• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ComprehensiveAlcohol-/Ion-ResponsivePropertiesof Poly(N-Isopropylacrylamide-co-Benzo-18-Crown-6-Acrylamide)Copolymers☆

    2014-07-25 11:29:32XiaojieJuShuoweiPiRuiXieXiaojingGuoJieyiLiuYalanYuLuJiangXiaohuaLuQianmingChenLiangyinChu

    Xiaojie Ju,Shuowei Pi,Rui Xie,Xiaojing Guo,Jieyi Liu,Yalan Yu,Lu Jiang,Xiaohua Lu, Qianming Chen,Liangyin Chu*,

    Materials and Product Engineering

    ComprehensiveAlcohol-/Ion-ResponsivePropertiesof Poly(N-Isopropylacrylamide-co-Benzo-18-Crown-6-Acrylamide)Copolymers☆

    Xiaojie Ju1,Shuowei Pi1,Rui Xie1,Xiaojing Guo2,Jieyi Liu1,Yalan Yu1,Lu Jiang3,Xiaohua Lu2, Qianming Chen3,Liangyin Chu*,1

    1School of Chemical Engineering,Sichuan University,Chengdu 610065,China2State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemistry and Chemical Engineering,Nanjing University of Technology,Nanjing 210009,China3State Key Laboratory of Oral Diseases,Sichuan University,Chengdu 610065,China

    A R T I C L EI N F O

    Article history:

    Stimuli-responsive material

    Phase transition behavior

    Alcohol-responsive property

    Ion-responsive property

    In this paper,we report on the comprehensive alcohol-/ion-responsive properties of a smart copolymer poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide)(P(NIPAM-co-BCAm)).The orthogonal design method is adopted for experimental design.The experimental results show that alcohol can trigger the shrinking and Ba2+can induce the swelling of the P(NIPAM-co-BCAm)copolymer.According to the phase transition temperature(LCST)change results of the copolymer,the inf l uence of variables on the LCST changes weakens in the following order:alcohol concentration>alcohol species>metal ion species>BCAm concentration>ion concentration.The larger the alcohol concentration and the larger the molecular size of alcohols,the lower the LCST value;on the contrary,the more the BCAm content in the copolymer or the larger the BCAm/ion complex stabilityconstant(lgK)orthelargertheionconcentrationis,thehighertheLCSTvalue.ForaP(NIPAM-co-BCAm) copolymerwithaf i xedBCAmcontent,abinaryfunctionofionconcentrationandlgKofBCAm/ionisdevelopedto precisely predict the LCST values of the copolymer in different metal ion solutions.The results provide valuable information for fabricating artif i cial biomimetic G-protein-gated inwardly rectifying potassium(GIRK)channels that are activated by alcohol and inhibited by Ba2+.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Metalionsplayimportantrolesinthelifeactivities.Manymetalions are essential metabolism components and cofactors for various biological processes,including oxidative phosphorylation,gene regulation and free-radical homeostasis[1].For example,G-protein-gated inwardly rectifying potassium(GIRK)channels,which are widely distributed in the brain,have important functions in inhibitory regulation of neuronal excitability[2,3].Ontheotherhand,alcoholscouldmodulatepotassium channels and affect various functions of the central nervous system. Aryal et al.reported that the open and close functions of such GIRK channels play a key role in the function of the brain,and ethanol can activate GIRK channels and Ba2+can inhibit the channels[4].So,the competition and corporation between alcohol molecules and metal ions are important for life systems.If artif i cial materials could be developedtomimictheactionbehaviorsofGIRKchannelsinresponsetoboth alcohol molecules and metal ions in the opposite directions,it could be possible to artif i cially achieve biomimetic GIRK channels that are very important for biomedical therapies.

    Stimuli-responsive smart materials are attracting ever-increasing attention due to their dramatic response to environmental stimuli such as mild change of temperature[5,6],pH[7],and magnetic f i eld [8,9].In recent years,a series of ion-recognition responsive materials, which are mainly composed of poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide)(P(NIPAM-co-BCAm))copolymers,have been developed for various applications with different conf i gurations such as microcapsules[10,11],hydrogels[12-14]and membranes [15-20].It has been reported that poly(N-isopropylacrylamide) (PNIPAM)polymers demonstrate interesting coil-to-globule-to-coil phenomena in alcohol-water mixtures in response to alcohol concentration[21-23].IfethanolcantriggertheshrinkingandBa2+caninduce theswellingofP(NIPAM-co-BCAm)copolymersproperly,itisfeasibleto fabricate artif i cial biomimetic GIRK channels by immobilizing the P(NIPAM-co-BCAm)copolymers as functional gates in artif i cial channels.However,comprehensive dual ion-recognition and alcoholresponsive properties of P(NIPAM-co-BCAm)have not been systematically investigated up to now,i.e.,understanding of the competition and corporation effects between alcohol molecules and metal ions on the phase transition of P(NIPAM-co-BCAm)is still lacking.

    In this study,we report on a systematical investigation of comprehensive alcohol-/ion-responsive properties of P(NIPAM-co-BCAm) copolymers for the f i rst time.Schematic illustration of thermoresponsive,ion-recognition and alcohol-responsive properties of P(NIPAM-co-BCAm)copolymers[Fig.1(a)]is illustrated in Fig.1.The thermo-responsive property is derived from the PNIPAM units.The P(NIPAM-co-BCAm)copolymer chain would change from coil to globule when the temperature increases across the lower critical solution temperature(LCST)[Fig.1(b)][24].The BCAm units act as ion-recognition sensors.The P(NIPAM-co-BCAm)copolymer chain could change from globule to coil isothermally when the BCAm units recognize special metal ions[Fig.1(c)][25].The alcohol-responsive property is also from the PNIPAM units.The P(NIPAM-co-BCAm) copolymer demonstrates a coil-to-globule transition in alcohol-water mixtures with increasing alcohol concentration when the alcohol concentration is lower than the upper critical response concentration [Fig.1(d)][21-23].To investigate the comprehensive and cooperative effects of alcohol species,alcohol concentration,metal ion species,ion concentration and BCAm content on the phase transition behaviors of P(NIPAM-co-BCAm)copolymers,the orthogonal design method is adopted to design the experiments.The orthogonal experimental design allows for the necessary data collection to determine the sequence of effect degree of independent variables on the performance [26-28].Besides,the orthogonal experimental method reduces effectively the number of experimental runs.In this study,there are f i ve factors and four different levels for each factor;therefore,45(i.e.,1024)experimental runs would be carried out if single factor experiments are adopted,but the orthogonal experiments can decrease theexperimentalrunsto42(i.e.,16).Thefactorsandlevelsintheexperiments are carefully designed according to the orthogonal design table L16(45)by referring to the relevant solution environment for GIRK channels[4],in order to provide valuable information for achieving biomimetic GIRK channels with artif i cial P(NIPAM-co-BCAm)gates.

