectively.The result proves further that the reaction mechanism has changed in the different stages.

    Fig.3.Relationships between different models and reaction time at 873 K.Curve 1—F(X)=X;Curve 2—F(X)=1?(1?X)1/3;Curve 3—F(X)=1?2X/3?(1?X)2/3.

    Fig.4.Relationship of characteristic functions and durations in different temperatures.

    Table 2Apparent reaction rate constants of the initial and later stages of the calcinations in different temperatures

    3.3.Reaction mechanism analysis

    Thepossiblechemicalreactionsofcalciningthemixtureofammonia sulfate and f l y ash are listed below[22-24]:

    Throughthecalcinations,thealuminainf l yash can betransferredto soluble ammonium aluminum sulfate and aluminum sulfate.

    In the condition of the temperatures of 573-723 K and 773-873 K, and duration of 3.5 h,the XRD patterns of the calcination product are shown in Fig.6.

    From Fig.6(a),it is clear that at temperature of 573 K,the major product is ammonium sulfate,indicating apparently that no reaction has happened between f l y ash and ammonium sulfate.However, when thetemperature rises to673K,it is ammonium aluminum sulfate that becomes the major product,and it remains at up to 723 K.From Fig.6(b),at temperature of 773 K,the major product is still ammonium aluminum sulfate while a small amount of aluminum sulfate has occurred.As the temperature rises,the amount of ammonium aluminum sulfate has decreased and that of aluminum sulfate has enhanced. Thus,we can only get ammonium aluminum sulfate when the temperatureislowerthan 673K,andonlyifthetemperatureishigherthan873K can aluminum sulfate be formed.The results of thermodynamic calculation of reactions are in close agreement with the test ones[25].

    Fig.5.Relationship between K and temperature in the calcinations.

    The SEM images of calcination product treated at 873 K with durations of 10,90 and 210 min are shown in Fig.7.

    According to Fig.7,vitrif i ed slag mainly exists in small f l y ash particles,while porous vitrif i ed slag is rich in larger particles.At the duration of 10 min ammonium sulfate inf i ltrates at the surface of f l y ash but the structure is not completely changed.However,at 90 min the reaction has occurred between ammonium sulfate and f l y ash,making the superf i cial structure of the calcination product clear and integrated, whichcausesthemineralmorepolyporousandmakesthereactionfaster. The more regular crystal is formed at 210 min.Comparing the phase variationandthekineticsresultofthereaction,itiseasytoseethatintheinitial stage,ammonium sulfate reacts directly with mullite in the f l y ash to form ammonium aluminum sulfate.The apparent reaction energy of activation of the initial stage is lower and the reaction rate is faster.In the later stage,ammonium aluminum sulfate adsorbed on the surface of f l y ash reacts with ammonium sulfate to form aluminum sulfate.Its apparentreactionenergyofactivationishigher,whichmeansthatthereaction rateisslowerandahightemperatureisneededtocompletethereaction. Therefore,in order to make the product to be aluminum sulfate only,the later stage of the calcinations should be adequately aware of.

    4.Conclusions

    Fig.7.The SEM images of the product in different durations.

    (1)In the calcination process of ammonium sulfate and the f l y ash, temperature highly affects the extraction rate of alumina and a higher temperature causes a higher extraction rate.The rate increases swiftly in the initial stage,but slows down increasing in the later stage.(2)There are two stages in the calcination process—initial stage and later stage.The former is controlled by a chemical reaction while the latter by interface diffusion.The apparent reaction energy of activation of initial and later stages equals to 13.31 and 35.65 kJ·mol?1,respectively.

    (3)The reaction mechanism of the two stages is different:In the initial stage,ammonium sulfate reacts directly with mullite in the f l y ash to form ammonium aluminum sulfate.The apparent reaction energy of activation of the initial stage is lower and the reaction rate is faster.In the later stage,ammonium aluminum sulfate adsorbed on the surface of f l y ash reacts with ammonium sulfate to form aluminum sulfate.Its apparent reaction energy of activation is higher,which means that the reaction rate is slower andahightemperatureisneededtomakethereactioncomplete.

    [1]J.D.Wang,Y.C.Zhai,X.Y.Shen,Alumina extraction from de-silicate f l y ash with lime sintering process,Light Met.6(2009)14-16.

