• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Gas-assisted Three-liquid-phase Extraction System for Simultaneous Separation and Concentration of Anthraquinones in Herbal Extract☆

    2014-07-25 11:29:32XingfuYangXiangfengLiangLiangrongYangFengPanFuliDengHuizhouLiu

    Xingfu Yang,Xiangfeng Liang*,Liangrong Yang,Feng Pan,Fuli Deng,Huizhou Liu*,3

    Separation Science and Engineering

    Novel Gas-assisted Three-liquid-phase Extraction System for Simultaneous Separation and Concentration of Anthraquinones in Herbal Extract☆

    Xingfu Yang1,2,Xiangfeng Liang*,1,Liangrong Yang1,Feng Pan1,Fuli Deng1,2,Huizhou Liu*,1,3

    1Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China2University of Chinese Academy of Sciences,Beijing 100049,China3National Key Laboratory of Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    A R T I C L EI N F O

    Article history:

    Three-liquid-phase extraction

    Gas-assisted solvent extraction

    Separation

    Anthraquinones

    Gas-assisted three-liquid-phase extraction(GATE),which has the advantages of both three-liquid-phase extraction and solvent sublation,is a novel separation technique for separation and concentration of two organic compounds into different phases in one step.This highly effective and economically applicable method has been developed for separating emodin and rhein from herbal extract.In a GATE system composed of butyl acetate/ PEG4000/ammonium sulfate aqueous solution,inf l uence of various parameters including gas f l ow rate,f l otation time,saltconcentration,initialvolumeofPEGandbutylacetatewasinvestigated.Within50minof30 ml·min?1nitrogen f l ow,removal ratio of emodin and rhein from aqueous phase could be over 99%and 97%,respectively. Mass fraction of emodin in the BA phase and rhein in the PEG phase could reach 97%and 95%,respectively.It is demonstrated that gas bubbling is effective for partitioning of emodin and rhein into butyl acetate and PEG phase respectively,and dispersed PEG and butyl acetate could be captured from the aqueous solution.ExperimentalresultsshowthatGATEcouldbeaneffectiveandeconomicaltechnologyforconcentrationandseparation of co-existed products in medicinal plants.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Anthraquinones are the major biologically active ingredients of some most popular traditional medicinal herbs,e.g.Rhubarb and Polygonum cuspidate.Previous pharmacology studies have demonstrated that anthraquinones have various bioactivities,such as antitumor,antifungal,antiplasmodial,antiviral and virucidal activity[1-5].Recently, various technologies have been reported for the separation of anthraquinones from medicinal plant,such as ultrasonic extraction,supercritical CO2extraction,high-speed countercurrent chromatography,and aqueous two-phase extraction[6-11].Although some exciting results have been achieved with these methods,some inevitable shortcomings limit their further applications,including sophisticated equipment, harshcondition,highenergyconsumptionandcumbersomeprocedure. Besides,few studies have been reported concerning the separation of co-existing anthraquinones from each other.

    Three-liquid-phase extraction system(TES),composed of three coexisting liquid phases,is a promising alternative to the traditional solvent extraction because of its outstanding advantages[12,13].The physicochemical propertiesof threeco-existingphases in TESaretunable bymanipulatingvarious factors and itiseasytoscale-up,so that TES provides potential to separate two or more target compounds selectively through one-step process[14].TES has been successfully applied to concentration of natural products[15,16],antibiotic separation[17,18],phenolic wastewater treatment[19-22]and multimetal separation[23-30]. However,in a TES process,the intensive agitation leads to loss of organic solvent and polymer and creates secondary contamination for aqueous solutions,which may reduce the separation eff i ciency of objectivechemicalcompounds.Inourpreviousreport,TESwasimproved by combination with solvent sublation,and the new technique was named gas-assisted three-liquid-phase extraction(GATE)[31].With the assistance of ascending gas stream,GATE could reduce the consumption of organic solvents and polymers and give higher concentration coeff icient comparing with TES.Therefore,it is more eff i cient,environment friendly and economically applicable in the extraction of natural product.

    In this work,GATE is applied to isolate two coexisting anthraquinones in the simulated herbal extract.Because of their good surface activity,highly similar structures and properties(Fig.1),emodin and rhein are selected as the target compounds for separation and concentration.InaGATEsystemcomposedofbutyl acetate/PEG4000/ammonium sulfate aqueous solution,inf l uence of various parameters including gas f l ow rate,f l otation time,salt concentration,initial volume of PEG and butyl acetate is investigated.In the GATE process,organic phase,polymer phase and salt aqueous solution phase coexist in the column equipment as shown in Fig.2.As the ascending of gas bubbles,emodin and rhein dissolved in the aqueous phase can be extracted and concentrated into the organic phase and the polymer phase,respectively.

    Fig.1.Chemical structures of emodin and rhein.

    2.Materials and Methods

    2.1.Chemicals and apparatus

    Polyethylene glycol(PEG)4000 was purchased from China National Pharmaceutical Group Corporation.Emodin and rhein crude powder were purchased from Shaanxi Sciphar Hi-tech Industry Co.Ltd.,China, and the standards of emodin and rhein(purity>97%by HPLC)were purchased from National Institute for Food and Drug Control,China. Water was of HPLC grade.Butyl acetate(BA),ammonium sulfate and other chemicals were of analytical reagent grade purchased from Beijing Chemical Reagent Co.,Ltd.,China.

