• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solubilization of Phenanthrene and Fluorene in Equimolar Binary Mixtures of Gemini/Conventional Surfactants

    2014-07-25 11:29:32HumaSiddiquiMohammadKamilManoramaPandaKabirudDin

    Huma Siddiqui,Mohammad Kamil,*,Manorama Panda,Kabir-ud-Din

    Chemical Engineering Thermodynamics

    Solubilization of Phenanthrene and Fluorene in Equimolar Binary Mixtures of Gemini/Conventional Surfactants

    Huma Siddiqui1,Mohammad Kamil1,*,Manorama Panda2,Kabir-ud-Din2

    1Department of Petroleum Studies,Aligarh Muslim University,Aligarh 202002,India2Department of Chemistry,Aligarh Muslim University,Aligarh 202002,India

    A R T I C L EI N F O

    Article history:

    Gemini surfactant

    Mixed micelles

    Critical micelle concentration

    Solubilization

    Molar solubilization ratio

    This study deals with the enhanced solubilization of polycyclic aromatic hydrocarbons(PAHs)such as phenanthrene(PHE)andf l uorene(FLR)ina purecationicgemini(G6)andthreeconventionalsurfactants[polyethylene glycol dodecyl ether(Brij35),cetyltrimethyl ammonium bromide(CTAB)and sodium lauryl sulfate(SDS)]as well as in their equimolar binary combinations(G6-Brij35,G6-CTAB and G6-SDS).Their solubilization eff i ciency toward PHE and FLR has been quantif i ed in terms of the molar solubilization ratio(MSR)and the micelle-water partition coeff i cient(Km).The ideality/nonideality of the mixed micelles is discussed with the help of Clint, RubinghandRosen'sapproaches.Thesetheoriesdeterminethedeviationofexperimentalcriticalmicelleconcentration(CMC)valuesfromidealcriticalmicelleconcentration,whichwasmeasuredby evaluatingtheinteraction parameters(βmand βσ).Negative values of βmwere observed in all the equimolar binary systems,which show synergisminthemixedmicelles.Whereasatair/liquidinterfacesynergismwasobservedinthesystemsG6-CTAB and G6-Brij35;G6-SDS exhibited an antagonistic effect.The order of MSR and Kmwas G6-CTAB>G6-Brij35>G6-SDS for phenanthrene as well as for f l uorene.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Contamination of environment by petroleum hydrocarbons has been a subject of concern.These compounds are only sparingly soluble in water and form separate phases in the soil matrix,which also becomes a route to enter in water cycle and causes water pollution [1].Due to their toxic,carcinogenic and mutagenic effects,and also because of their ubiquity in the environment(water,air and soils)[2], strict legal controls are imposed to regulate production,use and emission of polycyclic aromatic hydrocarbons(PAHs)[3].US environmental protection agency(EPA),in 1984,recognized surfactant washingasone of the most capable techniques for the removal of PAH compounds [4].Thus application of surfactants forremediation of petroleumhydrocarbons has become a topic of interest[5-7].PAHs,also known as polynuclear aromatic hydrocarbons,consist of fused aromatic rings and do not contain heteroatoms.These compounds are found in oil,coal tar, soil and water in objectionable quantities.PAHs are hydrophobic and can be removed from the contaminated soils,ground water and hydrocarbonfuelbysurfactantsmainlyduetothesolubilizationormovement of the chemicals inside micelles.The solubility of organic substances rises with their merger into micelles of surfactant aqueous solutions. This phenomenon is called micellar solubilization[8,9].

    In petroleum industry,surfactants may be applied at all stages in the petroleum recovery and processing,from oil well drilling,reservoir injection,oil well production to pipeline and seagoing transportation of petroleum emulsion[10].Moreover,petroleum fuels emit a mixture of toxicandhazardoussubstancesoncombustion,whichmayhavecarbon monoxide,lightvolatileorganiccompounds,semi-volatileorganiccompounds,particulate emissions,oxides of sulfur,oxides of nitrogen and PAHs.

    In the present work the solubility enhancement of two PAH compounds[phenanthrene(PHE)and f l uorene(FLR)]in different single and mixed surfactant systems was investigated.Phenanthrene(PHE) is def i ned as the simplest PAH by International Union of Pure and Applied Chemistry(IUPAC).Being as the nearest neighbor of phenanthrene,f l uorene is chosen as another PAH to understand the competitive effect between the two PAHs.The surfactants selected were of differentpolarities(cationic,anionic and non-ionic).A mixedsurfactant system represents here an equimolar binary mixture of conventional surfactant with a cationic gemini surfactant.The theories of Clint[11], Rubingh[12]and Rosen[13]were used to analyze and compare the experimental results for formation and characterization of mixed micelles.These models allow predicting and realizing the synergism or antagonism of mixed surfactant systems.Apart from single tailsingle head conventional surfactants,another class of surfactants used in the present work is the gemini surfactant.These surfactants have a quite interesting structure having two hydrophilic heads,which are joined with two hydrophobic tails,separated by a covalently bondedrigid or f l exible spacer[14-16].This class of surfactants exhibits low criticalmicelleconcentration(CMC)values,whichmakethemaleading member of the surfactant family and show a good potential for micellar solubilization.A schematic representation of the gemini surfactants is given in Fig.1.

    Gemini surfactants are signif i cantly more surface-active than the conventional surfactants.Properties of gemini surfactants may change according to change in its constituents,i.e.hydrophilic group,hydrophobic group and linkage[17].It has been found that the solubilizing capacity of gemini surfactants is much better than that of the conventional ones[18].They possess relatively lower CMC values than the conventional surfactants.

    A gemini surfactant molecule with two Cm(m is the number of alkyl carbon atoms)tails and a Cs(s is the number of alkyl carbon atoms)spacer separating the quaternary nitrogen atoms is represented as m-s-m.For example,the dimeric gemini butane diyl-α,ω-bis (dimethylcetylammonium bromide),i.e.C16H33-(CH3)2N+-(CH2)4-N+(CH3)2-C16H33·2Br?is 16-4-16.Some specif i c characteristics of the gemini surfactants are:

    (1)Their CMC values are remarkably low than corresponding conventional surfactants having an equivalent chain length.

    (2)For geminis having a short spacer(2-8 atoms),the CMC values are not affected by polarity.

    (3)A long spacer of gemini molecule provides more hydrophobicity to the surfactant,which reduces the molecule's solubility and thus enhances its tendency of aggregation.