    [2]L.S.Li,Y.Y.Liu,Y.C.Zhai,Y.Wu,J.D.Wang,Alumina extraction from f l y ash by sulfuric acid calcinations,J.North.Univ.30(S2)(2009)169-172.

    [3]K.Gborphlip,S.J.Hooque,Q.Charles,Dissolution behavior of Fe,Co,and Ni from non-ferrous smelter slag in aqueous sulphurdioxide,Hydrometallurgy 81(2006) 130-141.

    [4]G.H.Bai,Y.H.Qiao,B.Shen,S.L.Chen,Thermal decomposition of coal f l y ash by concentrated sulfuric acid and alumina extraction process based on it,Fuel Process. Technol.92(2011)1213-1219.

    [5]H.Liu,V.G.Papanglak,Thermodynamic equilibrium of the O2-ZnSO4-H2SO4-H2O system from 25 to 250°C,Fluid Phase Equilib.234(2005)122-130.

    [6]R.L.Fang,S.Lu,X.B.Xie,The study of high-purity super-f i ne alumina powder preparation with f l y ash,Environ.Eng.5(2003)40-42.

    [7]H.Zhao,S.Lu,The study of high-purity super-f i ne alumina powderpreparation with fl y ash,Compr.Util.Fly Ash 6(2002)8-10.

    [8]S.Lu,R.L.Fang,H.Zhao,The study of high-purity super-f i ne alumina powder recovered from f l y ash by lime sintering self-powder method,Fly Ash 1(2003)15-17.

    [9]Y.R.Ren,Z.K.Zhu,D.L.Xu,P.X.Fu,The study of high-purity alumina preparation by thermal decomposition of aluminum ammonium sulfate,Inorg.Chem.Ind.6(1991) 21-25.

    [10]C.Chen,L.B.Evans,A local composition model for the excess Gibbs energy of aqueous electrolyte systems,AIChE J.32(1986)444-454.

    [11]H.C.Park,Y.J.Park,R.Stevens,Synthesis of alumina from purity alum derived from coal f l y ash,Mater.Sci.Eng.367(2004)166-170.

    [12]L.S.Li,Y.C.Zhai,J.G.Qin,Y.Wu,Y.Y.Liu,Extracting high-purity alumina from f l y ash, J.Chem.Ind.Eng.57(9)(2006)2189-2193(in Chinese).

    [13]X.L.Jin,T.j Peng,H.J.Sun,Mineral composition and variation rule of calcinations products of ammonia sulfate and f l y ash,Acta Mieralogica Sinica 33(2)(2013) 147-151.

    [14]C.S.Fu,Non-ferrous Metal Principle,Metallurgical Industry Press,Beijing,1993.

    [15]K.Sun,Macro reaction Kinetics and Its Analytic Method,Metallurgical Industry Press,Beijing,1998.

    [16]A.M.Ginstling,B.I.Brounshtein,Diffusion kinetics of reaction in spherical particles, Russ.J.Appl.Chem.23(12)(1950)1327-1338.

    [17]D.S.Abrams,J.M.Prausnitz,Statistical thermodynamics of liquid mixtures:A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J.21(1975)116-128.

    [18]H.G.Li,The Principle of Metallurgy,Science Press,Beijing,2005.

    [19]Z.Y.Zhang,J.H.Peng,Z.B.Zhang,Leachingzincfromspentcatalyst:Processoptimization using response surface methodology,J.Hazard.Mater.176(2010)1113-1117.

    [20]A.Haghtalab,V.G.Papanglakis,X.Zhu,The electrolyte NRTL model and speciation approach as applied to multicomponent aqueous solutions of H2SO4,Fe2(SO4)3, MgSO4and Al2(SO4)3at 230-270°C,Fluid Phase Equilib.220(2004)199-209.

    [21]K.Thomsen,P.Rasmussen,R.Gani,Correlation and prediction of thermal properties and phase behavior for a class of aqueous electrolyte systems,Chem.Eng.Sci.51 (1996)3675-3683.

    [22]S.J.Wu,X.Yu,Z.H.Hu,L.L.Zhang,Optimizingaerobicbiodegradationof dichloromethane using response surface methodology,J.Environ.Sci.21(9)(2009)1276-1283.