    2.Experimental

    2.1.Materials

    N-isopropylacrylamide(NIPAM,provided by Kohjin Co.,Japan)was purif i ed by recrystallization with a hexane/acetone mixture(50/50, by volume).Benzo-18-crown-6 acrylamide(BCAm)was synthesized according to reported procedures[29,30].2,2′-Azoisobutyronitrile (AIBN,Shanghai Fourth Reagent Factory)was recrystallized with ethanol.To minimize salting-out effects,nitrate was chosen as the model salt[31].All the solvents and other chemicals were of analytical grade and were used as received.Deionized water(Milli-Q,Milli-Pore, 18.2 MΩ,25°C)was used throughout the experiments.

    Fig.1.Schematic illustration of the chemical structure(a)and thermo-responsive(b),ion-recognition(c)and alcohol-responsive(d)properties of P(NIPAM-co-BCAm)copolymers.

    2.2.Synthesis of P(NIPAM-co-BCAm)copolymers

    A series of P(NIPAM-co-BCAm)copolymers with different molar ratios of NIPAM and BCAm monomers were synthesized by free-radical polymerization using AIBN as initiator.The monomers and initiator were dissolved in tetrahydrofuran(THF)as reaction solution and the total monomer concentration was 0.3 mol·L?1.The molar ratio of AIBN to total monomers was 1%,and that of BCAm to total monomers varied from 4%to 13%.The polymerization reaction was carried out under N2atmosphere at 60°C for 24 h.After polymerization,an excess of ethyl ether was added to the solution to precipitate the copolymers. The copolymers were purif i ed twice by reprecipitation with ethyl ether from THF,and dried under vacuum at 40°C for 48 h.

    A PNIPAM homopolymer,which served as the reference,was also prepared and purif i ed using the similar protocol without addition of BCAm.

    The formations of prepared P(NIPAM-co-BCAm)copolymers were determined by a FT-IR spectrometer(IR Prestige-21,Shimadzu)in the range of 4000-400 cm?1with KBr disc technique.The compositions of P(NIPAM-co-BCAm)copolymers were determined by1H NMR spectroscopy(Bruker-400,Bruker)operating at 400 MHz and using deuterium oxide as solvent.The molecular masses of the copolymers were determined by gel permeation chromatography(GPC,Waters-2410,Waters).

    2.3.Characterizations of phase transition behaviors of polymers

    To scientif i cally design the experiments on the phase transition behaviors of P(NIPAM-co-BCAm)copolymers with different BCAm contents in various ion solutions,the orthogonal experimental design was adopted[26-28].Alcohol species,alcohol concentration,metal ion species,ion concentration and BCAm content in copolymers were selected as the main independent variables(factors)in this study,and each variable(factor)was tested at four levels as shown in Table 1. The level order for each factor was arranged at random according to the orthogonal experimental design method.The order of the inf l uence degree of f i ve factors on the phase transition behaviors of P(NIPAM-co-BCAm)copolymers could be sorted out upon the orthogonal experimental method.

    TomeasurethephasetransitionbehaviorofP(NIPAM-co-BCAm)copolymers,thecopolymers were dissolved in aqueous solutionscontaining different alcohols and metal ions as arranged in the orthogonal design.Then,the temperature-dependent transmittance changes of copolymer solutions were measured using a UV-visible spectrophotometer(at 500 nm,Shimadzu UV-1700,Japan)equipped with a temperature-controlled cell(Shimadzu TCC-240A).The temperature, at which the transmittance of copolymer solution decreased to half of its initial value,was recorded as the corresponding LCST value of the P(NIPAM-co-BCAm)copolymers.

    3.Results and Discussion

    3.1.Composition characterizations of P(NIPAM-co-BCAm)copolymers

    By comparing the FT-IR spectra of the BCAm monomer,PNIPAM homopolymer and P(NIPAM-co-BCAm)copolymers,the copolymerization of NIPAM and BCAm is conf i rmed.Specif i cally,the appearance of the followingcharacteristicpeaksintheFT-IRspectraofP(NIPAM-co-BCAm)copolymerssuggestsasuccessfulcopolymerization:(1)astrong1516cm?1band for C=C skeletal stretching vibration of the phenyl ring,(2)a 1231 cm?1band for C-O asymmetric stretching vibration in Ar-O-R, and(3)a 1053 cm?1band for C-O symmetric stretching vibration in Ar-O-R.Corresponding bands also appear in the FT-IR spectrum of the BCAm monomer.Furthermore,the characteristic double peaks at 1388 and 1366 cm?1for the isopropyl group of NIPAM appear in both FT-IR spectra of PNIPAM and P(NIPAM-co-BCAm)polymers.These feature peakssuggestasuccessfulfabricationofP(NIPAM-co-BCAm)copolymers.

    The actual BCAm contents in the P(NIPAM-co-BCAm)copolymers, which are calculated by comparing the integral of 6.7-7.3(Ar-H,3H) to 1.03-1.05[(CH)3NH-,6H]from the1H NMR results,are 4.1%(by mol),8.4%(by mol)and 11.2%(by mol).

    TheweightaveragemolecularmassesoftheP(NIPAM-co-BCAm)copolymers(Mw)are in the range 2260-5220 as determined by GPC data, and the magnitudes of the molecular masses are independent of the composition of copolymers.

    3.2.Analysis of orthogonal experimental data

    There are f i ve factors and four levels for each factor in the experiments,andatotalof16experimentalrunsaredesignedaccording to the orthogonal design table L16(45)(Table 2).The temperaturedependent transmittance changes of copolymer solutions are shown in Fig.2.Obviously,all of the copolymer solutions undergo an abrupt change in transmittance when the temperature changes across the corresponding LCST value.The measured LCST values from Fig.2 are also summarized in Table 2.