    A pH meter(pH211,HANNA,Italy)was used to adjust the pH of the solution.For transfer convenience,stocksolutionsof ammonium sulfate with mass concentration of 40%and polymers with mass concentration of 50%were prepared.Simulated herbal stock solutions were prepared with purchased crude powder of emodin and rhein.Concentrations of emodin and rhein were approximately 30 ppm and were determined by HPLC(HP1100 AgilentTechnologies,U.S.)with ultraviolet spectrometer at 254 nm as detector.The analysis was performed with a C18 Zorbax ODS column(4.6 mm I.D.×150 mm,5 μm,Agilent,U.S.)at 20°C in thermostat.The mobile phase consisted of methanol and 1.0% aqueous acetic acid solution anda 20μl sample wasejected into thecolumn with a gradientelution of 75%-80%methanol at 0-15 min ata f l ow rate of 1.0 ml·min?1.Both calibration curves showed satisfactory linearity over the concentration range of(1-100)×10?6with correlation coeff i cients≥0.9999.

    Fig.2 is the schematic diagram of the experimental device.The glass column isequippedwithaG4sinteredglasssparger(poresize3-4μm). The inner diameter of the column is 36 mm and the length is 450 mm. Three ports are open at different parts along the column to obtain samples of the three phases.

    2.2.Optimization of different parameters

    Based on our preliminary study,the optimum pH of the separation of emodin and rhein is 8.0.PEG 4000 is the most favorable polymer and BA isthebestorganicextractantconsideringthetoxicity,volatilityandcrosssolubility.Therefore,PEG 4000 with 50%(mass)water(for transfer convenience)and BA was used to construct the polymer phase and organic solvent phase in this study.The initial pH of all the systems was set at 8.0.Concentrations of emodin and rhein were determined by HPLC.VariousparametersofGATEsuchasgasf l owrate,gasbubblingtime,concentration of ammonium sulfate,initial volume of PEG phase and BA phase were optimized.All the initial volumes of aqueous phase were 320 ml, and all the separation processes were carried out at room temperature.

    2.3.Separation procedure

    The aqueous phase of the GATE was prepared by mixing of 40% (mass)ammonium sulfate solution,simulated herbal extract and water in a 500 ml beaker.Under magnetic stirring,solution pH was adjusted to 8.00±0.05 by adding sulfuric acid and sodium hydroxide solution.

    In order to quantify the separation and concentration eff i ciency,the removalratiooftargetcompoundfromaqueousphase(Ei)andmassfraction of compound i in the three different phases(Wi,p)are def i ned as

    Fig.2.Schematic diagram of gas-assisted three-liquid-phase extraction system.

    Fig.3.Effect of gas bubbling time on the removal ratio of emodin from aqueous phase (pH=8.0;salt concentration=20%;VPEG=40 ml;VBA=40 ml).

    Fig.4.Effect of gas bubbling time on the removal ratio of rhein from aqueous phase (pH=8.0;ammonium sulfate 20%;VPEG=40 ml;VBA=40 ml).

    The distribution ratio of emodin or rhein between two phases in the top,middle or bottom phase(Di,p1/p2),separation factor between two phases(Sp1/p2)and concentration coeff i cient of emodin or rhein in top and middle phases(αi,p)are def i ned as

    2.4.Gas-assisted three-liquid-phase extraction process

    In traditional operation of three-liquid-phase extraction,mechanical stirring or magnetic agitation is usually applied to accelerate mass transfer of target compounds between aqueous salt phase,polymer phase and organic phase.However,vigorous mixing also promotes the partition equilibrium of bulk phases and inevitably brings about the loss of phase-forming polymer and organic extractant.

    The operation in GATE process follows a totally different mode.Instead of mechanical or magnetical agitation,solutes with surface activity are absorbed on or dissolved in the surface of ascending bubbles in theaqueousphase.Whenbubblesenterthepolymerphase,solutesrapidly transfer between the bubbles and polymer phase,and one kind of solute is strongly retained by the polymer phase.Then the bubbles go uptotheinterfaceofthepolymerphaseandorganicphase,andanother targetcompoundis primarily dissolved in the organic phase.Finallythe bubbles burst into droplets,and the droplets fall back into the polymer phase.

    Fig.6.EffectofgasbubblingtimeonthemassfractionofrheininthePEGphase(pH=8.0; ammonium sulfate 20%;VPEG=40 ml;VBA=40 ml).

    Fig.5.EffectofgasbubblingtimeonthemassfractionofemodinintheBAphase(pH=8.0; ammonium sulfate 20%;VPEG=40 ml;VBA=40 ml).

    3.Results and Discussion

    Fig.7.Effectof gasf l ow rate on theremovalratioofemodinandrheinand theirmassfractionsofintheBAphase andinthePEG phase(ammoniumsulfate20%;pH=8.0;gasbubbling time=50 min;VPEG=40 ml;VBA=40 ml).

    3.1.Effect of gas bubbling time and gas f l ow rate

    Figs.3 and 4 show the effect of gas bubbling time on the removal ratio of emodin and rhein from aqueous phase at different gas velocities.In the f i rst 15 min,the removal ratios of both emodin and rhein increase rapidly at all of the gas f l ow rates.Gas f l ow rate plays animportant role in terms of separation equilibrium time.Generally, high gas f l ow rate increases the overall area of gas-liquid interface and accelerates mass transfer,reducing the time to reach separation equilibrium.With low gas f l ow rate(10 and 20 ml·min?1),it may take approximately 250 min to reach equilibrium.At gas f l ow rate higher than 30 ml·min?1,separation equilibrium can be achieved in 25 min.Because of their physiochemical property difference[32, 33],emodin is more hydrophobic than rhein and is more likely to be absorbed on the bubble surface.Therefore,emodin is removed faster than rhein,and the remanent mass fraction in the aqueous phase is less.