    [23]H.Liu,V.G.Papangelakis,Chemical modeling of high temperature aqueous processes,Hydrometallurgy 79(2005)48-61.

    [24]K.Ravikumar,K.Pakshirajan,T.Swaminathan,K.Balu,Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent,Chem.Eng.105(2005)131-138.

    [25]L.S.Li,Y.Y.Liu,Thermodynamics of extracting alumina from f l y ash by ammonium sulfate calcinations process,Light Met.9(2009)12-14.

    16 December 2013

    ☆Supportedbythe National Science andTechnology Projectof China(2012BAB01B00).

    *Corresponding author.

    E-mail address:wp_zx@sina.com(P.Wang).

    http://dx.doi.org/10.1016/j.cjche.2014.06.033

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 17 March 2014

    Accepted 29 April 2014

    Available online 30 June 2014

    欧美黄色片欧美黄色片| 在线观看日韩欧美| 最近最新中文字幕大全免费视频| 欧美zozozo另类| 国产私拍福利视频在线观看| 中文字幕人妻丝袜一区二区| 久久亚洲真实| 国内精品久久久久久久电影| 亚洲成av人片在线播放无| 日本免费一区二区三区高清不卡| 黄色女人牲交| 午夜亚洲福利在线播放| 老司机午夜福利在线观看视频| x7x7x7水蜜桃| 欧美高清成人免费视频www| 中文资源天堂在线| 亚洲国产精品sss在线观看| 亚洲无线在线观看| 国产视频内射| 免费观看精品视频网站| 亚洲全国av大片| 亚洲精品美女久久av网站| 国产成人影院久久av| 国产久久久一区二区三区| 少妇熟女aⅴ在线视频| 男女午夜视频在线观看| 午夜亚洲福利在线播放| 亚洲男人的天堂狠狠| 国产精品乱码一区二三区的特点| 男人舔女人下体高潮全视频| 夜夜爽天天搞| 欧美久久黑人一区二区| 老司机靠b影院| 亚洲男人天堂网一区| 日韩大码丰满熟妇| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频| 长腿黑丝高跟| 国产真实乱freesex| 夜夜躁狠狠躁天天躁| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| 成人av在线播放网站| 亚洲在线自拍视频| 成人国产一区最新在线观看| 我要搜黄色片| 精品日产1卡2卡| 狂野欧美激情性xxxx| 一本综合久久免费| 亚洲自拍偷在线| 欧美zozozo另类| 少妇的丰满在线观看| 久久久久久久久中文| 大型黄色视频在线免费观看| 精品国产乱码久久久久久男人| 国产亚洲欧美98| 久久久久免费精品人妻一区二区| 一a级毛片在线观看| 欧美zozozo另类| 欧美另类亚洲清纯唯美| 免费无遮挡裸体视频| 国产真人三级小视频在线观看| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 中亚洲国语对白在线视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区精品视频观看| 欧美黑人欧美精品刺激| 午夜激情福利司机影院| 国产亚洲精品综合一区在线观看 | 中文字幕精品亚洲无线码一区| 国产av麻豆久久久久久久| 18禁观看日本| 性色av乱码一区二区三区2| 成人国语在线视频| 