    The average LCST value of each factor at each level is calculated (symbolically indicated as kij,where i represents a factor and j represents a level).Take the factor A(actual BCAm content)as an example, thef i rstlevel(0%,bymol)isarrangedin1#,2#,3#and4#experimental runs and the corresponding LCST values are 32.5,29.2,18.4 and 8.6 respectively,so the average LCST value of factor A at level-1 is: Another example,for the factor B(metal ion species),the third level (K+)is arranged in 3#,7#,11#and 15#experimental runs and the corresponding LCST values are 18.4,34.0,29.1 and 34.0 respectively, so the average LCST value of factor B at level-3 is:

    Table 1Experimental variables:Factors and levels

    The“Largest kijgap”is def i ned as the difference between the maximum and minimum values of kijfor each factor i,which means the degree of change in the LCST value when the factor i varies among the four levels.The larger the“Largest kijgap”is,the larger the LCST value change.For example,the“Largest kBjgap”of factor B(metal ion species) (kB,max?kB,min)is 11.0,which indicates that the average LCST value changes 11.0°C when the metal ion species varies among Ba2+,K+, Ca2+and Na+.So,the parameter“Largest kijgap”presents the signif icance or inf l uence degree of the variables(factors)on the LCST values intheorthogonalexperiments.The“Largestkijgap”valuesoffactorA(actual BCAm content),factor B(metal ion species),factor C(ion concentration),factor D(alcohol species)and factor E(alcohol concentration)are 6.9,11.0,6.6,11.2 and 17.9,respectively.So,the inf l uence degree of the f i ve factors on the LCST value in order from large to small is listed as follows:alcohol concentration>alcohol species>metal ion species>BCAm content>ion concentration.That is,the inf l uence of alcohols on the LCST shift is larger than that of metal ions and BCAm units.The alcohol-responsive sites in the P(NIPAM-co-BCAm)copolymer are the NIPAM units,and the ion-recognition sites are the BCAm units.In the orthogonal experiments,the molar ratio of BCAm units is at most 11.2%,i.e.,theNIPAMunits aremuchmorethanBCAm unitsintheP(NIPAM-co-BCAm)copolymers.Inotherwords,thealcohol-responsivesitesaremuch more than the ion-recognition sites in the P(NIPAM-co-BCAm)copolymers.So,the inf l uence degree of alcohols on the phase transition behaviorsofP(NIPAM-co-BCAm)ismoresignif i cantthanthatofmetalionsand BCAm units.

    Table 2Orthogonal design matrix&measured LCST

    Fig.3.The change of average LCST value of P(NIPAM-co-BCAm)copolymers with increasing the alcohol concentration.

    Fig.2.Temperature-dependent transmittance change of P(NIPAM-co-BCAm)copolymer solutions in the orthogonal experiment.

    Fig.3 shows the effect of alcohol concentration on the phase transition of P(NIPAM-co-BCAm)copolymers.The average LCST value of the copolymer decreases signif i cantly when the volume fraction of alcohol increases from 0 to 0.2.This phenomenon is due to the competition between the copolymer chain and alcohol molecules to form hydrogenbonds with water molecules.The amide groups of the P(NIPAM-co-BCAm)copolymer can form hydrogen-bonds with water molecules in pure water and maintain a hydration shell around the copolymer chain, which results in a coil state of the P(NIPAM-co-BCAm)copolymer.On the other hand,the alcohol molecules can also form hydrogen-bonds with water molecules in an alcohol-water mixture[32,33].Therefore, when the P(NIPAM-co-BCAm)copolymer is dissolved in an alcoholwater mixture with low alcohol concentration,a part of the hydrationshellaroundthecopolymerchainisdestroyedduetothecompetitionbetween the copolymer and alcohol molecules.Then,the damage quickly propagates all throughout the entire hydration structure,leading to a collapse of the dehydrated copolymer chain structure.Therefore,with the increasing alcohol concentration,the LCST value of the P(NIPAM-co-BCAm)copolymer shifts to a lower value.

    Fig.4showstheeffectofalcoholspeciesontheaverageLCSTvalueof the P(NIPAM-co-BCAm)copolymer.The average LCST value is the smallest in n-PrOH solution and is the largest in EtOH solution.There are two competitive actions to inf l uence the average LCST value.One is the effect of hydrogen-bond donating capacities of alcohols,and another is the effect of hydrated clathrate structure formed between alcohol molecules and water molecules in alcohol-water mixtures. The hydrogen-bonds between alcohol molecules and the copolymer chain can prevent the copolymer from collapsing.However,the alcohol molecule could remove water molecules from the hydrated copolymer chains to form hydrated clathrate structure,which promotes the dehydration and collapse of thecopolymer chain.Firstly,thehydrogen-bond donatingcapacities ofaliphatic alcohols areof thesame orderof magnitude,and the hydrogen-bond accepting capacities of these alcohol molecules are similar[34].Moreover,t-BuOH and i-PrOH are much weaker hydrogen bond donors than n-alcohol.Secondly,the number of water molecules required to form a stable hydrated clathrate structurearoundanalcoholmoleculeisrelatedtothenumberof carbon atoms in the alcohol molecule[35]and the length of the main chain of the alcohol molecule[21].The alcohol molecule with more carbon atoms and a longer main chain could remove more water molecules from the hydrated copolymer chains,which promotes the dehydration and collapse of the copolymer chain.

    Fig.5 shows the effect of metal ion species on the phase transitions of the P(NIPAM-co-BCAm)copolymer.The average LCST value in Ba2+solution is the largest and the second is in K+solution,but there are nearly no differences in Na+and Ca2+solutions.These phenomena are caused by the formation of“host-guest”complexes of BCAm units with specif i c metal ions.In aqueous solution,BCAm units and water molecules competitively bind with metal ions.Although the ion hydration capacity would enhance with decreasing the ion radius and/or increasing the ion charge,the desolvation energy of the metal ion has to be compensated by the complexation of crown ether with ion[36-38]. The order of the complex stability constant,lgK,of 18-crown-6 with metal ions is Ba2+>K+>Na+>Ca2+[39].So,the BCAm units exhibit higher ion selectivities towards Ba2+and K+over Na+and Ca2+,which shows a good correlation with the LCST shift in different ion solutions. WhentheP(NIPAM-co-BCAm)copolymerisdissolvedintoBa2+solution, the side chains of the copolymer bearing stable pendent BCAm/Ba2+complexes would be charged.The electrostatic repulsion among the charged BCAm/Ba2+groups would make the side chains repulse each other,which would counteract the shrinkage and aggregation of P(NIPAM-co-BCAm)chains induced by the increase of temperature.In addition,the charged BCAm/Ba2+groups would cause the increase of osmotic pressure within the copolymer chains.In order to achieve the osmotic pressure equilibrium,water molecules must diffuse into the copolymer[40,41],which also makes the copolymer stretch more.As a result,the LCST shift in Ba2+solution is the largest.

    Fig.6 shows the effect of BCAm content in the copolymer on the average LCST value of the P(NIPAM-co-BCAm)copolymer.The average LCST value increases with the increasing molar ratio of BCAm units in the copolymer at f i rst,and then levels off when the BCAm content continues to increase.As the BCAm content increases,more BCAm/Mn+complexes would form and the electrostatic repulsion would increase, therefore the LCST value of the P(NIPAM-co-BCAm)copolymer increases.When the BCAm content is high enough,the amount of BCAm/Mn+complexes would be saturated;therefore,the LCST value would not change anymore.

    Fig.4.The average LCST values of P(NIPAM-co-BCAm)copolymers in different solutions with various alcohol species.

    Fig.5.The average LCST values of P(NIPAM-co-BCAm)copolymers in different solutions with various metal ion species.