    AsshowninFigs.5and6,gasbubblingtimeandf l owratehavea similareffectonmassfractionofemodininBAphaseandrheininPEGphase. Massfractionofsolutesescalatesrapidlyinthemiddlephaseortopphase at initial stage,and then approaches gradually staple.Increasing gas f l ow rate is conducive to reduce operation time.However,there is recognizable difference between the mass fraction of emodin in the BA phase and that of rhein in the polymer phase.The increase of mass fraction of emodinlagsbehindthatofrhein.Theanthraquinonesloadedonthebubbles enterthepolymerphaselayerand solutestransferbetweenpolymer phase and bubbles.Part of emodin is retained in the PEG phase at f i rst. Then as bubbles keep ascending,emodin in PEG phase is gradually brought into the BA phase.Therefore,rhein is naturally extracted into the middle polymer phase faster than emodin,which needs more steps to transfer into the top phase.Besides,inf l uences of f l oatage and interfacial tension jointly affect the position of rising bubbles at the interface [34].With large amount of water,the interface tension of lower two phases is much smaller than that of the upper two phases[35].Hence, atthesamegasf l owrate,bubblescouldgothroughtheaqueous-polymer interface more easily than through the polymer-organic interface.

    Fig.7 shows the effect of gas f l ow rate on the removal ratios of emodin and rhein from the aqueous phase and their mass fractions in the BA phase and polymer phase.At lower gas f l ow rates,the increase of gas f l ow rate expedites the removal of the two compounds and their enrichment in the BA and polymer phase separately.At gas f l ow rateshigherthan30 ml·min?1,operationtimeisreducedwhileremoval ratio and mass fraction of two compounds change little.Moreover, high gas f l ow rate would lead to a turbulent mixing at the interfaces and bubbles accumulate at the top of f l otation column because large number of bubbles could not burst rapidly enough.Considering the balance of separation eff i ciency and operation time,bubbling 50 min at 30 ml·min?1is selected as the optimum condition.3.2.Effect of salt concentration

    Fig.8.Effect of concentration of ammonium sulfate on the removal ratio of emodin and rhein(pH=8.0;VPEG=40 ml;VBA=40 ml;gas f l ow rate=30 ml·min?1;bubbling time=50 min).

    Fig.10.EffectofvolumeofPEGphaseontheremovalratioofemodinandrhein(pH=8.0; VBA=40 ml;ammonium sulfate 24%;gas f l ow rate=30 ml·min?1;bubbling time= 50 min).

    Fig.9.Effect of concentration of ammonium sulfate on the mass fraction of emodin in the BA phase and rhein in the PEG phase(pH=8.0;VPEG=40 ml;VBA=40 ml;gas lf ow rate=30 ml·min?1;bubbling time=50 min).

    Fig.11.Effect of volume of PEG phase on the mass fraction of emodin in BA phase and rhein in PEG phase(pH=8.0;VBA=40 ml;ammonium sulfate 24%;gas f l ow rate= 30 ml·min?1;bubbling time=50 min).

    In the GATE column,the three coexisting liquid phases could be viewedasthecombinationof aqueoustwo-phasesystem and traditional liquid-liquid extraction system.In this work,phase-forming salt concentration,an important parameter to maintain an immiscible twophase system[36]and affect separation eff i ciency in the aqueous twophase extraction system[37],is investigated in the GATE process.

    Fig.8 shows the inf l uence of ammonium sulfate concentration on the removal ratio.With the increase of salt concentration,the removal ratio of two solutes increases.However,the separation behavior of emodin in BA phaseand rheinin PEGphaseare differentas shown inFig.9. As the ammonium sulfate concentration increases,mass fraction of emodin peaks while mass fraction of rhein keeps increasing.This could be attributedtosalting-outeffectofkosmotropicsalt.Duetothestructured water“l(fā)attice”around the ion of ammonium sulfate,the increase of its concentration would bind more water and dwindle the amount of free water[38]and therefore thesolubility of emodin and rheinin the aqueousphase.Thus theremovalratioof thetwo compounds increases with concentration.Because of their structuredifference,emodinismore hydrophobic and therefore easier to remove from aqueous phase than rhein.This explains why the removal ratio of emodin is higher than rhein over the salt concentration investigated.However,the saltingout effect of ammoniumsulfate plays differents roles in the partitioning behavior of emodin and rhein.Increasing salt content makes more solutes salt-out from aqueous phase and causes the dehydration of PEG segment,which increases the hydrophobicity in the PEG phase microenvironment.The combination of these two factors promotes the enrichment of rhein in the PEG phase.For emodin,salting-out effect increases the mass fraction of emodin in BA phase while more hydrophobic PEG microenvironment would retain more emodin and reduce the mass fraction of emodin in the BA phase.The balance of the two effects results in a maximum mass fraction of emodin.

    Fig.12.Effectof volume of BA phase on the removal ratio of emodinand rhein(pH=8.0; VPEG=20 ml;ammonium sulfate 24%;gas f l ow rate=30 ml·min?1;bubbling time= 50 min).