    (4)ExtentofreductionofCMCvaluesduetoanincreaseintaillength is more visible in geminis than in conventional surfactants.

    (5)Anionic geminis exhibit lower CMC values than corresponding cationic geminis.

    Fig.1.Schematic representation of a gemini surfactant.

    2.Material Used and Methods

    2.1.Materials used

    For thepresentstudy,equimolarbinarysurfactantblends of cationic gemini surfactants with cationic,anionic and non-ionic conventional surfactants were examined.Here,cetyltrimethyl ammonium bromide (CTAB)wasemployed asa cationic surfactant,whereas sodium dodecyl sulfateorsodiumlaurylsulfate(SDS)wasselectedfromtheanionicsurfactant family and polyethylene glycol dodecyl ether(Brij35)as a nonionic surfactant.All surfactants used in the present study were supplied by Sigma Aldrich Chemicals Co.except the gemini,i.e.,hexanediyl-1,6-bis(dimethylcetylammonium bromide),or G6.This gemini surfactant was synthesized in the research laboratory of the Department of Chemistry,AMU,Aligarh.The structures of surfactants and PAHs used are given in Fig.2.

    Fig.2.Structuresofchemicalsusedinthestudy:polyethyleneglycoldodecylether(Brij35),cetyltrimethylammoniumbromide(CTAB),sodiumlaurylsulfate(SDS),geminisurfactant(16-6-16),phenanthrene(PHE)and f l uorine(FLR).

    Table 1Physical properties of substances used in the present work

    Phenanthreneandf l uorenewereusedasthepolycyclicaromatichydrocarbons in the presentwork,which were procured by SigmaAldrich Chemicals Co.Surfactant solutions were prepared in double-distilled water.Physical properties of substances used in the present work are given in Table 1.

    2.2.Methods

    2.2.1.Critical micelle concentration determination by surface tension measurements

    For CMC determination tensiometric experiments were performed for single as well as for mixed surfactant systems.The apparatus used for the purpose was Hardson tensiometer(Hardson make,Kolkata, India),whichworksonringdetachmentmethod.Thesolutionunderinvestigation was taken in a clean 100 ml borosil dish and the ring was made to submerge completely into the surfactant solution.

    Whenthesystembecamestable,theknobstartedtorotateslowlyto apply a uniform force on the ring.The force on the ring was increased slightly to raise the ring toward the solution surface by rotating the knob.When the liquid f i lm tears from the ring,the knob rotation was stopped,and the reading on the scale was noted.Unit of this value is in mN?m?1with accuracy of±0.05 mN·m?1.The surfactant concentrations were increased slowly by adding concentrated surfactant stock solution in small installments using a Hamilton Microsyringe of capacity 0.1 ml.Readings were noted after thorough mixing and temperature equilibration with a time interval of about 15 min.The values of CMC were determined as the concentration at sharp breaks in the plot of surface tension(γ)versus the log[surfactant]over a wide concentration range(Figs.3 and 4).The experiments were repeated twice for each surfactant to ensure reproducibility of the results.

    2.2.2.Solubilization experiments

    After determining CMC,the solubility of PAH compounds was measured in different surfactant solutions between ranges of concentrations above the CMC.The solubility of PAHs in surfactant system was determined by solubilization experiments as detailed herein.The solutions of surfactants and their 1:1 mixtures were prepared of concentrations higher than their corresponding CMC.3 ml of these micellar solutions was then f i lled in borosilicate screwcapped,glass vials having a capacity of 5 ml.Then PAH was added in excess amount to these screw-capped vials(the extra amount of PAH was added to ensure maximum solubility in each surfactant solution).To ensure a good mixing magnetic Tef l on pieces were dropped in each vial,which were then agitated using magnetic stirrer for a period of 24 h at 30°C.After this,a portion of the samples was collected in Eppendorf tubes and centrifuged at 12,000 rpm, using a high speed microcentrifuge(Remi centrifuge,RM-12C)to remove or settle down the undissolved PAH.Appropriate dilution of the sample of the supernatant was made with the corresponding surfactant solution and then the concentration of the solubilized PAH of centrifuged sample was determined spectrophotometrically using Shimadzu spectrophotometer(model UV mini-1240).Baseline correction was done with the surfactant solution of the same concentration.

    Themolarextinctioncoeff i cientofPHEandFLRwasdeterminedwith the use of Lambert-Beer law,taking the absorbance of their solutions at the desired wavelength in methanol.From the slope of absorbance versus surfactant concentration plots the molar extinction coeff i cients of PHE and FLR were found to be 61,380 L·mol?1cm?1and 11,490 L·mol?1cm?1,respectively.The solubility of PHE and FLR at each surfactant concentration was determined at their characteristic wavelengths of 250 nm and 262 nm,respectively.

    Fig.3.(a)Surface tension versus lg[surfactant]plots for pure(a)CTAB and SDS,and(b)Brij35 and G6.

    Fig.4.Surface tension versus lg[surfactant]plots for G6/conventional mixed surfactant systems.

    3.Results and Discussion

    3.1.Critical micelle concentration

    In the present study,the main focus has been on the solubilization of PHE and FLR in single surfactants(cationic gemini and conventional surfactants)and equimolar mixtures of cationic gemini and conventional surfactants.Solubilization is closely related to the solution properties of the surfactant micelles.Moreover,the performances of the mixed surfactant systems are complex in nature and mostly follow a non-ideal path.

    Hence,micellar properties of the selected single surfactants and their equimolar combinations were studied to understand their solubilization abilities.The experimentally obtained CMC values(CMCexp),evaluated fromtheplotsofsurfacetension(γ)versuslogarithmvaluesofsurfactant concentration(Table 2),are in good agreement with the respective reportedvalues(CMClit).FromTable2,itisalsoclearthatCMCsofionicsurfactants are much higher than the nonionic surfactant.The nonionic surfactantmoleculesshowonlyahydrophobicinteractionamonghydrocarbonchains,whichareeasilyseparatedfromtheaqueousenvironment, whereas ionic surfactants require,in addition,higher concentrations to overcome the electrostatic repulsion between ionic head groups while aggregating[19].Moreover,it was also observed that the CMCexpvalues of the binary systems are lower than the corresponding ideal values, which indicates synergistic interaction in all the mixed systems.