    Fig.6.ThechangeofaverageLCSTvaluesofP(NIPAM-co-BCAm)copolymerswithincreasing the BCAm content.

    3.3.Effect of metal ion concentration on the LCST

    The inf l uence degree of metal ion concentration on the LCST change of the P(NIPAM-co-BCAm)copolymer in the orthogonal experiments is the smallest as mentioned above.That is to say,the effect of metal ion concentration on the phase transition behavior of the copolymer in the orthogonal experiments is the most insignif i cant.To get more accurate results,theeffectof metalionconcentrationon theLCST shiftof the P(NIPAM-co-BCAm)copolymer is studied specially.A P(NIPAM-co-BCAm)copolymer with actual BCAm content of 18.5%(by mol)is synthesized to experimentally investigate the effect of Ba2+concentration on the LCST shift of the copolymer.Fig.7 shows the temperaturedependent transmittance changes of the copolymer in Ba2+solutions. Obviously,the LCST shifts to a higher value as the Ba2+concentration increases,and the LCST increases quickly when the Ba2+concentration is below 50 mmol·L?1.The electrostatic repulsion among the charged BCAm/Ba2+complexes would be stronger if the solution could provide more Ba2+to form BCAm/Ba2+complexes.Whentheconcentration increases more than 50 mmol·L?1,there are excessive Ba2+for BCAm units,so the LCST does not shift too much anymore.At the same time, asthesaltconcentrationincreases,thesalting-outeffectbecomescorrespondingly stronger[31],which also hinders theLCST from shiftingto a higher value.

    Fig.8 shows theLCST changesof theP(NIPAM-co-BCAm)copolymer in different metal ion solutions,in which the data in Ba2+solutions are plotted from Fig.7 and those in K+and Na+solutions are cited from Ref.[25].Interestingly,there exists a good linear relation between the LCSTand lg(Cion)for these three kinds ofmetalions.More interestingly, there exists a good linear relation between the slopes and intercepts of these lines withthevalueof lgK,asshowninFig.9.From Figs.8 to 9,the LCST of the P(NIPAM-co-BCAm)copolymer can be calculated by using a binary function of ion concentration and lgK as follows:

    Fig.7.Temperature-dependenttransmittancechangeofthesolutionsofP(NIPAM-co-BCAm) copolymer containing 18.5%(by mol)BCAm with increasing the Ba2+concentration.

    Fig.8.The LCST change of P(NIPAM-co-BCAm)copolymer in different metal ion solutions with different ion concentrations.

    Fig.9.The slopes(a)and intercepts(b)of thelines inFig.8 asthefunction of the complex stability constant lgK.

    Eq.(3)indicates that,if the ion species(lgK is related to the ion species)and the ion concentration are known,the LCST of the P(NIPAM-co-BCAm)copolymer can be predicted.Fig.10 illustrates the prediction of LCST values of the P(NIPAM-co-BCAm)copolymer in different metal ion conditions,and the average relative error is 2.7% for all experimental data points.Obviously,the experimental data f i t in well with the calculated data from Eq.(3).

    Fig.10.(a)Prediction of LCST values of P(NIPAM-co-BCAm)copolymer in different metal ion conditions,inwhich the dotted lines are calculatedfrom Eq.(3)and(b)parity plot for the calculated and experimental LCST data.

    4.Conclusions

    In this study,the comprehensive alcohol-/ion-responsive properties of theP(NIPAM-co-BCAm)copolymerhave been systematically investigated using the orthogonal design method.The comprehensive and cooperative effects of alcohol species,alcohol concentration,metal ion species,ion concentration and BCAm content in the copolymer on the phase transition behaviors of the P(NIPAM-co-BCAm)copolymer are presented.It is found that alcohols make the LCST of the P(NIPAM-co-BCAm)copolymershifttoalowervalue,whilespecif i cmetalions(especiallyBa2+)bringtheoppositeeffect.Suchoppositeresponseproperties of the P(NIPAM-co-BCAm)copolymer to alcohol and Ba2+are quite similar to the action behaviors of GIRK channels.According to the inf l uence on the LCST change,the inf l uence of variables is in the following order:alcohol concentration>alcohol species>metal ion species>BCAm content>ion concentration.The larger the alcohol concentration or the larger the molecular size of alcohol molecules is, the lower the LCST shift.On the contrary,the more the BCAm content in the copolymer is,the higher the LCST shift.The larger the complex stability constant lgK of BCAm with metal ion or the larger the metal ion concentration is,the higher the LCST shift.For P(NIPAM-co-BCAm) copolymers with f i xed BCAm contents,the LCST values of the P(NIPAM-co-BCAm)copolymers in different metal ion solutions can be predicted by a binary function of the ion concentration and the complex stability constant(lgK)of BCAm with metal ion.The results in this study provide valuable information for achieving biomimetic GIRK channels with P(NIPAM-co-BCAm)copolymers as artif i cial gating materials.

    [1]A.Sigel,H.Sigel,Metal Ions in Biological Systems,vol.39,Marcel Dekker,New York, 2002.

    [2]T.Kobayashi,K.Ikeda,H.Kojima,H.Niki,R.Yano,T.Yoshioka,T.Kumanishi,Ethanol opens G-protein-activated inwardly rectifying K+channels,Nat.Neurosci.2(1999) 1091-1097.

    [3]C.Lüscher,P.A.Slesinger,Emerging roles for G protein-gated inwardly rectifying potassium(GIRK)channels in health and disease,Nat.Rev.Neurosci.11(2010) 301-315.

    [4]P.Aryal,H.Dvir,S.Choe,P.A.Slesinger,A discrete alcohol pocket involved in GIRK channel activation,Nat.Neurosci.12(2009)988-995.

    [5]L.Y.Chu,J.H.Zhu,W.M.Chen,T.Niitsuma,T.Yamaguchi,S.Nakao,Effect of graft yield on the thermo-responsive permeability through porous membranes with plasmagrafted poly(N-isopropylacrylamide)gates,Chin.J.Chem.Eng.11(2003)269-275.

    [6]X.Lin,X.J.Ju,R.Xie,M.Y.Jiang,J.Wei,L.Y.Chu,Halloysite nanotube composited thermo-responsive hydrogel system for controlled-release,Chin.J.Chem.Eng.21 (2013)991-998.

    [7]L.Y.Chu,R.Xie,X.J.Ju,Stimuli-responsive membranes:smart tools for controllable mass-transfer and separation processes,Chin.J.Chem.Eng.19(2011)891-903.

    [8]W.Wang,L.Liu,X.J.Ju,D.Zerrouki,R.Xie,L.H.Yang,L.Y.Chu,A novel thermo-induced self-bursting microcapsule with magnetic-targeting property,ChemPhysChem 10 (2009)2405-2409.

    [9]A.Xia,J.H.Hu,C.C.Wang,D.L.Jiang,Synthesis of magnetic microspheres with controllable structure via polymerization-triggered self-positioning of nanocrystals, Small 3(2007)1811-1817.