亚洲国产精品合色在线| 1024香蕉在线观看| 国产精品美女特级片免费视频播放器 | 给我免费播放毛片高清在线观看| 国产精品电影一区二区三区| 久久久国产欧美日韩av| 母亲3免费完整高清在线观看| 国产成人啪精品午夜网站| 又紧又爽又黄一区二区| 国产精品久久久人人做人人爽| 麻豆av在线久日| 日韩欧美国产在线观看| 国产99白浆流出| 久久精品影院6| 麻豆成人午夜福利视频| 国产精品亚洲美女久久久| 色在线成人网| 国产成人精品无人区| 99热这里只有精品一区 | 欧美一区二区精品小视频在线| 久久久水蜜桃国产精品网| 久99久视频精品免费| 亚洲av片天天在线观看| 97人妻精品一区二区三区麻豆| 国产黄色小视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 99热这里只有精品一区 | av片东京热男人的天堂| 国产精品久久电影中文字幕| 亚洲欧美日韩高清在线视频| 欧美激情久久久久久爽电影| 又粗又爽又猛毛片免费看| 99re在线观看精品视频| av有码第一页| 成人午夜高清在线视频| 一进一出抽搐动态| 最近最新中文字幕大全电影3| 看片在线看免费视频| 亚洲自偷自拍图片 自拍| 亚洲熟女毛片儿| 18禁黄网站禁片免费观看直播| 日韩三级视频一区二区三区| 久久亚洲真实| 国产日本99.免费观看| 最新美女视频免费是黄的| 国产av一区在线观看免费| 老司机深夜福利视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久欧美精品欧美久久欧美| 国产高清视频在线观看网站| 毛片女人毛片| 看黄色毛片网站| 日韩欧美精品v在线| 人成视频在线观看免费观看| 伦理电影免费视频| 国产精品影院久久| 1024视频免费在线观看| 成人精品一区二区免费| 99久久精品热视频| 可以在线观看的亚洲视频| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 久久亚洲真实| 亚洲欧美日韩高清在线视频| 巨乳人妻的诱惑在线观看| 久久天躁狠狠躁夜夜2o2o| 国产成人av激情在线播放| 大型黄色视频在线免费观看| 国产精品久久久久久人妻精品电影| 欧美极品一区二区三区四区| 精品国产超薄肉色丝袜足j| 视频区欧美日本亚洲| 精品久久蜜臀av无| 亚洲电影在线观看av| 久久精品综合一区二区三区| 久久久久国产一级毛片高清牌| av免费在线观看网站| 亚洲熟妇中文字幕五十中出| 国产69精品久久久久777片 | 深夜精品福利| 国产单亲对白刺激| 久久婷婷成人综合色麻豆| 午夜福利免费观看在线| √禁漫天堂资源中文www| 国产午夜福利久久久久久| 色综合站精品国产| 精品欧美一区二区三区在线| 亚洲成人久久性| 久久久久久大精品| 午夜久久久久精精品| 日韩免费av在线播放| 午夜亚洲福利在线播放| 成人一区二区视频在线观看| 欧美av亚洲av综合av国产av| 99精品久久久久人妻精品| 国产伦一二天堂av在线观看| 宅男免费午夜| 国产69精品久久久久777片 | 国产精品日韩av在线免费观看| 又爽又黄无遮挡网站| 黑人巨大精品欧美一区二区mp4| 亚洲中文av在线| 国产精品野战在线观看| 一区福利在线观看| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 亚洲精品色激情综合| 在线看三级毛片| 手机成人av网站| 国产高清视频在线观看网站| 欧美中文综合在线视频| 日本免费一区二区三区高清不卡| 色播亚洲综合网| 夜夜躁狠狠躁天天躁| 亚洲美女黄片视频| 1024手机看黄色片| 欧美精品啪啪一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品久久久久久久电影 | 免费看日本二区| 两个人看的免费小视频| 曰老女人黄片| 人人妻人人澡欧美一区二区| 波多野结衣高清作品| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区| 91在线观看av| av天堂在线播放| 亚洲精品美女久久久久99蜜臀| 香蕉国产在线看| 一级毛片女人18水好多| 亚洲精品在线美女| 国产91精品成人一区二区三区| 久久亚洲真实| 欧美3d第一页| 国产免费男女视频| 在线免费观看的www视频| 成年免费大片在线观看| 老汉色∧v一级毛片| av在线天堂中文字幕| 国产高清videossex| 亚洲真实伦在线观看| a在线观看视频网站| 中文资源天堂在线| 久久久久久国产a免费观看| 亚洲avbb在线观看| 国产av在哪里看| 黄片大片在线免费观看| 久久久久免费精品人妻一区二区| 亚洲,欧美精品.