    Fig.13.EffectofvolumeofBAphaseonthemass fraction of emodin inBAphase andrhein in PEG phase(pH=8.0;VPEG=20 ml;ammonium sulfate 24%;gas f l ow rate= 30 ml·min?1;bubbling time=50 min).

    Table 1Comparison of separation and concentration between TES and GATE under the optimal operation conditions

    3.3.Effect of volume of PEG and BA

    Figs.10and11demonstratetheinf l uenceofinitialvolumeofPEGon the removal ratio and mass fraction of emodin and rhein,respectively. In comparison with initial volume of BA phase as shown in Figs.12 and 13,the volume of PEG phase plays a more important role in the removal of solutes from the bottom phase.Increasing PEG volume tends to promote the removal of emodin and rhein.Adding polymer phase enlarges the extraction capacity of PEG phase and the concentration of solutes in PEG decreases accordingly.The increase of the concentration gradient between the aqueous phase and the polymer phase contributes to the removal of the two compounds.Meanwhile,larger PEG volume prolongs the contact time between PEG phase and bubbles and advances the enrichment of rhein.The combination of the two factors generatesahighermassfractionasshowninFig.11.BAphaseisisolated and does not directly contact with aqueous phase,so the effect of BA volumeisnotassignif i cantasthatofPEGphase.However,whenadding a little top phase,the emodin concentration in BA phase will be very high,andpartofemodinmaydistributeintoPEGphase.Besides,itisdiffi cult to maintain interfacialstability withsucha thinlayeroftop phase. Fig.13showsthathighervolumeofBAphasedecreasesrheinmassfraction in PEGvolume.This can be explained by intrinsic distribution equilibrium of rhein between BA phase and PEG phase.Larger BA phase retains slightly more rhein in the top phase.Therefore,initial volume of 20 ml PEG and 10 ml BA is regarded as the optimal condition.

    3.4.Comparison with three-liquid-phase extraction system

    When using traditional liquid-liquid extraction or solvent sublation,all kinds of anthraquinones are extracted into organic phase and can not be separated from each other[39].Here we compare GATE with traditionalTES.Severalprimaryparametersforevaluatingseparationperformancesuchasdistributionratio(D),separationfactor(S)andconcentration coeff i cient(α)are def i ned and calculated for the two extraction systems.

    Under the optimal operation conditions,the separation results of the two systems are compared in Table 1.The separation ratio and concentration coeff i cient of GATE are signif i cantly higher than those of TES because of higher phase ratio between aqueous phase and extractant phase.The results also demonstrate that GATE provides higher treatment capacity and consumes less PEG phase and organic phase.

    4.Conclusions

    GATE,a novel combination of three-liquid-phase separation and solventsublation,wasappliedtoselectivelyseparateandconcentratehighly structure-similar anthraquinones of simulated herbal extract into different phases in one step with the aid of gas bubbling.Within 50 min of 30 mL/min nitrogen f l ow,removal ratio of emodin and rhein from aqueous phase could be over 99%and 97%,respectively.Mass fraction of emodin in the BA phase and rhein in the PEG phase could reach 97%and 95%, respectively.

    Compared with conventional three-liquid-phase extraction,GATE exhibits better separation eff i ciency and concentration performance with less usage of polymer and organic extractant.During GATE operation,turbulent mixing of phases is avoided and loss of BA and PEG in equilibrium aqueous solution could be reduced.Additionally,dispersed BA and PEG can be captured by rising gas f l ow with the aid of gas bubbling.Therefore,GATE could be an eff i cient,economical and highly selective technology for simultaneous separation and concentration of co-existing products with high structure similarity in medicinal plants.

    [1]Q.Huang,G.Lu,H.Shen,M.Chung,C.Ong,Anti-cancerproperties ofanthraquinones from rhubarb,Med.Res.Rev.27(2007)609-630.

    [2]S.Agarwal,S.S.Singh,S.Verma,S.Kumar,Antifungal activity of anthraquinone derivatives from Rheum emodi,J.Ethnopharmacol.72(2000)43-46.

    [3]B.Onegi,C.Kraft,I.K?hler,M.Freund,K.Jenett-Siems,K.Siems,G.Beyer,M.F. Melzig,U.Bienzle,E.Eich,Antiplasmodial activity of naphthoquinones and one anthraquinone from Stereospermum kunthianum,Phytochemistry 60(2002)39-44.

    [4]D.O.Andersen,N.D.Weber,S.G.Wood,B.G.Hughes,B.K.Murray,J.A.North,In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives,Antiviral Res.16(1991)185-196.

    [5]D.L.Barnard,J.H.Huffman,J.L.B.Morris,S.G.Wood,B.G.Hughes,R.W.Sidwell,Evaluation of the antiviral activity of anthraquinones,anthrones and anthraquinone derivatives against human cytomegalovirus,Antiviral Res.17(1992)63-77.

    [6]R.Liu,A.Li,A.Sun,Preparative isolation and purif i cation of hydroxyanthraquinones and cinnamic acid from the Chinese medicinal herb Rheum off i cinale Baill.by highspeed counter-current chromatography,J.Chromatogr.A 1052(2004)217-221.

    [7]Y.Xie,Y.Liang,H.W.Chen,T.Y.Zhang,Y.Ito,Preparativeisolation and purif i cation of anthraquinones from Cassia seed by high-speed countercurrent chromatography,J. Liq.Chromatogr.Relat.Technol.30(2007)1475-1488.