    [10]L.Y.Chu,T.Yamaguchi,S.Nakao,A molecular recognition microcapsule for environmental stimuli-responsive controlled-release,Adv.Mater.14(2002)386-389.

    [11]S.W.Pi,X.J.Ju,H.G.Wu,R.Xie,L.Y.Chu,Smart responsive microcapsules capable of recognizing heavy metal ions,J.Colloid Interface Sci.349(2010)512-518.

    [12]X.J.Ju,L.Y.Chu,L.Liu,P.Mi,Y.M.Lee,A novel thermo-responsive hydrogel with ionrecognition property through supramolecular host-guest complexation,J.Phys. Chem.B 112(2008)1112-1118.

    [13]X.J.Ju,L.Liu,R.Xie,C.H.Niu,L.Y.Chu,Dual thermo-responsive and ion-recognizable monodisperse microspheres,Polymer 50(2009)922-929.

    [14]X.J.Ju,S.B.Zhang,M.Y.Zhou,R.Xie,L.Yang,L.Y.Chu,Novel heavy-metal adsorption material:ion-recognition P(NIPAM-co-BCAm)hydrogels for removal of lead(II) ions,J.Hazard.Mater.167(2009)114-118.

    [15]T.Yamaguchi,T.Ito,T.Sato,T.Shinbo,S.Nakao,Development of a fast response molecular recognition ion gating membrane,J.Am.Chem.Soc.121(1999)4078-4079.

    [16]T.Ito,T.Hioki,T.Yamaguchi,T.Shinbo,S.Nakao,S.Kimura,Development of a molecular recognition ion gating membrane and estimation of its pore size control,J. Am.Chem.Soc.124(2002)7840-7846.

    [17]T.Ito,Y.Sato,T.Yamaguchi,S.Nakao,Response mechanism of a molecular recognition ion gating membrane,Macromolecules 37(2004)3407-3414.

    [18]T.Ito,T.Yamaguchi,Osmotic pressure control in response to a specif i c ion signal at physiological temperature using a molecular recognition ion gating membrane,J. Am.Chem.Soc.126(2004)6202-6203.

    [19]T.Ito,T.Yamaguchi,Controlled release of model drugs through a molecular recognition ion gating membrane in response to a specif i c ion signal,Langmuir 22(2006) 3945-3949.

    [20]T.Ito,T.Yamaguchi,Nonlinear self-excited oscillation of a synthetic ion-channelinspired membrane,Angew.Chem.Int.Edit.45(2006)5630-5633.

    [21]H.M.Crowther,B.Vincent,Swelling behavior of poly-N-isopropylacrylamide microgel particles in alcoholic solutions,Colloid Polym.Sci.276(1998)46-51.

    [22]K.Mukae,M.Sakurai,S.Sawamura,Swelling of poly(N-isopropylacrylamide)gels in water-alcohol(C1-C4)mixed solvents,J.Phys.Chem.97(1993)737-741.

    [23]F.M.Winnik,H.Ringsdorf,J.Venzmer,Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide),Macromolecules 23(1990)2415-2416.

    [24]M.Heskins,J.E.Guillet,Solution properties of poly(N-isopropylacrylamide),J. Macromol.Sci.Chem.A2(1968)1441-1455.

    [25]M.Irie,Y.Misumi,T.Tanaka,Stimuli-responsive polymers:chemical induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide)with pendent crown ether groups,Polymer 34(1993)4531-4535.

    [26]L.Y.Chu,W.M.Chen,X.Z.Lee,Effect of structural modif i cation on hydrocyclone performance,Sep.Purif.Technol.21(2000)71-86.

    [27]C.B.C.Raj,H.L.Quen,Advanced oxidation processes for waste water treatment: optimization of UV/H2O2process through a statistical technique,Chem.Eng.Sci.60 (2005)5308-5311.

    [28]D.P.Zhang,Y.L.Luo,Applied Probability Statistics,Higher Education Press,Beijing, 2000.(in Chinese).

    [29]R.Ungrao,B.El-Haj,J.Smid,Substituent effects on the stability of cation complexes of 4′-substituted monobenzo crown ethers,J.Am.Chem.Soc.98(1976)5198-5202.

    [30]K.Yagi,J.A.Ruiz,M.C.Sanchez,Cation binding properties of polymethacrylamide derivatives of crown ethers,Makromol.Chem.Rapid Commun.1(1988)263-268.

    [31]H.Inomata,S.Goto,S.Otake,S.Saito,Effect of additives on phase transition of N-isopropylacrylamide gels,Langmuir 8(1992)687-690.

    [32]G.Onori,Adiabatic compressibility and structure of aqueous solutions of ethyl alcohol,J.Chem.Phys.89(1988)4325-4332.

    [33]A.K.Soper,J.L.Finney,Hydration of methanol in aqueous solution,Phys.Rev.Lett.71 (1993)4346-4349.

    [34]M.K.Chantooni,I.M.Kolthoff,Resolution of acid strength in tert-butyl alcohol and isopropyl alcohol of substituted benzoic acids,phenols,and aliphatic carboxylic acids,Anal.Chem.51(1979)133-140.

    [35]G.Onori,Structural properties of aqueous mixtures of monohydric alcohols from near-infrared absorption spectra,Chem.Phys.Lett.154(1989)213-216.

    [36]L.X.Dang,Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether:a molecular dynamics study,J.Am.Chem.Soc.117(1995) 6954-6960.

    [37]X.J.Guo,Y.D.Zhu,M.J.Wei,X.M.Wu,L.H.Lu,X.H.Lu,Theoretical study of hydration effects on the selectivity of 18-crown-6 between K+and Na+,Chin.J.Chem.Eng.19 (2011)212-216.

    [38]P.M.Wang,R.M.Izatt,S.E.Gillespie,J.L.Oscarson,X.X.Zhang,C.Wang,J.D.Lamb, Thermodynamics of the interaction of 18-crown-6 with K+,Ti+,Ba2+,Sr2+and Pb2+from 323.15 to 398.15 K,J.Chem.Soc.Faraday Trans.91(1995)4207-4213.

    [39]R.M.Izatt,K.Pawlak,J.S.Bradshaw,R.L.Bruening,Thermodynamic and kinetic data for macrocycle interactions with cations and anions,Chem.Rev.91(1991) 1721-2085.

    [40]S.Hirotsu,Y.Hirokawa,T.Tanaka,Volume-phase transitions of ionized N-isopropylacrylamide gels,J.Chem.Phys.87(1987)1392-1395.

    [41]P.W.Zhu,D.H.Napper,Coil-to-globule type transitions and swelling of poly(N-isopropylacrylamide)and poly(acrylamide)at latex interfaces in alcohol-water mixtures,J.Colloid Interface Sci.177(1996)343-352.