| 国产精品亚洲av一区麻豆| 精品国产超薄肉色丝袜足j| 精品免费久久久久久久清纯| 真人做人爱边吃奶动态| 久久中文看片网| 夜夜夜夜夜久久久久| 亚洲 欧美 日韩 在线 免费| 老鸭窝网址在线观看| 波多野结衣巨乳人妻| 精华霜和精华液先用哪个| 免费高清视频大片| 午夜两性在线视频| 国产av一区二区精品久久| 免费看美女性在线毛片视频| 桃色一区二区三区在线观看| 一本大道久久a久久精品| 亚洲真实伦在线观看| av在线天堂中文字幕| 首页视频小说图片口味搜索| 亚洲一区中文字幕在线| 国产精品av视频在线免费观看| 午夜免费激情av| 日本在线视频免费播放| 免费在线观看成人毛片| 操出白浆在线播放| 久久久久久久久中文| 亚洲中文字幕一区二区三区有码在线看 | 两人在一起打扑克的视频| 又黄又粗又硬又大视频| 少妇人妻一区二区三区视频| 老鸭窝网址在线观看| 制服人妻中文乱码| 国内少妇人妻偷人精品xxx网站 | 亚洲成av人片免费观看| 中文字幕av在线有码专区| 无遮挡黄片免费观看| 免费搜索国产男女视频| 成人18禁高潮啪啪吃奶动态图| 久久精品91蜜桃| 亚洲18禁久久av| 无人区码免费观看不卡| 色综合婷婷激情| 色噜噜av男人的天堂激情| 给我免费播放毛片高清在线观看| 亚洲国产欧美网| av国产免费在线观看| 母亲3免费完整高清在线观看| 欧美中文日本在线观看视频| 成人国产综合亚洲| 长腿黑丝高跟| 亚洲欧美精品综合久久99| 久久久久久免费高清国产稀缺| 琪琪午夜伦伦电影理论片6080| 精品欧美一区二区三区在线| 国产午夜福利久久久久久| 亚洲熟妇熟女久久| 久久久国产成人免费| 在线国产一区二区在线| 亚洲成人中文字幕在线播放| 日本一二三区视频观看| 怎么达到女性高潮| 午夜福利在线在线| 少妇裸体淫交视频免费看高清 | 欧美zozozo另类| 国产97色在线日韩免费| 国产乱人伦免费视频| 91麻豆精品激情在线观看国产| 国产日本99.免费观看| 国产在线观看jvid| 成人av在线播放网站| 国产熟女xx| www日本黄色视频网| 亚洲中文av在线| 国产单亲对白刺激| 999精品在线视频| 国产伦人伦偷精品视频| 亚洲国产中文字幕在线视频| 久久精品91蜜桃| 我要搜黄色片| xxx96com| av天堂在线播放| 一个人观看的视频www高清免费观看 | 国产精品,欧美在线| 国产蜜桃级精品一区二区三区| www.www免费av| 国产av麻豆久久久久久久| 国产在线观看jvid| 久久天躁狠狠躁夜夜2o2o| 久久久精品大字幕| av天堂在线播放| 国产一区二区三区在线臀色熟女| 欧美成人免费av一区二区三区| 亚洲专区国产一区二区| 亚洲精品色激情综合| 国产区一区二久久| 变态另类成人亚洲欧美熟女| 19禁男女啪啪无遮挡网站| 精品久久蜜臀av无| 亚洲一区二区三区色噜噜| 极品教师在线免费播放| 亚洲avbb在线观看| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 热99re8久久精品国产| 757午夜福利合集在线观看| 久久精品aⅴ一区二区三区四区| 好男人在线观看高清免费视频| 欧美乱色亚洲激情| 日本精品一区二区三区蜜桃| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 国内毛片毛片毛片毛片毛片| 国产成人精品久久二区二区免费| 国产精品九九99| 精品国产乱子伦一区二区三区| 婷婷精品国产亚洲av在线| 热99re8久久精品国产| 