    [8]S.Genovese,F.Tammaro,L.Menghini,G.Carlucci,F.Epifano,M.Locatelli,Comparison of three different extraction methods and HPLC determination of the anthraquinones aloe-emodine,emodine,rheine,chrysophanol and physcione in the bark of Rhamnus alpinus L.(Rhamnaceae),Phytochem.Anal.21(2010)261-267.

    [9]Y.X.Gong,S.P.Li,Y.T.Wang,P.Li,F.Q.Yang,Simultaneous determination of anthraquinonesinRhubarb by pressurized liquid extraction and capillary zone electrophoresis,Electrophoresis 26(2005)1778-1782.

    [10]Z.J.Tan,F.F.Li,J.M.Xing,Separation and purif i cation of aloe anthraquinones using PEG/Salt aqueous two-phase system,Sep.Sci.Technol.46(2011)1503-1510.

    [11]M.Locatelli,F.Tammaro,L.Menghini,G.Carlucci,F.Epifano,S.Genovese,Anthraquinone prof i le and chemical f i ngerprint of Rhamnus saxatilis L.from Italy,Phytochem. Lett.2(2009)223-226.

    [12]M.Mojski,I.Gluch,Characteristics and applications of three-phase extraction systems,J.Anal.Chem.51(1996)329-342.

    [13]H.Liu,C.Guo,J.Yu,J.Xing,Z.Chang,Y.Guan,Principle and Applications of Microemulsion Phase Extraction,Science Press,Beijing,2005.

    [14]L.H.Silva,W.Loh,Polymer induced multiphase generation in water/organic solvent mixtures.Strategies towards the design of triphasic and tetraphasic liquid systems, Chem.Commun.1(1998)787-788.

    [15]L.Liu,Y.Dong,Z.Xiu,Three-liquid-phase extraction of diosgenin and steroidal saponins from fermentation of Dioscorea zingibernsis CH Wright,Process Biochem.45 (2010)752-756.

    [16]S.Shen,Z.Chang,J.Liu,X.Sun,X.Hu,H.Liu,Separation of glycyrrhizic acid and liquiritin from Glycyrrhiza uralensis Fisch extract by three-liquid-phase extraction systems,Sep.Purif.Technol.53(2007)216-223.

    [17]J.Chen,H.Liu,B.Wang,Z.An,Q.Liu,Study on the three-phase extraction of penicillin G with a single-step method,Proceedings of the International Solvent Extraction Conference,Johannesburg,South Africa,2002.

    [18]S.Shen,Z.Chang,X.Sun,X.Hu,H.Liu,Application of block copolymer in threeliquid-phase extraction system,Tsinghua Sci.Techol.11(2006)248-251.

    [19]P.Yu,K.Huang,H.Liu,Two and three-phase separation of phenol and onitrophenol:correlation between phasebehavior and partitioningbehavior,Colloids Surf.A 403(2012)15-24.

    [20]X.He,K.Huang,P.Yu,C.Zhang,K.Xie,P.Li,J.Wang,Z.An,H.Liu,Liquid-liquidliquid three phase extraction apparatus:operation strategy and inf l uences on mass transfer eff i ciency,Chin.J.Chem.Eng.20(2012)27-35.

    [21]P.Yu,Z.Chang,Y.Ma,S.Wang,H.Cao,C.Hua,H.Liu,Separation of p-nitrophenol and o-nitrophenol with three-liquid-phase extraction system,Sep.Purif.Technol. 70(2009)199-206.

    [22]S.Shen,Z.Chang,H.Liu,Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater,Sep.Purif.Technol.49(2006)217-222. [23]C.Zhang,K.Huang,P.Yu,H.Liu,Salting-out induced three-liquid-phase separation of Pt(IV),Pd(II)and Rh(III)in system of S201-acetonitrile-NaCl-water,Sep.Purif. Technol.80(2011)81-89.

    [24]K.Xie,K.Huang,L.Xu,P.Yu,L.Yang,H.Liu,Three-liquid-phase extraction and separation of Ti(IV),Fe(III),and Mg(II),Ind.Eng.Chem.Res.50(2011)6362-6368.

    [25]C.Zhang,K.Huang,P.Yu,H.Liu,Sugaring-outthree-liquid-phaseextractionandonestep separation of Pt(IV),Pd(II)and Rh(III),Sep.Purif.Technol.87(2012)127-134.

    [26]P.Yu,K.Huang,C.Zhang,K.Xie,X.He,J.Zhao,F.Deng,H.Liu,Block copolymer micellization induced microphase mass transfer:partition of Pd(II),Pt(IV)and Rh(III) in three-liquid-phase systems of S201-EOPO-Na2SO4-H2O,J.Colloid Interface Sci. 362(2011)228-234.

    [27]P.Yu,K.Huang,C.Zhang,K.Xie,X.He,H.Liu,One-step separation of platinum,palladium,and rhodium:a three-liquid-phase extraction approach,Ind.Eng.Chem.Res. 50(2011)9368-9376.

    [28]P.Yu,K.Huang,H.Liu,K.Xie,Three-liquid-phase partition behaviors of Pt(IV),Pd(II)and Rh(III):inf l uences of phase-forming components,Sep.Purif.Technol.88(2012)52-60.

    [29]K.Xie,K.Huang,L.Yang,P.Yu,H.Liu,Three-liquid-phase extraction:a new approach for simultaneous enrichment and separation of Cr(III)and Cr(VI),Ind.Eng. Chem.Res.50(2011)12767-12773.