    12 November 2012

    ☆Supported by the National Natural Science Foundation of China(21136006),the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (201163),and the National High Technology Research and Development Program (2012AA021403).

    *Corresponding author.

    E-mail address:chuly@scu.edu.cn(L.Chu).

    http://dx.doi.org/10.1016/j.cjche.2014.06.021

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 24 March 2013

    Accepted 24 April 2013

    Available online 30 June 2014

    国产在线观看jvid| 女人精品久久久久毛片| 欧美+亚洲+日韩+国产| 国产精品久久电影中文字幕 | 国产亚洲精品第一综合不卡| 一二三四在线观看免费中文在| av一本久久久久| av福利片在线| 亚洲av熟女| 国产精品.久久久| 日韩 欧美 亚洲 中文字幕| 久久精品亚洲熟妇少妇任你| 精品久久久久久电影网| 五月开心婷婷网| 两性午夜刺激爽爽歪歪视频在线观看 | 一个人免费在线观看的高清视频| 新久久久久国产一级毛片| 色婷婷久久久亚洲欧美| 中文欧美无线码| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 热99re8久久精品国产| 免费女性裸体啪啪无遮挡网站| 亚洲av成人av| 亚洲视频免费观看视频| 久热这里只有精品99| 国产淫语在线视频| 午夜福利欧美成人| 欧美精品高潮呻吟av久久| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出抽搐gif免费好疼 | 高清黄色对白视频在线免费看| 欧美+亚洲+日韩+国产| 波多野结衣av一区二区av| 黄色丝袜av网址大全| 日本撒尿小便嘘嘘汇集6| 黄色片一级片一级黄色片| 久久精品亚洲av国产电影网| 最近最新免费中文字幕在线| 中亚洲国语对白在线视频| 久久人妻福利社区极品人妻图片| 亚洲精品美女久久av网站| 免费在线观看完整版高清| 人妻 亚洲 视频| 亚洲美女黄片视频| 嫩草影视91久久| 婷婷成人精品国产| 亚洲综合色网址| 人人妻人人澡人人爽人人夜夜| 日本欧美视频一区| 一级毛片女人18水好多| cao死你这个sao货| 亚洲av成人不卡在线观看播放网| 欧美最黄视频在线播放免费 | 国产高清国产精品国产三级| 人成视频在线观看免费观看| 黄色视频,在线免费观看| 亚洲,欧美精品.| 亚洲成人国产一区在线观看| 久久精品国产亚洲av香蕉五月 | 电影成人av| 黄频高清免费视频| 少妇裸体淫交视频免费看高清 | 亚洲熟女毛片儿| 免费av中文字幕在线| 亚洲黑人精品在线| 亚洲久久久国产精品| 99国产极品粉嫩在线观看| 黄色成人免费大全| 成人精品一区二区免费| 国产精品永久免费网站| 99久久精品国产亚洲精品| 啪啪无遮挡十八禁网站| 18禁国产床啪视频网站| 精品电影一区二区在线| 精品高清国产在线一区| 久久这里只有精品19| 日韩人妻精品一区2区三区| 国产一区二区激情短视频| 91精品三级在线观看| 久久久久精品人妻al黑| 成人免费观看视频高清| 啦啦啦 在线观看视频| 久久香蕉国产精品| 在线天堂中文资源库| 男女床上黄色一级片免费看| 新久久久久国产一级毛片| 欧美成人午夜精品| 欧美乱色亚洲激情| 久久精品国产综合久久久| 午夜日韩欧美国产| 亚洲色图综合在线观看| 国内久久婷婷六月综合欲色啪| 久久草成人影院| 精品欧美一区二区三区在线| 亚洲精品国产一区二区精华液| 校园春色视频在线观看| www.熟女人妻精品国产| 最新美女视频免费是黄的| 久久影院123| 高潮久久久久久久久久久不卡| 黄片播放在线免费| 国产精品一区二区免费欧美| 久久国产精品人妻蜜桃| 淫妇啪啪啪对白视频| 后天国语完整版免费观看| 丝袜美腿诱惑在线| 99久久人妻综合| 免费观看精品视频网站| 国产成人啪精品午夜网站| 国产精品久久久久久人妻精品电影| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美网| 国产精品一区二区免费欧美| av中文乱码字幕在线| 国产不卡av网站在线观看| 狠狠婷婷综合久久久久久88av| 超色免费av| 成人国语在线视频| 国产精品电影一区二区三区 | 99热只有精品国产| 成年动漫av网址| 在线观看一区二区三区激情| 一a级毛片在线观看| 一区二区日韩欧美中文字幕| 一区二区日韩欧美中文字幕| 亚洲精品一二三| 中文字幕人妻丝袜一区二区| av有码第一页| 18禁美女被吸乳视频| av网站免费在线观看视频| 久久精品91无色码中文字幕| 俄罗斯特黄特色一大片| 亚洲,欧美精品.| 日韩欧美一区视频在线观看| 久久久国产欧美日韩av| 亚洲三区欧美一区| 国产成+人综合+亚洲专区| 美女福利国产在线| 欧美大码av| 黄色丝袜av网址大全| 国产精品欧美亚洲77777| √禁漫天堂资源中文www| 免费一级毛片在线播放高清视频 | 一本大道久久a久久精品| 国产激情欧美一区二区| 正在播放国产对白刺激| 国产激情久久老熟女| 十分钟在线观看高清视频www| 女警被强在线播放| 久久九九热精品免费| 欧美乱妇无乱码| 久久久国产成人免费| 99热网站在线观看| 国产精品欧美亚洲77777| 黑人欧美特级aaaaaa片| 精品高清国产在线一区| 又黄又爽又免费观看的视频| 亚洲熟女毛片儿| 999精品在线视频| 精品少妇一区二区三区视频日本电影| 777米奇影视久久| 香蕉丝袜av| 俄罗斯特黄特色一大片| 亚洲av成人av| 人成视频在线观看免费观看| 午夜精品在线福利| 久久久国产成人精品二区 | 中文字幕人妻丝袜制服| av网站免费在线观看视频| 男人操女人黄网站| 午夜成年电影在线免费观看| 久久久国产一区二区| 国产精品免费大片| 熟女少妇亚洲综合色aaa.