    To determine whether the binary systems follow ideal or nonideal behavior,the experimental CMC values of equimolar binary surfactant systems were compared with ideal CMC values,which were calculated using the Clint equation[11]:

    Table 2Experimental and literature CMC values of surfactants

    where CMC1,CMC2,α1and α2are the critical micelle concentrations and the mole fractions of components 1 and 2 in the pure surfactant solutions.In Table 2,it is observed that all the CMCexpvalues are less than CMCideal,as predicted by the above equation,which shows that the formation of mixed micelles exhibits a negative deviation with respect to the ideal mixture.

    3.2.Surfactant-surfactant interaction

    3.2.1.Rubingh model

    Inthelightoftheregularsolutiontheory,deviationofCMCexpvalues, for mixed surfactant systems,from CMCidealcan be measured by evaluating the interaction parameter,βm.This parameter can be calculated with the help of Rubingh's equation[12]:

    where X1mand X2mare the micellar mole fractions of surfactants 1 and 2 in the mixed micelles,CMC12is a critical micelle concentration of a mixed surfactant system,consisting of surfactants 1 and 2.The micellar mole fraction X1mwascalculated with the help of thefollowingequation for nonideal binary mixture of surfactants by solving iteratively.

    A negative value of βmshows a negative deviation of CMCexpfrom CMCideal,which indicates a reduction in free energy of micellization over that predicted by the ideal solution theory[12].This implies a good interaction between the surfactants in mixed systems.A positive value of βmsignif i es antagonism between components of surfactant combination.The parameter activity coeff i cients(f1mand f2m)within the mixed micelles,derived from Rubingh equations,were equated as [12]:

    The values of βm,along with X1m,f1mand f2m,for the selected surfactants are given in Table 3.

    The negative βmvalues in Table 3 indicate a good interaction between the components of mixed systems and demonstrate a synergistic effect for all the binary equimolar mixed surfactant systems.The larger negative value of βmdenotes the greater negative deviation of CMCexp's from CMCideal.The order of deviation exhibited through of βmis G6-SDS>G6-CTAB>G6-Brij35.The results are supported by the reported values of Kabir-ud-Din et al.[19]and Rao and Paria[24].The strongest synergism is found between cationic gemini and anionic conventionalsurfactant.ThereasonbehindthismightbetheCoulombic attractive forces between theoppositely charged headgroups.Theleast value was for the mixture of the cationic gemini and nonionic conventional surfactant,as Brij35 has polyoxyethylene(POE)groups with alarge number of oxygen atoms and a lone pair of electron,thus it may have a tendency to react Coulombically with thecationic gemini surfactant,but the existence of long polyoxyethylene head group imposes somestericconstraintsduetothermalvibrations,whichcausesthecontrol on effective head group interactions and gives a reason to reduce the value of βm[20].

    Table 3Micellar mole fraction(X1m),interaction parameter(βm),and activity coeff i cient(f1mand f2m)values for gemini/conventional mixed surfactant systems at 30°C

    3.2.2.Rosen model

    Rubingh's model deals with the interaction in the mixed micelle formation.To analyze the interaction between the amphiphiles in a mixed surfactant system at air/water interface,Rosen model[25]was used.According to this model the mole fraction of surfactant 1 at the mixed adsorbed f i lm can be calculated iteratively as:

    where C12,C1and C2are the concentrations of the mixture and of individual surfactants at a f i xed surface tension value.From this expression thevalueofXσwasobtained,whichwasthenusedtoevaluatetheinteraction parameter βσat air/water interface,with the help of the following equation: The activity coeff i cients within the mixed micelles(f1σand f2σ), whereσsignif i escorrespondingvaluesforRosenmodel,werecalculated through the Rosen approach with the help of interaction parameters as given below

    From Table 4,it is observed that G6-Brij35 and G6-CTAB exhibit a negative value of the interaction parameter,which shows a synergistic effect between components of mixed surfactant systems.A negative value of ΔGexσshows spontaneity of the systems.The G6-SDS system possesses an antagonistic effect between the surfactants at air/solution interface.The strength of the interaction of mixtures containing two surfactants not only depends on the variation of their CMC values,but also relies on the relevant properties of their structure.

    3.3.Solubilization by surfactants

    Beforeexaminingthesolubilizationpowerofbinarymixtures,single systems were f i rst studied to get an idea about the eff i ciency of gemini in comparison with conventional surfactants.Plots of the solubility of poorly soluble PHE and FLR,as a function of the concentration of surfactant(Figs.5,6 and 7)show that the solubility increases linearly with the increasingsurfactant concentrationsabove CMC.This behavior indicatesthatsolubilizationisrelatedtomicellization.ThereducedCMC value does not absolutely represent the increased solubilization ability. The water solubilityenhancementof PHEand FLRby the selectedsingle and equimolar binary surfactant systems was evaluated and compared which are detailed below.

    3.3.1.Solubilization by single surfactants

    A measure of the effectiveness of a surfactant in solubilizing a given solubilizate is the molar solubilization ratio(MSR)which is given by [18,20,26-29].

    Fig.5.Variation of solubility of PHE with surfactant concentration.

    Table 4Surface composition at air/water interface(X1σ),interaction parameter(βσ)and activity coeff i cient(f1σand f2σ)values for gemini-conventional mixed surfactant systems at 30°C

    Fig.6.Variation of solubility of FLR with surfactant concentration.

    where SCMCand Stare the solubilities at CMC and at total surfactant concentration(Ct),respectively.Since(Ct?CCMC)is the concentration of the surfactant in the micellar form,MSR is equal to the ratio of the solubilizateconcentrationin themicelles totheconcentration of surfactantintheformofmicelles.ValuesofMSRwereobtainedfromtheslope of solubilizate concentration versus surfactant concentration plots.