    [30]K.Xie,K.Huang,L.Yang,H.Liu,Enhancing separation of titanium and iron by threeliquid-phase extraction with 1,10-phenanthroline as additive,J.Chem.Technol. Biotechnol.87(2012)955-960.

    [31]P.Yu,K.Huang,J.Zhao,C.Zhang,K.Xie,F.Deng,H.Liu,A novel separation technique:gas-assisted three-liquid-phase extraction for treatment of the phenolic wastewater,Sep.Purif.Technol.75(2010)316-322.

    [32]H.Liu,K.Wang,X.Chen,Z.Hu,Determination of rhein,baicalin and berberine intraditional Chinese medicinal preparations by capillary electrophoresis with twomarker technique,Biomed.Chromatogr.18(2004)288-292.

    [33]L.Liu,L.Fan,H.Chen,X.Chen,Z.Hu,Separation and determination of four active anthraquinones in Chinese herbal preparations by f l ow injection-capillary electrophoresis,Electrophoresis 26(2005)2999-3006.

    [34]P.Bi,H.Dong,J.Dong,The recentprogress of solventsublation,J.Chromatogr.A 1217 (2010)2716-2725.

    [35]P.?.Albertsson,Separation of particles and macromolecules by phase partition, Endeavour 1(1977)69-74.

    [36]K.Ananthapadmanabhan,E.Goddard,Aqueous biphase formation in polyethylene oxide-inorganic salt systems,Langmuir 3(1987)25-31.

    [37]P.Bi,H.Dong,Y.Yuan,Application of aqueous two-phase f l otation in the separation and concentration of puerarin from Puerariae extract,Sep.Purif.Technol.75(2010)402-406. [38]H.O.Johansson,G.Karlstroem,F.Tjerneld,Experimental and theoretical study of phase separation in aqueous solutions of clouding polymers and carboxylic acids, Macromolecules 26(1993)4478-4483.

    [39]J.Zhang,C.Bao,Y.Wang,W.Kong,F.Li,Separation and enrichment of the active constituents in Radix Et Rhizoma Rhei by solvent f l otation,J.Anal.Sci.3(2009) 317-320(in Chinese).

    25 March 2013

    ☆Supported by the National Natural Science Foundation of China(21136009, 21106162,21106152),Ministry of Human Resources and Social Security of China and State Key Laboratory of Chemical Engineering(SKL-ChE-11A04).

    *Corresponding authors.

    E-mail addresses:lxf@ipe.ac.cn(X.Liang),Hzliu@ipe.ac.cn(H.Liu).