国内少妇人妻偷人精品xxx网站 | 欧美日本视频| 免费观看人在逋| 9191精品国产免费久久| 久久中文字幕人妻熟女| 不卡av一区二区三区| 午夜亚洲福利在线播放| 在线十欧美十亚洲十日本专区| 我要搜黄色片| 又黄又爽又免费观看的视频| 亚洲黑人精品在线| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品久久久久5区| 成人永久免费在线观看视频| 免费观看人在逋| 亚洲专区字幕在线| 性色av乱码一区二区三区2| 熟妇人妻久久中文字幕3abv| 亚洲欧美一区二区三区黑人| 亚洲一区中文字幕在线| 1024视频免费在线观看| 亚洲精品在线美女| 欧美日韩一级在线毛片| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 欧美一区二区精品小视频在线| 久久香蕉激情| 国产精品久久久久久亚洲av鲁大| 日本撒尿小便嘘嘘汇集6| 99国产极品粉嫩在线观看| 成人av在线播放网站| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 精品电影一区二区在线| 久久这里只有精品19| 午夜福利在线在线| 老司机午夜福利在线观看视频| av天堂在线播放| 麻豆国产av国片精品| 黄色成人免费大全| 午夜福利欧美成人| 国产成人aa在线观看| 欧美日韩瑟瑟在线播放| 色综合亚洲欧美另类图片| 久久久久性生活片| 日韩中文字幕欧美一区二区| а√天堂www在线а√下载| 成人欧美大片| 国产蜜桃级精品一区二区三区| xxxwww97欧美| 99久久久亚洲精品蜜臀av| 国产精品 国内视频| 好看av亚洲va欧美ⅴa在| 国产高清视频在线观看网站| 国产激情久久老熟女| 女人高潮潮喷娇喘18禁视频| 午夜精品在线福利| 黄色成人免费大全| 亚洲av第一区精品v没综合| 99国产精品99久久久久| 美女高潮喷水抽搐中文字幕| 蜜桃久久精品国产亚洲av| 最好的美女福利视频网| a在线观看视频网站| 亚洲一区中文字幕在线| 久久中文字幕人妻熟女| 啦啦啦韩国在线观看视频| 精品国产美女av久久久久小说| 欧美一级毛片孕妇| av天堂在线播放| 操出白浆在线播放| 麻豆久久精品国产亚洲av| 又大又爽又粗| 不卡av一区二区三区| 丝袜美腿诱惑在线| 91九色精品人成在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美乱色亚洲激情| 最近最新免费中文字幕在线| 身体一侧抽搐| 在线看三级毛片| 亚洲成人中文字幕在线播放| 精品久久久久久久久久久久久| 亚洲成人国产一区在线观看| 免费一级毛片在线播放高清视频| 国产精品av久久久久免费| 亚洲国产精品合色在线| 亚洲五月婷婷丁香| 精品电影一区二区在线| 成年女人毛片免费观看观看9| 午夜a级毛片| 国产又黄又爽又无遮挡在线| 亚洲av成人av| 亚洲 欧美一区二区三区| 天天添夜夜摸| 欧美日韩精品网址| 制服诱惑二区| 午夜福利在线在线| 美女扒开内裤让男人捅视频| 亚洲av美国av| 日韩欧美在线乱码| 免费搜索国产男女视频| 色哟哟哟哟哟哟| 亚洲人成伊人成综合网2020| 国产精品香港三级国产av潘金莲| 精品久久久久久久久久免费视频| 视频区欧美日本亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一电影网av| 亚洲熟妇熟女久久| 欧美绝顶高潮抽搐喷水| av超薄肉色丝袜交足视频| 精品国产超薄肉色丝袜足j| 亚洲人与动物交配视频| 国产精品久久久av美女十八| 欧美zozozo另类| 小说图片视频综合网站| 18禁黄网站禁片午夜丰满| 国产三级在线视频| 日韩欧美在线二视频| 久久久久久久久久黄片| 亚洲av成人一区二区三| 老鸭窝网址在线观看| 999久久久精品免费观看国产| 中文字幕精品亚洲无线码一区| 男人舔奶头视频| 精品日产1卡2卡| 日韩欧美三级三区| 在线观看舔阴道视频| 国产成人精品久久二区二区91| 精品不卡国产一区二区三区| 国产精品美女特级片免费视频播放器 | 