    In the presence of excess PAH,MSR values of both single and mixed surfactants can be obtained from the slope of the linearly f i tted line in which the concentration of PAH was plotted against the surfactantconcentration above theCMC(both theconcentrationswere in mmol·L?1)as given in Figs.5,6 and 7.The effectiveness of solubilization can also be expressed with the help of the partition coeff i cient Km[30,31], which is def i ned as distribution of the mole fraction of PAH between surfactant micelles and the aqueous phase.It may be calculated as[30]:

    where Xmand Xaare the mole fractions of PAH in the micelle phase and mole fraction of PAH in the aqueous phase.The quantity Xmcan be expressed in terms of MSR as: Mole fraction of the solute in the aqueous phase was approximated for dilute solution by:

    whereSCMCisthetotalapparentsolubilityofthesoluteatCMCandVWis the molar volume of water(1.807×10?2L·mol?1at 30°C).Thus,the Kmexpression can be rearranged as:

    As can be observed from Tables 5 and 6,the MSR and Kmvalues are highest for cationic surfactant and lowest for anionic and follow the order CTAB>Brij35>G6>SDS for PHE,whereas for FLR the order is found to be as Brij35>G6>CTAB>SDS.The order of solubilizing power for organic solutes by inner nonpolar core of micelles has been reported to be a nonionic>cationic>anionic surfactant having the samenonpolarchainlength[19,31,32].ForthecaseofFLR,ourobserved data support these f i ndings.The difference in solubilization capabilities of the surfactants is because of their different structures.Higher solubilization power of Brij35 than G6 and SDS may be due to its larger micellar size helping in more micellar core solubilization[12].

    3.3.2.Solubilization by equimolar binary mixed surfactant systems

    When MSR values were compared for all the mixed systems,the order was found as G6-CTAB>G6-Brij35>G6-SDS for both the PAHs. In the interest of ascertaining the mixing effect of surfactants on solubilization of PAHs and seeing the nature of deviation,the deviation ratio (R)between MSRexpand MSRidealcan be determined by the following equation[31,33]:

    Fig.7.Variation of solubility of PAHs with G6 concentration in 1:1 binary surfactant solutions.

    Table 5Molar solubilization ratio(MSR),lg Km,the free energy of solubilization(ΔG0s),and R and B values for PHE solubilized in individual and mixed surfactant systems at 30°C

    MSRidealis the MSR for organic compounds in mixed surfactant system at the ideal mixed state and can be estimated using the MSR of single surfactant solutions based on the ideal mixing rule:

    Table 6Molar solubilization ratio(MSR),lg Km,the free energy of solubilization(ΔG0s),and R and B values for FLR solubilized in individual and mixed surfactant systems at 30°C

    where α1,α2,MSR1and MSR2are the mole fraction and the molar solubilization ratio for solute of components 1 and 2 in mixed surfactant solutions,respectively.The data of parameter R from Tables 5 and 6 obviously indicate that the MSRexpvalues have a positive deviation from an ideal mixture for the gemini/nonionic and gemini/anionic surfactant systems meaning that they have a positive mixing effect on the solubilization of PHE.However,the opposite results were found in the gemini/cationic surfactant systems.For the case of FLR,only gemini/anionic system exhibits a positive deviation from the ideal mixture. Another parameter,Km12,the partition coeff i cient of a neutral organicsolute between the micelles and aqueous phase in a mixed surfactant, has been used by Treiner et al.[34].This parameter provides better understanding of the mixing effect of mixed surfactant systems on solubilization of solutes.This partition coeff i cient's expression is based on the regular solution approximation as follows:

    where Km1and Km2are the micelle-water partition coeff i cients of the individual surfactants constituting the mixed micelles,and X1mrepresents the micellar mole fraction of a surfactant having the value of Km1.B is an empirical parameter involving both the surfactantsurfactant and surfactant-solute interactions.If the value of B becomes 0 it means that there would be no mixing effect on partitioning of a solute between the aqueous and micellar phases[31,35]whereas for B>0(or<0),it implies that Km12in the mixed surfactant system is larger(or smaller)than that predicted by the ideal mixing rule[31, 35].As presented in Tables 5 and 6,the B values are foundto be positive for all the equimolar binary surfactant solutions except for FLR in the G6-Brij35 mixed systems.

    3.4.Thermodynamics of solubilization

    From the thermodynamic point of view,solubilization can be considered asnormal partitioningof thePAH betweentwophases,micellar and aqueous,and the standard free energy of solubilization,ΔGS0,can be represented by the expression[36] where R,T and Kmare the universal gas constant,the absolute temperature and the molar partition coeff i cient between the micellar and the aqueous phases,respectively.The ΔGS0values thus calculated are presented in Tables 5 and 6.For all the systems,the ΔGS0values come out to be negative indicating spontaneity of the solubilization process.

    4.Conclusions

    For all the equimolar binary surfactant solutions the interaction parameter βmis found to be negative and synergism is observed in properties like CMC,surface tension,and solubilization.The interfacial parameters like ΔGex,βσshow synergism for the systems G6-CTAB and G6-Brij58.Micellar solubilization is a good method of choice for the dissolution of hydrophobic organic contaminants in aqueous environments which depends on the hydrophobicity,hydrophilicity and charge of the surfactant.The gemini surfactant(G6),used in this study,has a lower CMC than the conventional ones and shows an excellent solubilization toward PHE and FLR due to a more micellar core solubilization.The results obtained during the investigation show that irrespective of the surfactant type the solubility of PAHs increases linearly with the increase of surfactant concentration,for the pure as well as the mixed surfactant systems.For the binary combinations of gemini with conventional surfactants,the enhancement of solubilization of PAHs in G6-SDS system is the lowest for both the PAHs;the order of MSR(or Km)values is G6-CTAB>G6-Brij35>G6-SDS.

    [1]J.D.Rouse,T.Morita,K.Furukawa,B.-J.Shiau,Solubilization of mixed polycyclic aromatichydrocarbonsystemsusingananionicsurfactant,ColloidsSurf.APhysicochem. Eng.Asp.325(2008)180-185.

    [2]J.Santodonato,Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons:Relationship to carcinogenicity,Chemosphere 34(1997) 835-848.

    [3]F.P.Koltalo,K.Oukebdane,L.Robin,F.Dionnet,P.L.Desbene,Quantif i cation of volatile PAHs present at trace levels in air f l ow by aqueous trapping—SPE and HPLC analysis wit f l uorometric detection,Talanta 71(2007)1825-1833.

    [4]D.Grasso,K.Subramaniam,J.J.Pignatello,Y.Yang,D.Ratte,Micellar desorption of polynuclear aromatic hydrocarbons from contaminated soil,Colloids Surf.A Physicochem.Eng.Asp.194(2001)65-74.

    [5]J.H.Harwell,in:D.A.Sabatini,R.C.Knox(Eds.),Transport and Remediation of Subsurface Contaminants,ACS Symposium Series,vol.491,American Chemical Society, Washington,DC,1992,pp.124-132.