    http://dx.doi.org/10.1016/j.cjche.2014.06.029

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 9 June 2013

    Accepted 10 July 2013

    Available online 30 June 2014

    夫妻午夜视频| 中文字幕人妻熟女乱码| 欧美成人免费av一区二区三区| 欧美另类亚洲清纯唯美| 淫妇啪啪啪对白视频| 黄色怎么调成土黄色| 老司机午夜福利在线观看视频| 琪琪午夜伦伦电影理论片6080| 欧美激情久久久久久爽电影 | 麻豆av在线久日| 美女 人体艺术 gogo| 中出人妻视频一区二区| 国产片内射在线| 日韩高清综合在线| 欧美国产精品va在线观看不卡| 18禁美女被吸乳视频| 伊人久久大香线蕉亚洲五| 亚洲av成人一区二区三| 欧美+亚洲+日韩+国产| 91麻豆精品激情在线观看国产 | 中国美女看黄片| 色哟哟哟哟哟哟| 久久精品亚洲精品国产色婷小说| 免费观看精品视频网站| 看片在线看免费视频| 亚洲av片天天在线观看| 国产成人精品久久二区二区免费| 国产伦一二天堂av在线观看| 亚洲精品成人av观看孕妇| 亚洲精品中文字幕在线视频| 久久久久久久久中文| cao死你这个sao货| 亚洲激情在线av| 黄片小视频在线播放| 精品国产美女av久久久久小说| 国产精品二区激情视频| 日韩av在线大香蕉| 精品久久蜜臀av无| 中文字幕最新亚洲高清| 免费一级毛片在线播放高清视频 | 999久久久国产精品视频| 亚洲一区二区三区不卡视频| 色婷婷久久久亚洲欧美| 日韩欧美三级三区| 男女床上黄色一级片免费看| 国产精品日韩av在线免费观看 | 天堂√8在线中文| 丁香欧美五月| 日韩欧美国产一区二区入口| 天堂俺去俺来也www色官网| 久久香蕉精品热| 欧美国产精品va在线观看不卡| 国产熟女xx| 亚洲午夜精品一区,二区,三区| 国产精品久久久av美女十八| 亚洲精华国产精华精| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 又黄又粗又硬又大视频| 99国产精品99久久久久| 欧洲精品卡2卡3卡4卡5卡区| 大型av网站在线播放| 一级,二级,三级黄色视频| 午夜福利在线观看吧| 麻豆国产av国片精品| 日本三级黄在线观看| 老司机在亚洲福利影院| 日韩欧美一区视频在线观看| 久久九九热精品免费| 国产精品一区二区在线不卡| 一区二区三区激情视频| 长腿黑丝高跟| 国产亚洲欧美98| 色播在线永久视频| 午夜两性在线视频| 午夜视频精品福利| 新久久久久国产一级毛片| 国产精品国产av在线观看| 国产黄色免费在线视频| 亚洲 欧美一区二区三区| 免费在线观看影片大全网站| 欧美日韩亚洲综合一区二区三区_| 亚洲成国产人片在线观看| 91在线观看av| 日本免费一区二区三区高清不卡 | 在线观看免费日韩欧美大片| 午夜免费激情av| 国产麻豆69| 黄色怎么调成土黄色| 成人18禁高潮啪啪吃奶动态图| 自拍欧美九色日韩亚洲蝌蚪91| 最新在线观看一区二区三区| 久久伊人香网站| 可以在线观看毛片的网站| 国产免费男女视频| 麻豆久久精品国产亚洲av | 国产精品 国内视频| 国产精品久久视频播放| 大型av网站在线播放| 五月开心婷婷网| 久久人妻福利社区极品人妻图片| 丝袜美腿诱惑在线| 一区二区三区精品91| 久久人妻av系列| 亚洲三区欧美一区| 美女高潮喷水抽搐中文字幕| 18禁美女被吸乳视频| 国内毛片毛片毛片毛片毛片| 成年人免费黄色播放视频| 精品人妻在线不人妻| av在线播放免费不卡| 亚洲av日韩精品久久久久久密| videosex国产| 麻豆av在线久日| 高清在线国产一区| 精品电影一区二区在线| 欧美激情高清一区二区三区| 国产高清国产精品国产三级| 999久久久国产精品视频| 黄色视频,在线免费观看| 热99re8久久精品国产| 亚洲av成人一区二区三| 在线观看免费视频网站a站| 午夜福利在线观看吧| 精品第一国产精品| 国产三级在线视频| 亚洲av熟女| 国产片内射在线| 一级黄色大片毛片| 美女大奶头视频| a级片在线免费高清观看视频| 男人舔女人下体高潮全视频| 动漫黄色视频在线观看| 黑人巨大精品欧美一区二区mp4| 免费在线观看影片大全网站| 97碰自拍视频| 欧美激情极品国产一区二区三区| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| 成在线人永久免费视频| 国产片内射在线| 99久久久亚洲精品蜜臀av| 黄色视频,在线免费观看| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 在线天堂中文资源库| 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 日本黄色日本黄色录像| 亚洲人成伊人成综合网2020| 啦啦啦在线免费观看视频4| 超碰成人久久| 身体一侧抽搐| 丰满饥渴人妻一区二区三| 色播在线永久视频| 岛国在线观看网站| 久久香蕉激情| 精品无人区乱码1区二区| 91大片在线观看| 亚洲国产欧美网| 一区二区三区激情视频| 国产精品一区二区三区四区久久 | 啦啦啦免费观看视频1| 日韩大码丰满熟妇| 91精品国产国语对白视频| 搡老岳熟女国产| 午夜免费激情av| 一区二区三区国产精品乱码| av视频免费观看在线观看| 久久香蕉激情| 亚洲精品一卡2卡三卡4卡5卡| 他把我摸到了高潮在线观看| 国产伦人伦偷精品视频| 亚洲一区高清亚洲精品| 看黄色毛片网站| 精品国产超薄肉色丝袜足j| 婷婷六月久久综合丁香| 成人亚洲精品一区在线观看| 满18在线观看网站| 国产熟女午夜一区二区三区| 美女 人体艺术 gogo| 狂野欧美激情性xxxx| 搡老乐熟女国产| 美女福利国产在线| 国产视频一区二区在线看| 午夜免费成人在线视频| 91精品三级在线观看| 久久精品成人免费网站| 男女高潮啪啪啪动态图| 少妇粗大呻吟视频| 久久精品91无色码中文字幕| 国产高清国产精品国产三级| 亚洲成人免费电影在线观看| 免费少妇av软件| 嫩草影院精品99| 日日干狠狠操夜夜爽| 大码成人一级视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品第一综合不卡| 两性夫妻黄色片| 亚洲av成人一区二区三| 国产精品国产av在线观看| 国产成人一区二区三区免费视频网站| 亚洲欧美激情在线| 在线看a的网站| 