日韩欧美一区二区三区在线观看| 亚洲欧美日韩高清在线视频| 在线观看美女被高潮喷水网站 | 最近在线观看免费完整版| 天天躁夜夜躁狠狠躁躁| 老司机福利观看| 欧美黄色片欧美黄色片| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲真实| 欧美一区二区精品小视频在线| 久久久国产成人精品二区| 欧美午夜高清在线| 波多野结衣巨乳人妻| 国产成人精品久久二区二区91| 动漫黄色视频在线观看| av片东京热男人的天堂| 午夜免费观看网址| 人人妻人人看人人澡| 欧美zozozo另类| 三级国产精品欧美在线观看 | 超碰成人久久| 给我免费播放毛片高清在线观看| 欧美日本亚洲视频在线播放| 黄色丝袜av网址大全| 欧美一区二区国产精品久久精品 | 亚洲性夜色夜夜综合| 色老头精品视频在线观看| 成年人黄色毛片网站| 欧美日本亚洲视频在线播放| 欧美大码av| 亚洲无线在线观看| 亚洲欧美精品综合一区二区三区| av福利片在线| 国产真人三级小视频在线观看| 精品久久久久久久久久免费视频| 日韩欧美免费精品| 亚洲国产高清在线一区二区三| 在线看三级毛片| 国产精品久久久人人做人人爽| 99国产精品99久久久久| 中亚洲国语对白在线视频| 亚洲全国av大片| 国产激情久久老熟女| 床上黄色一级片| 亚洲一区中文字幕在线| 欧美日韩福利视频一区二区| 一a级毛片在线观看| 国产探花在线观看一区二区| 国产高清有码在线观看视频 | 日韩高清综合在线| 免费看a级黄色片| 在线播放国产精品三级| 亚洲性夜色夜夜综合| 国产精品亚洲一级av第二区| 亚洲成a人片在线一区二区| 欧美午夜高清在线| 好看av亚洲va欧美ⅴa在| 高清毛片免费观看视频网站| 国产野战对白在线观看| 国产在线精品亚洲第一网站| 精品国产乱码久久久久久男人| 亚洲国产高清在线一区二区三| 国产69精品久久久久777片 | 久久香蕉激情| 午夜a级毛片| 亚洲av中文字字幕乱码综合| 中亚洲国语对白在线视频| 日韩欧美国产一区二区入口| 亚洲第一电影网av| 黄色视频,在线免费观看| 国产精品久久久久久久电影 | 美女 人体艺术 gogo| 亚洲成人中文字幕在线播放| 窝窝影院91人妻| 母亲3免费完整高清在线观看| 久久久久久人人人人人| 国产精品 欧美亚洲| 国产亚洲欧美在线一区二区| 变态另类成人亚洲欧美熟女| av片东京热男人的天堂| 国产成年人精品一区二区| 99国产精品一区二区三区| 毛片女人毛片| 大型黄色视频在线免费观看| 国产高清videossex| 丝袜美腿诱惑在线| 三级国产精品欧美在线观看 | 黄色成人免费大全| 日本撒尿小便嘘嘘汇集6| 亚洲,欧美精品.| 欧美性长视频在线观看| 操出白浆在线播放| 国产欧美日韩一区二区三| 午夜日韩欧美国产| 禁无遮挡网站| 亚洲国产看品久久| 中文字幕高清在线视频| 嫁个100分男人电影在线观看| 亚洲国产精品sss在线观看| 美女扒开内裤让男人捅视频| 在线免费观看的www视频| 国产激情偷乱视频一区二区| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲| 色综合站精品国产| 91九色精品人成在线观看| 国产成人精品无人区| 女同久久另类99精品国产91| 欧美人与性动交α欧美精品济南到| 人人妻,人人澡人人爽秒播| 久久久久国产一级毛片高清牌| 日本 av在线| 欧美一级a爱片免费观看看 | 日韩欧美三级三区| 欧美国产日韩亚洲一区| 国产精品久久久久久精品电影| 精品久久久久久久久久免费视频| 变态另类丝袜制服| 亚洲中文日韩欧美视频| 欧美日韩乱码在线| av福利片在线观看| 欧美色视频一区免费| av中文乱码字幕在线| 校园春色视频在线观看| 国产成年人精品一区二区| 色综合婷婷激情| 啪啪无遮挡十八禁网站| 久久婷婷成人综合色麻豆| 国产区一区二久久| 丰满的人妻完整版| 国产1区2区3区精品| 亚洲七黄色美女视频| 夜夜看夜夜爽夜夜摸| 中文字幕精品亚洲无线码一区| 国产一区在线观看成人免费| 观看免费一级毛片| 天天添夜夜摸| av免费在线观看网站| 久99久视频精品免费|