    [6]J.C.Fountain,in:D.A.Sabatini,R.C.Knox(Eds.),Transport and Remediation of Subsurface Contaminants,ACS Symposium Series,vol.491,American Chemical Society,Washington,DC,1992,pp.182-191.

    [7]B.-J.Shiau,J.D.Rouse,D.A.Sabatini,J.H.Harwell,in:D.A.Sabatini,R.C.Knox,J.H. Harwell(Eds.),Surfactant-Enhanced Subsurface Remediation:Emerging Technologies,ACS Symposium Series,vol.594,American Chemical Society,Washington,DC, 1995,pp.65-79.

    [8]M.Almgren,F.Grieser,J.K.Thomas,Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions,J.Am.Chem.Soc.101(1979)279-291.

    [9]N.Matubayasi,K.K.Liang,M.Nakahara,Free-energy analysis of solubilization in micelle,J.Chem.Phys.124(2006)154908-1-154908-13.

    [10]L.L.Schramm,Surfactants:FundamentalsandApplicationsinthePetroleumIndustry, Cambridge University Press,Cambridge,2000.

    [11]J.H.Clint,Micellization of mixed nonionic surface active agents,J.Chem.Soc.Faraday Trans.I 71(1975)1327-1334.

    [12]D.N.Rubingh,in:K.L.Mittal(Ed.),Solution Chemistry of Surfactants,vol.1,Plenum Press,New York,1979,pp.337-354.

    [13]Q.Zhou,M.J.Rosen,Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media:The regular solution approach,Langmuir 19(2003)4555-4562.

    [14]F.M.Menger,C.A.Littau,Gemini surfactants:A new class of self-assembling molecules,J.Am.Chem.Soc.115(1993)10083-10090.

    [15]M.J.Rosen,Geminis:A new generation of surfactants,ChemTech 23(1993)30-33.

    [16]R.Zana,Dimeric and oligomeric surfactants.Behavior at interfaces and in aqueous solution:A review,Adv.Colloid Interface Sci.97(2002)205-253.

    [17]T.A.Camesano,R.Nagarajan,Micelle formation and CMC of gemini surfactants:A thermodynamic model,Colloids Surf.A Physicochem.Eng.Asp.167(2000)165-177.

    [18]Kabir-ud-Din,M.Shaf i,P.A.Bhat,A.A.Dar,Solubilization capabilities of mixtures of cationic Gemini surfactant with conventional cationic,nonionic and anionic surfactants towards polycyclic aromatic hydrocarbons,J.Hazard.Mater.167 (2009)575-581.

    [19]Kabir-ud-Din,M.S.Sheikh,A.A.Dar,Analysis of mixed micellar and interfacial behavior of cationic gemini hexanediyl-1,6-bis(dimethylcetylammonium bromide) with conventional ionic and nonionic surfactants in aqueous medium,J.Phys.Chem.B 114(2010)6023-6032.

    [20]M.Panda,M.S.Sheikh,Kabir-ud-Din,Solubility enhancement of polycyclic aromatic hydrocarbons(PAHs)using synergistically interacting gemini-conventional surfactant systems,Z.Phys.Chem.225(2011)427-439.

    [21]A.Patist,S.S.Bhagwat,K.W.Penf i eld,P.Aikens,D.O.Shah,On the measurement of critical micelle concentrations of pure and technical grade non-ionic surfactants, J.Surfactant Deterg.3(2000)53-57.

    [22]P.K.Misra,S.Panigrahi,U.Dash,A.B.Mandal,Organization of amphiphiles.Part XI: physico-chemical aspects of mixed micellization involving normal conventional surfactant and a non-ionic gemini surfactant,J.Colloid Interface Sci.345(2010) 392-401.

    [23]W.Jiang,B.Xu,Q.Lin,J.Li,F.Liu,X.Zeng,H.Chen,Metal promoted hydrolysis of bis(p-nitrophenyl)phosphate by trivalent manganese complexes with Schiff base ligands in gemini micellar solution,Colloids Surf.A Physicochem.Eng.Asp.315 (2008)103-109.

    [24]K.J.Rao,S.Paria,Solubilization of naphthalene in the presence of plant-synthetic mixed surfactant systems,J.Phys.Chem.B 113(2009)474-481.

    [25]M.J.Rosen,Surfactant and Interfacial Phenomena,third ed.John Wiley&Sons,2004.

    [

    26]J.L.Li,B.H.Chen,Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants,Chem.Eng.Sci.118(2002)2825-2835.

    [27]L.Zhu,S.Feng,Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants,Chemosphere 53(2003)459-467.

    [28]O.Zheng,J.-X.Zhao,Solubilization of pyrene in aqueous micellar solutions of gemini surfactants C12-s-C12.2Br,J.Colloid Interface Sci.300(2006)749-754.

    [29]S.Paria,P.K.Yuet,Solubilization of naphthalene by pure and mixed surfactants,Ind. Eng.Chem.Res.45(2006)3552-3558.

    [30]D.A.Edwards,R.G.Luthy,Z.Liu,Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions,Environ.Sci.Technol.25(1991)127-133.

    [31]J.Wei,G.Huang,H.Yu,C.An,Eff i ciency of single and mixed gemini/conventional micelles on solubilization of phenanthrene,Chem.Eng.J.168(2011)201-207.

    [32]S.Saito,Solubilization properties of polymer-surfactant complexes,J.Colloid Interface Sci.24(1967)227-234.

    [33]W.Zhou,L.Zhu,Solubilization of polycyclic aromatic hydrocarbons by anionicnonionicmixedsurfactant,ColloidsSurf.APhysicochem.Eng.Asp.255(2005)145-152.

    [34]C.Triener,M.Nortz,C.Vaution,Micellar solubilization in strongly interacting binary surfactant systems,Langmuir 6(1990)1211-1216.

    [35]A.A.Dar,G.M.Rather,A.R.Das,Mixed micelle formation and solubilization behavior toward polycyclic aromatic hydrocarbons of binary and ternary cationic-nonionic surfactant mixtures,J.Phys.Chem.B 111(2007)3122-3132.

    [36]C.O.Rangel-Yagui,A.Pessoa Jr.,L.C.Tavares,Micellar solubilization of drugs,J. Pharm.Pharm.Sci.8(2005)147-165.

    11 March 2013

    *Corresponding author.