| 亚洲欧美激情综合另类| 国产欧美日韩一区二区精品| 午夜精品在线福利| 波多野结衣一区麻豆| 欧美日韩视频精品一区| 国产精华一区二区三区| 桃红色精品国产亚洲av| 视频区图区小说| 亚洲avbb在线观看| 久久国产精品人妻蜜桃| 99久久99久久久精品蜜桃| 欧美激情久久久久久爽电影 | 一进一出好大好爽视频| 国产一区二区三区在线臀色熟女 | 叶爱在线成人免费视频播放| 男女下面插进去视频免费观看| 免费在线观看影片大全网站| 99国产精品免费福利视频| 亚洲精品美女久久久久99蜜臀| 国产av精品麻豆| 中国美女看黄片| 久久久精品国产亚洲av高清涩受| 中出人妻视频一区二区| 欧美大码av| 在线国产一区二区在线| 亚洲精品av麻豆狂野| 欧美一级毛片孕妇| 成年女人毛片免费观看观看9 | 亚洲国产精品合色在线| 性色av乱码一区二区三区2| 精品国产美女av久久久久小说| 人人澡人人妻人| 日本wwww免费看| 高清黄色对白视频在线免费看| 国产一区二区三区综合在线观看| 中文字幕人妻丝袜制服| 成人亚洲精品一区在线观看| 精品国产乱码久久久久久男人| 亚洲性夜色夜夜综合| 搡老乐熟女国产| 成熟少妇高潮喷水视频| 久久人妻av系列| 精品高清国产在线一区| 夜夜爽天天搞| 天堂√8在线中文| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美精品济南到| 色老头精品视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产高清videossex| 国产欧美亚洲国产| 国产精品香港三级国产av潘金莲| 亚洲全国av大片| 久久香蕉精品热| 热99国产精品久久久久久7| 亚洲中文日韩欧美视频| 9色porny在线观看| 国产成人免费观看mmmm| 嫁个100分男人电影在线观看| 视频区欧美日本亚洲| 国产一区在线观看成人免费| 精品一区二区三区视频在线观看免费 | 69精品国产乱码久久久| 香蕉丝袜av| 99热只有精品国产| tube8黄色片| 每晚都被弄得嗷嗷叫到高潮| 国产免费男女视频| 激情视频va一区二区三区| 精品亚洲成a人片在线观看| 国产精品国产av在线观看| 色94色欧美一区二区| 18禁裸乳无遮挡免费网站照片 | 午夜福利影视在线免费观看| 天天操日日干夜夜撸| 最近最新中文字幕大全免费视频| av有码第一页| 精品人妻熟女毛片av久久网站| 国产av一区二区精品久久| 国产男靠女视频免费网站| 老熟女久久久| 国产无遮挡羞羞视频在线观看| 男女午夜视频在线观看| 18禁国产床啪视频网站| 99在线人妻在线中文字幕 | 国产精品永久免费网站| 99久久99久久久精品蜜桃| 精品少妇一区二区三区视频日本电影| 亚洲伊人色综图| 国产精品免费一区二区三区在线 | 最新的欧美精品一区二区| e午夜精品久久久久久久| 久久国产精品人妻蜜桃| 国产免费男女视频| 久久国产精品人妻蜜桃| 他把我摸到了高潮在线观看| 久久久水蜜桃国产精品网| 岛国毛片在线播放| 极品教师在线免费播放| 1024视频免费在线观看| 国产视频一区二区在线看| 欧美 日韩 精品 国产| 日本欧美视频一区| 宅男免费午夜| 久久人妻熟女aⅴ| 视频在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲 欧美一区二区三区| 亚洲熟女精品中文字幕| 自线自在国产av| 欧美激情 高清一区二区三区| 亚洲伊人色综图| 韩国精品一区二区三区| 妹子高潮喷水视频| 欧美人与性动交α欧美软件| 国产亚洲精品一区二区www | 日日夜夜操网爽| 最近最新中文字幕大全电影3 | 777米奇影视久久| 成人国语在线视频| 国产男女内射视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩黄片免| 久热这里只有精品99| 欧美激情高清一区二区三区| 波多野结衣一区麻豆| 亚洲精品国产色婷婷电影| 手机成人av网站| videos熟女内射| 久久久水蜜桃国产精品网| 19禁男女啪啪无遮挡网站| 免费人成视频x8x8入口观看| 男女下面插进去视频免费观看| 麻豆av在线久日| 丝袜人妻中文字幕| 国产精品一区二区在线观看99| av免费在线观看网站| 亚洲国产看品久久| 精品国产乱码久久久久久男人| 久久久精品国产亚洲av高清涩受| 国产日韩一区二区三区精品不卡| 午夜激情av网站| 国产一区在线观看成人免费| 91av网站免费观看| 极品人妻少妇av视频| 精品欧美一区二区三区在线| 香蕉久久夜色| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 亚洲av成人一区二区三| ponron亚洲| 亚洲精品一二三| 一级片免费观看大全| 国产亚洲欧美98| 色播在线永久视频| 欧美 日韩 精品 国产| 黄色视频不卡| 免费观看a级毛片全部| 我的亚洲天堂| 少妇 在线观看| 国产不卡一卡二| 久久国产精品大桥未久av| 成年人黄色毛片网站| 美女扒开内裤让男人捅视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久久人人人人人| 欧美午夜高清在线| 亚洲aⅴ乱码一区二区在线播放 | xxxhd国产人妻xxx| 国产成人欧美| 久久精品国产清高在天天线| 免费女性裸体啪啪无遮挡网站| 国产精品秋霞免费鲁丝片| 人人澡人人妻人| 久久香蕉精品热| 18禁国产床啪视频网站| 国产精品 国内视频| 校园春色视频在线观看| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 日韩视频一区二区在线观看| 无人区码免费观看不卡| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| 亚洲人成77777在线视频| 最新在线观看一区二区三区| 亚洲成人手机| 久久精品国产a三级三级三级| 国产午夜精品久久久久久| 最新的欧美精品一区二区| www.