    E-mail address:sm_kamil@rediffmail.com(M.Kamil).

    http://dx.doi.org/10.1016/j.cjche.2014.06.028

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 29 October 2013

    Accepted 23 December 2013

    Available online 30 June 2014

    天天躁日日操中文字幕| 亚洲av第一区精品v没综合| 亚洲自偷自拍三级| 久久精品夜夜夜夜夜久久蜜豆| 色综合站精品国产| 欧美激情在线99| 美女高潮的动态| 国产美女午夜福利| 99热6这里只有精品| 99在线视频只有这里精品首页| 两个人视频免费观看高清| 亚洲欧美中文字幕日韩二区| 99久久精品一区二区三区| 美女被艹到高潮喷水动态| 亚洲,欧美,日韩| 久久99精品国语久久久| 舔av片在线| 最近的中文字幕免费完整| 联通29元200g的流量卡| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 男女视频在线观看网站免费| 99热这里只有精品一区| 亚洲人成网站高清观看| 高清午夜精品一区二区三区 | 国产91av在线免费观看| 黄片wwwwww| 国产精品一区www在线观看| 精品国内亚洲2022精品成人| 成年av动漫网址| 欧洲精品卡2卡3卡4卡5卡区| 亚洲无线在线观看| 国产伦精品一区二区三区视频9| avwww免费| 五月玫瑰六月丁香| 成人漫画全彩无遮挡| 搡女人真爽免费视频火全软件| 亚洲国产欧洲综合997久久,| 国产视频首页在线观看| 国产黄片视频在线免费观看| 免费观看的影片在线观看| 国产单亲对白刺激| 老司机福利观看| 久久精品国产亚洲av涩爱 | 国产精品久久久久久久久免| 夫妻性生交免费视频一级片| 亚洲自偷自拍三级| 国产成人aa在线观看| 成人一区二区视频在线观看| 亚洲精品久久久久久婷婷小说 | 亚洲国产精品成人综合色| 又爽又黄无遮挡网站| 欧美+日韩+精品| 中文欧美无线码| 国产精品精品国产色婷婷| 热99re8久久精品国产| 少妇的逼水好多| 国产乱人视频| 中国国产av一级| 一进一出抽搐动态| 搞女人的毛片| 99热网站在线观看| 久久久色成人| 欧美高清成人免费视频www| 男人舔奶头视频| 97在线视频观看| 亚洲欧美成人精品一区二区| av天堂在线播放| 亚洲无线在线观看| 人妻久久中文字幕网| 久久鲁丝午夜福利片| av免费观看日本| 欧美激情在线99| 欧洲精品卡2卡3卡4卡5卡区| 日本黄大片高清| 99热网站在线观看| 简卡轻食公司| 久久久久久久久中文| 亚洲精品日韩在线中文字幕 | 亚洲最大成人中文| 日韩制服骚丝袜av| 久久午夜福利片| 高清在线视频一区二区三区 | 两个人的视频大全免费| 国产高清视频在线观看网站| 能在线免费观看的黄片| 国产精品99久久久久久久久| 国产成人91sexporn| 一级毛片我不卡| 国产色爽女视频免费观看| 欧美三级亚洲精品| 狂野欧美激情性xxxx在线观看| 久久久久性生活片| 成人高潮视频无遮挡免费网站| 精品久久久久久久久亚洲| 久久6这里有精品| 亚洲不卡免费看| 欧美最新免费一区二区三区| 亚洲内射少妇av| 狂野欧美白嫩少妇大欣赏| 久久久久免费精品人妻一区二区| 国产高清激情床上av| 日韩欧美精品免费久久| 国产色爽女视频免费观看| 亚洲一区二区三区色噜噜| 男女边吃奶边做爰视频| 久久久久性生活片| av福利片在线观看| 天堂√8在线中文| 国产精品一区www在线观看| 国产成人午夜福利电影在线观看| 国产不卡一卡二| 美女内射精品一级片tv| 免费人成在线观看视频色| 国产三级中文精品| 91久久精品国产一区二区成人| 直男gayav资源| 一个人看的www免费观看视频| 久久精品国产清高在天天线| 51国产日韩欧美| 麻豆成人av视频| 最新中文字幕久久久久| 成人av在线播放网站| 久久久欧美国产精品| 2021天堂中文幕一二区在线观| 一夜夜www| 九九爱精品视频在线观看| 全区人妻精品视频| 中文字幕熟女人妻在线| 日本在线视频免费播放| 国产爱豆传媒在线观看| 两个人视频免费观看高清| 精品人妻一区二区三区麻豆| 波多野结衣高清无吗| 亚洲av一区综合| 成人亚洲精品av一区二区| .国产精品久久| 长腿黑丝高跟| 久久99热6这里只有精品| 黄色配什么色好看| 国产一区亚洲一区在线观看| 国产精品伦人一区二区| 亚洲欧美精品自产自拍| 欧美性感艳星| 老师上课跳d突然被开到最大视频| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 一级av片app| 欧美最新免费一区二区三区| 亚洲内射少妇av| 国产单亲对白刺激| 精品一区二区三区人妻视频| 亚洲国产精品成人综合色| 国产在线精品亚洲第一网站| 2022亚洲国产成人精品| 18禁裸乳无遮挡免费网站照片| 一级毛片aaaaaa免费看小| 国产精品无大码| 毛片一级片免费看久久久久| 午夜视频国产福利| 99久久精品热视频| 久久精品夜色国产| 大香蕉久久网| 欧美性猛交黑人性爽| 91精品国产九色| 中文亚洲av片在线观看爽| 色哟哟·www| 国产精品久久久久久久久免| 日本黄大片高清| 偷拍熟女少妇极品色| 蜜桃久久精品国产亚洲av| 国内精品美女久久久久久| or卡值多少钱| 丝袜喷水一区| 哪个播放器可以免费观看大片| 亚洲va在线va天堂va国产| 亚洲av中文字字幕乱码综合| 久久久久久伊人网av| 午夜爱爱视频在线播放| 国产精品乱码一区二三区的特点| 天堂√8在线中文| 性欧美人与动物交配| 精品不卡国产一区二区三区| 一个人免费在线观看电影| 精品人妻一区二区三区麻豆| 久久精品人妻少妇| 日韩欧美精品免费久久| 免费av观看视频| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 国产一级毛片在线| 色5月婷婷丁香| 久久久久久久久大av| 熟女人妻精品中文字幕| 在线观看免费视频日本深夜| 免费观看人在逋| 观看免费一级毛片| 欧美日韩精品成人综合77777| 日本一二三区视频观看| 黄色配什么色好看| 久久久精品欧美日韩精品| 又爽又黄a免费视频| 日韩精品青青久久久久久| 欧美在线一区亚洲| 亚洲丝袜综合中文字幕| 99久久中文字幕三级久久日本| 午夜激情欧美在线| 国内精品美女久久久久久| 校园人妻丝袜中文字幕| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 国产美女午夜福利| 日本黄大片高清| 日日干狠狠操夜夜爽| 国产精品蜜桃在线观看 | АⅤ资源中文在线天堂| 99久国产av精品| 身体一侧抽搐| 亚洲五月天丁香| 可以在线观看毛片的网站| 哪个播放器可以免费观看大片| 精品欧美国产一区二区三| 欧美+日韩+精品| 国产高清视频在线观看网站| 亚洲欧美精品综合久久99| 我的老师免费观看完整版| 亚洲av熟女| 可以在线观看毛片的网站| 精品国产三级普通话版| 免费看日本二区| 成人毛片60女人毛片免费| 亚洲aⅴ乱码一区二区在线播放| 国产精品野战在线观看| 丰满人妻一区二区三区视频av| 欧美色欧美亚洲另类二区| 在线观看免费视频日本深夜| 免费大片18禁| 国产激情偷乱视频一区二区| 在线免费观看的www视频| 91精品国产九色| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 日韩,欧美,国产一区二区三区 | 熟女人妻精品中文字幕| 永久网站在线| 中国美女看黄片| 亚洲欧美成人精品一区二区| 国产一区二区激情短视频| 亚洲不卡免费看| 亚洲真实伦在线观看| 国产精华一区二区三区| av天堂中文字幕网| 卡戴珊不雅视频在线播放| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 国产日本99.免费观看| 国产精品久久久久久久电影| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱 | 黄色配什么色好看| 日本免费a在线| 亚洲三级黄色毛片| 国产一区亚洲一区在线观看| 国产大屁股一区二区在线视频| 村上凉子中文字幕在线| 最近2019中文字幕mv第一页| 边亲边吃奶的免费视频| 给我免费播放毛片高清在线观看| av天堂中文字幕网| 国产黄色小视频在线观看| 精品国内亚洲2022精品成人| 五月玫瑰六月丁香| 国产色爽女视频免费观看| 看非洲黑人一级黄片| 一级黄片播放器| 欧美三级亚洲精品| 一级毛片我不卡| 九草在线视频观看| 免费观看人在逋| 小蜜桃在线观看免费完整版高清| 国产黄a三级三级三级人| 久久精品国产鲁丝片午夜精品| 村上凉子中文字幕在线| 日韩一区二区三区影片| 我的老师免费观看完整版| 中国美女看黄片| 免费看光身美女| 久久精品综合一区二区三区| 亚洲三级黄色毛片| 波多野结衣高清作品| 99久久成人亚洲精品观看| 成人三级黄色视频| 日本黄色片子视频| 久久99蜜桃精品久久| 人妻少妇偷人精品九色| 悠悠久久av| 免费观看的影片在线观看| 国产黄片美女视频| 亚洲国产精品成人综合色| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 天堂av国产一区二区熟女人妻| 91麻豆精品激情在线观看国产| 亚洲av不卡在线观看| 亚洲精品日韩在线中文字幕 | 亚洲成人中文字幕在线播放| 非洲黑人性xxxx精品又粗又长| 国产午夜福利久久久久久| 性插视频无遮挡在线免费观看| 精品少妇黑人巨大在线播放 | 夜夜夜夜夜久久久久| 欧美一区二区精品小视频在线| 插阴视频在线观看视频| 99视频精品全部免费 在线| 一区二区三区四区激情视频 | 一边摸一边抽搐一进一小说| 亚洲成人av在线免费| 一夜夜www| 尾随美女入室| 18禁在线播放成人免费| 伦精品一区二区三区| 激情 狠狠 欧美| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 青春草视频在线免费观看| 色吧在线观看| 亚洲av成人精品一区久久| 久久99热这里只有精品18| 99久国产av精品| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 边亲边吃奶的免费视频| 国产成人aa在线观看| 两个人的视频大全免费| 能在线免费观看的黄片| 亚洲激情五月婷婷啪啪| 免费在线观看成人毛片| 国产av在哪里看| 热99re8久久精品国产| ponron亚洲| 亚洲av免费高清在线观看| 女同久久另类99精品国产91| 男人的好看免费观看在线视频| 在线a可以看的网站| 丝袜美腿在线中文| 国语自产精品视频在线第100页| 国产高清有码在线观看视频| 伦理电影大哥的女人| 日本爱情动作片www.在线观看| 国产伦一二天堂av在线观看| 欧美日韩乱码在线| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 欧美激情久久久久久爽电影| 欧美成人a在线观看| 九草在线视频观看| 亚洲高清免费不卡视频| 中文亚洲av片在线观看爽| 插阴视频在线观看视频| 不卡一级毛片| 乱系列少妇在线播放| 91久久精品电影网| 一进一出抽搐动态| 亚洲激情五月婷婷啪啪| 成年免费大片在线观看| 亚洲精品成人久久久久久| 99久国产av精品| 婷婷色综合大香蕉| 色尼玛亚洲综合影院| 日韩制服骚丝袜av| 男女那种视频在线观看| 欧美精品国产亚洲| 天堂网av新在线| 精品午夜福利在线看| 国产色婷婷99| 亚洲无线在线观看| 国产伦一二天堂av在线观看| 欧美激情在线99| 国产精品.久久久| 嫩草影院入口| 99视频精品全部免费 在线| 亚洲va在线va天堂va国产| 夜夜看夜夜爽夜夜摸| 99久久精品国产国产毛片| 亚洲欧美精品自产自拍| 国产精品美女特级片免费视频播放器| 波多野结衣高清无吗| 人妻系列 视频| 久久久午夜欧美精品| 青春草国产在线视频 | 亚洲欧美中文字幕日韩二区| 波多野结衣高清无吗| 日本一本二区三区精品| 亚洲av成人av| 成人午夜精彩视频在线观看| 国产精品女同一区二区软件| 国产精品一区二区三区四区免费观看| 一个人观看的视频www高清免费观看| 亚洲色图av天堂| 精品久久久久久久末码| 国产免费男女视频| 国产精品日韩av在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 成人毛片a级毛片在线播放| 淫秽高清视频在线观看| 精品久久久久久久久久免费视频| 国产精品无大码| 日韩 亚洲 欧美在线| 成人特级黄色片久久久久久久| 欧美性猛交╳xxx乱大交人| 成人鲁丝片一二三区免费| 三级国产精品欧美在线观看| 