熟女人妻精品国产| 岛国在线观看网站| 国产又色又爽无遮挡免费看| 丝袜美腿诱惑在线| 三级毛片av免费| 一级毛片高清免费大全| 欧美+亚洲+日韩+国产| 精品久久久久久久毛片微露脸| 国产成人av教育| 色播在线永久视频| 免费看a级黄色片| 大陆偷拍与自拍| 老司机午夜十八禁免费视频| av电影中文网址| 色在线成人网| 亚洲av第一区精品v没综合| av网站在线播放免费| av电影中文网址| 亚洲精品456在线播放app | 国产乱人伦免费视频| 精品乱码久久久久久99久播| 久久久色成人| 成人欧美大片| 亚洲成人中文字幕在线播放| 色播亚洲综合网| 国产av一区在线观看免费| 一级黄色大片毛片| 国产精品久久久久久精品电影| 久久性视频一级片| 窝窝影院91人妻| 午夜免费成人在线视频| 制服丝袜大香蕉在线| 99久国产av精品| av福利片在线观看| 国产私拍福利视频在线观看| 久99久视频精品免费| 在线播放无遮挡| www日本黄色视频网| 国产成人影院久久av| 国产欧美日韩精品一区二区| 午夜福利在线在线| 我要搜黄色片| 91麻豆av在线| 一级黄色大片毛片| 久久精品国产清高在天天线| 18美女黄网站色大片免费观看| 国产又黄又爽又无遮挡在线| 国产精品98久久久久久宅男小说| 香蕉av资源在线| 嫁个100分男人电影在线观看| 欧美大码av| 国产免费一级a男人的天堂| 久久久久久久午夜电影| 亚洲成a人片在线一区二区| 成人永久免费在线观看视频| 欧美bdsm另类| 国模一区二区三区四区视频| 亚洲在线自拍视频| 欧美又色又爽又黄视频| 国产精品精品国产色婷婷| 色av中文字幕| 日本成人三级电影网站| 国产欧美日韩精品亚洲av| 可以在线观看的亚洲视频| 香蕉久久夜色| 国内揄拍国产精品人妻在线| 桃红色精品国产亚洲av| av专区在线播放| 在线视频色国产色| 18禁裸乳无遮挡免费网站照片| 成人欧美大片| 美女大奶头视频| 国产成人影院久久av| 真人做人爱边吃奶动态| eeuss影院久久| 嫁个100分男人电影在线观看| 少妇的逼水好多| 久久久成人免费电影| 99久久精品国产亚洲精品| 全区人妻精品视频| 91在线精品国自产拍蜜月 | 搡老岳熟女国产| 欧美乱妇无乱码| 国产精品一区二区三区四区免费观看 | 久久久久久人人人人人| 精品久久久久久久末码| 中文亚洲av片在线观看爽| 亚洲欧美日韩高清专用| 波多野结衣高清无吗| 女人被狂操c到高潮| 国产一区在线观看成人免费| 一本精品99久久精品77| 少妇的逼好多水| 亚洲午夜理论影院| 亚洲av第一区精品v没综合| 国产v大片淫在线免费观看| 久久精品91蜜桃| 一级作爱视频免费观看| 日本与韩国留学比较| 色av中文字幕| 在线观看一区二区三区| 国产精品久久电影中文字幕| 亚洲,欧美精品.| 99精品在免费线老司机午夜| 深爱激情五月婷婷| 网址你懂的国产日韩在线| 男插女下体视频免费在线播放| 每晚都被弄得嗷嗷叫到高潮| 日本撒尿小便嘘嘘汇集6| av国产免费在线观看| www.熟女人妻精品国产| 亚洲内射少妇av| 欧美乱码精品一区二区三区| 国产黄色小视频在线观看| 国产乱人伦免费视频| 国产亚洲av嫩草精品影院| 亚洲成人久久性| 欧美色欧美亚洲另类二区| 中文字幕人成人乱码亚洲影| 黑人欧美特级aaaaaa片| 久久久久久久午夜电影| www日本在线高清视频| 性色avwww在线观看| 国产高潮美女av| 欧美丝袜亚洲另类 | 国产老妇女一区| 久9热在线精品视频| 免费看a级黄色片| 欧美中文综合在线视频| 一二三四社区在线视频社区8| 看片在线看免费视频| 一个人免费在线观看电影| 变态另类成人亚洲欧美熟女| 成人av在线播放网站| 人人妻人人澡欧美一区二区| 亚洲不卡免费看| 亚洲国产欧洲综合997久久,| 一本综合久久免费| 日韩欧美精品免费久久 | 一二三四社区在线视频社区8| 欧美激情在线99| 精品一区二区三区av网在线观看| 亚洲精品国产精品久久久不卡| 国产精品亚洲美女久久久| 欧美黑人巨大hd| 亚洲成人久久性| 成人鲁丝片一二三区免费| 色综合亚洲欧美另类图片| 脱女人内裤的视频| 国产伦人伦偷精品视频| 一区二区三区激情视频| 精品无人区乱码1区二区| 国产真人三级小视频在线观看| 两个人看的免费小视频| av在线天堂中文字幕| 亚洲专区国产一区二区| 51国产日韩欧美| 色噜噜av男人的天堂激情| 亚洲av成人精品一区久久| 黄色视频,在线免费观看| 免费av不卡在线播放| 成人av在线播放网站| 美女免费视频网站| 99热这里只有是精品50| 免费看美女性在线毛片视频| 中文亚洲av片在线观看爽| 免费在线观看亚洲国产| www.色视频.com| 99久久精品一区二区三区| 亚洲av熟女| 中文亚洲av片在线观看爽| 老司机午夜十八禁免费视频| 久久久成人免费电影| 一级毛片高清免费大全| 男女视频在线观看网站免费| av在线蜜桃| 中出人妻视频一区二区| 波多野结衣高清作品| 欧美绝顶高潮抽搐喷水| 亚洲最大成人手机在线| 日韩欧美精品v在线| 久久人妻av系列| av在线天堂中文字幕| 国产视频一区二区在线看| bbb黄色大片| 搡女人真爽免费视频火全软件 | 国产老妇女一区| 亚洲欧美激情综合另类| 国产欧美日韩一区二区三| 日韩欧美在线乱码| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av在线| 精品人妻一区二区三区麻豆 | 欧美中文综合在线视频| 国产精品日韩av在线免费观看| 在线十欧美十亚洲十日本专区| 真人一进一出gif抽搐免费| 亚洲成人中文字幕在线播放| 国产探花在线观看一区二区| 69av精品久久久久久| 精品电影一区二区在线| 校园春色视频在线观看| 国产亚洲欧美在线一区二区| 国产精品1区2区在线观看.| 国产成人av教育| 国产精品久久久久久精品电影| 亚洲国产欧美网| 在线观看午夜福利视频| 国产三级在线视频| 国产色爽女视频免费观看| 免费观看人在逋| 成年女人看的毛片在线观看| 又爽又黄无遮挡网站| 日本精品一区二区三区蜜桃| www日本在线高清视频| 国产真实乱freesex| 久久亚洲精品不卡| 亚洲国产欧美网| 午夜免费激情av| 精品久久久久久,| 啦啦啦观看免费观看视频高清| 亚洲av熟女| 大型黄色视频在线免费观看| 在线播放国产精品三级| 叶爱在线成人免费视频播放| 全区人妻精品视频| 久久草成人影院| 国产一区二区在线av高清观看| 亚洲av二区三区四区| 很黄的视频免费| 亚洲av免费在线观看| 日本熟妇午夜| 麻豆成人午夜福利视频| 亚洲美女视频黄频| 中文资源天堂在线| 成年人黄色毛片网站| 国产精品香港三级国产av潘金莲| 一区二区三区国产精品乱码| a在线观看视频网站| 少妇人妻一区二区三区视频| 人妻丰满熟妇av一区二区三区| 岛国在线免费视频观看| 国产三级中文精品| 国产色爽女视频免费观看| 日日干狠狠操夜夜爽| 好男人电影高清在线观看| 制服人妻中文乱码| 国产一区二区三区在线臀色熟女| 亚洲精品在线美女|