日韩三级伦理在线观看| 成人二区视频| 又粗又爽又猛毛片免费看| 在线观看美女被高潮喷水网站| 乱码一卡2卡4卡精品| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 国内少妇人妻偷人精品xxx网站| 18禁裸乳无遮挡免费网站照片| 赤兔流量卡办理| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久末码| 一本精品99久久精品77| 久久久久久久久大av| 国产大屁股一区二区在线视频| 只有这里有精品99| 麻豆乱淫一区二区| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 麻豆一二三区av精品| 美女黄网站色视频| 蜜桃久久精品国产亚洲av| 久久热精品热| 久久久国产成人免费| 国产精品久久久久久久电影| 亚洲av一区综合| 在线播放无遮挡| 久久精品影院6| 最近最新中文字幕大全电影3| 搡女人真爽免费视频火全软件| 99久国产av精品| 久久人人精品亚洲av| 亚洲av免费高清在线观看| 国产精品久久久久久久电影| 能在线免费看毛片的网站| 黄色配什么色好看| 一夜夜www| 免费av观看视频| 亚洲内射少妇av| 精品国内亚洲2022精品成人| 久久中文看片网| 如何舔出高潮| 1000部很黄的大片| 99久久精品国产国产毛片| 老熟妇乱子伦视频在线观看| 青青草视频在线视频观看| 精品人妻一区二区三区麻豆| 国产三级在线视频| 精品人妻熟女av久视频| 熟女电影av网| 午夜亚洲福利在线播放| 亚洲欧美成人精品一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 性欧美人与动物交配| 人妻夜夜爽99麻豆av| 国产精品福利在线免费观看| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 一级二级三级毛片免费看| 国产伦理片在线播放av一区 | 成人二区视频| 亚洲精品久久久久久婷婷小说 | 高清毛片免费观看视频网站| 一级黄色大片毛片| 日本爱情动作片www.在线观看| 中国美白少妇内射xxxbb| 欧美精品国产亚洲| 国产在视频线在精品| 18禁黄网站禁片免费观看直播| 国产中年淑女户外野战色| 九草在线视频观看| 一级毛片电影观看 | 亚洲不卡免费看| 亚洲欧美日韩无卡精品| 最近2019中文字幕mv第一页| 成年女人看的毛片在线观看| 欧美xxxx黑人xx丫x性爽| 伦理电影大哥的女人| 两个人视频免费观看高清| 国产伦在线观看视频一区| 有码 亚洲区| a级一级毛片免费在线观看| 亚洲精品粉嫩美女一区| 国产乱人偷精品视频| 日日撸夜夜添| 最近最新中文字幕大全电影3| 99久久中文字幕三级久久日本| 蜜桃亚洲精品一区二区三区| 18禁黄网站禁片免费观看直播| 美女高潮的动态| 婷婷色综合大香蕉| 欧美成人免费av一区二区三区| 男女下面进入的视频免费午夜| av女优亚洲男人天堂| 国产精品久久久久久久电影| 毛片一级片免费看久久久久| 成年版毛片免费区| 99国产精品一区二区蜜桃av| 亚洲av二区三区四区| 一级毛片我不卡| 成年女人看的毛片在线观看| 欧美成人一区二区免费高清观看| 欧美不卡视频在线免费观看| 成人漫画全彩无遮挡| 免费一级毛片在线播放高清视频| 国产成人91sexporn| 亚洲av不卡在线观看| 国产av在哪里看| 午夜爱爱视频在线播放| 国产熟女欧美一区二区| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 人妻系列 视频| 在线观看一区二区三区| 直男gayav资源| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久v下载方式| 在线观看一区二区三区| 成人亚洲精品av一区二区| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 日本色播在线视频| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 午夜a级毛片| 国产精品永久免费网站| 亚洲综合色惰| 观看免费一级毛片| 国产一区亚洲一区在线观看| 日韩视频在线欧美| 国产精品三级大全| 国产午夜精品一二区理论片| 黄色视频,在线免费观看| 91狼人影院| 日本av手机在线免费观看| 欧美激情久久久久久爽电影| 国产精品久久久久久久久免| 精品国产三级普通话版| 精品久久久久久久久久久久久| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 黑人高潮一二区| 欧美变态另类bdsm刘玥| 一个人观看的视频www高清免费观看| 国产乱人视频| 级片在线观看| 综合色丁香网| 1000部很黄的大片| 内地一区二区视频在线| 精品久久国产蜜桃| 99久久九九国产精品国产免费| 麻豆成人午夜福利视频| 一区福利在线观看| 18+在线观看网站| 久久久久九九精品影院| 亚洲国产精品sss在线观看| 免费观看精品视频网站| 毛片一级片免费看久久久久| 国产av在哪里看| 99热这里只有是精品50| 亚洲av第一区精品v没综合| 精品一区二区三区人妻视频| 国产精品久久久久久久久免| 精品久久国产蜜桃| 小说图片视频综合网站| 久久久国产成人精品二区| 国产av不卡久久| 黄色日韩在线| 亚洲成a人片在线一区二区| 亚洲av免费在线观看| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影小说 | ponron亚洲| 久久精品国产亚洲av天美| 成年女人永久免费观看视频| 欧美区成人在线视频| 美女高潮的动态| 一边亲一边摸免费视频| 一个人看的www免费观看视频| 久久久久性生活片| 亚洲国产欧洲综合997久久,| 大香蕉久久网| 青春草国产在线视频 | 成人二区视频| 少妇的逼好多水| 亚洲成人av在线免费| 国产一级毛片在线| 色综合站精品国产| 欧美区成人在线视频| 国产v大片淫在线免费观看| 久久久精品94久久精品| 你懂的网址亚洲精品在线观看 | 婷婷亚洲欧美| 久久人人爽人人片av| 波多野结衣高清作品| .国产精品久久| 欧美3d第一页| 国产国拍精品亚洲av在线观看| h日本视频在线播放| 少妇人妻精品综合一区二区 | 国产91av在线免费观看| 色综合站精品国产|