久久人妻av系列| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 两性午夜刺激爽爽歪歪视频在线观看 | 久久这里只有精品19| a级毛片黄视频| 国产欧美日韩精品亚洲av| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 欧美日韩乱码在线| 亚洲在线自拍视频| 午夜福利一区二区在线看| 99香蕉大伊视频| 激情在线观看视频在线高清| 国产有黄有色有爽视频| 日日摸夜夜添夜夜添小说| 巨乳人妻的诱惑在线观看| 午夜精品久久久久久毛片777| 女性被躁到高潮视频| 久久精品影院6| 自拍欧美九色日韩亚洲蝌蚪91| 国产无遮挡羞羞视频在线观看| 美女高潮到喷水免费观看| 色婷婷av一区二区三区视频| 精品国产乱子伦一区二区三区| 亚洲 欧美一区二区三区| 亚洲精品国产色婷婷电影| 国产成人免费无遮挡视频| 国产精品乱码一区二三区的特点 | 国产精品亚洲一级av第二区| 久久狼人影院| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区精品视频观看| 两个人免费观看高清视频| 美女高潮到喷水免费观看| 国产亚洲欧美在线一区二区| 亚洲一码二码三码区别大吗| 香蕉国产在线看| 黄色a级毛片大全视频| 国产视频一区二区在线看| 久久狼人影院| 欧美在线一区亚洲| 欧美中文综合在线视频| 欧美日本亚洲视频在线播放| 99在线视频只有这里精品首页| 激情在线观看视频在线高清| 久久人妻熟女aⅴ| 人人澡人人妻人| 国产深夜福利视频在线观看| 久久久久久久午夜电影 | 黄色丝袜av网址大全| 一边摸一边抽搐一进一出视频| 纯流量卡能插随身wifi吗| 亚洲精品美女久久久久99蜜臀| 一夜夜www| 日本vs欧美在线观看视频| 美国免费a级毛片| 国产一卡二卡三卡精品| 久久精品国产99精品国产亚洲性色 | 午夜成年电影在线免费观看| 岛国在线观看网站| 波多野结衣一区麻豆| 国产1区2区3区精品| 动漫黄色视频在线观看| 久久久久久大精品| 日韩欧美在线二视频| 亚洲欧美激情在线| 成人三级黄色视频| 性色av乱码一区二区三区2| 级片在线观看| 村上凉子中文字幕在线| av网站免费在线观看视频| 午夜免费鲁丝| 巨乳人妻的诱惑在线观看| 无限看片的www在线观看| 国产男靠女视频免费网站| а√天堂www在线а√下载| 最近最新中文字幕大全电影3 | 中文字幕人妻丝袜一区二区| 99香蕉大伊视频| 亚洲一区二区三区不卡视频| 在线免费观看的www视频| 操出白浆在线播放| 美女福利国产在线| 久久久国产欧美日韩av| 午夜精品在线福利| 久99久视频精品免费| 亚洲精品久久午夜乱码| 国产三级在线视频| 久久久水蜜桃国产精品网| 老司机福利观看| 国产高清视频在线播放一区| 亚洲国产精品一区二区三区在线| 一边摸一边抽搐一进一小说| xxx96com| 大型黄色视频在线免费观看| 久久人妻熟女aⅴ| 正在播放国产对白刺激| 亚洲少妇的诱惑av| 亚洲欧美激情综合另类| 午夜免费成人在线视频| 性少妇av在线| 精品电影一区二区在线| 色精品久久人妻99蜜桃| 丁香六月欧美| av视频免费观看在线观看| 欧美乱妇无乱码| 男人操女人黄网站| 搡老熟女国产l中国老女人| 国产xxxxx性猛交| 十八禁人妻一区二区| 99久久99久久久精品蜜桃| 精品乱码久久久久久99久播| 久久久久九九精品影院| 窝窝影院91人妻| av在线播放免费不卡| 性少妇av在线| 国产高清视频在线播放一区| 在线观看午夜福利视频| 可以在线观看毛片的网站| 亚洲片人在线观看| 日韩欧美三级三区| 国产欧美日韩综合在线一区二区| 欧美性长视频在线观看| 亚洲av美国av| 成人国语在线视频| 亚洲精品成人av观看孕妇| 色综合站精品国产| 熟女少妇亚洲综合色aaa.| 亚洲熟女毛片儿| 国产成人精品无人区| 亚洲国产欧美网| 天堂√8在线中文| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人精品中文字幕电影 | 亚洲情色 制服丝袜| 精品人妻1区二区| 亚洲人成电影观看| 又黄又粗又硬又大视频| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 精品欧美一区二区三区在线| 国产精品亚洲一级av第二区| 99精国产麻豆久久婷婷| 可以在线观看毛片的网站| 国产一区二区三区综合在线观看| 丁香六月欧美| 国产免费现黄频在线看| 91在线观看av| 男女之事视频高清在线观看| 中文字幕精品免费在线观看视频| а√天堂www在线а√下载| 两性午夜刺激爽爽歪歪视频在线观看 | 久久热在线av| 长腿黑丝高跟| 亚洲中文日韩欧美视频| 精品久久久久久久毛片微露脸| 看黄色毛片网站| 亚洲av电影在线进入| 午夜日韩欧美国产| 久久人妻福利社区极品人妻图片| 色婷婷久久久亚洲欧美| 夜夜爽天天搞| 女同久久另类99精品国产91| 两性夫妻黄色片| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 亚洲精品中文字幕在线视频| 国产国语露脸激情在线看| 欧美+亚洲+日韩+国产| 精品国产一区二区久久| 无遮挡黄片免费观看| 国产单亲对白刺激| 精品一品国产午夜福利视频| 欧美大码av| 日韩欧美三级三区| 啦啦啦在线免费观看视频4| 五月开心婷婷网| 看黄色毛片网站| 90打野战视频偷拍视频| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 亚洲国产毛片av蜜桃av| x7x7x7水蜜桃| www.自偷自拍.com| 在线av久久热| 日本 av在线| 久久伊人香网站| 91麻豆精品激情在线观看国产 | 国产精品二区激情视频| 校园春色视频在线观看| 一区二区三区激情视频| 男女高潮啪啪啪动态图| 亚洲精品在线美女| 18禁裸乳无遮挡免费网站照片 | 黄色视频不卡| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 极品人妻少妇av视频| 少妇粗大呻吟视频| 久久九九热精品免费| 激情在线观看视频在线高清| 国产精品自产拍在线观看55亚洲| 色综合婷婷激情| 国产三级黄色录像| 国产1区2区3区精品| 国产亚洲欧美在线一区二区| 可以在线观看毛片的网站| 两个人免费观看高清视频| 免费在线观看黄色视频的| 国产无遮挡羞羞视频在线观看| 久久精品成人免费网站| 亚洲精品一卡2卡三卡4卡5卡| 一夜夜www| 看片在线看免费视频| 男女做爰动态图高潮gif福利片 | 又大又爽又粗| 搡老熟女国产l中国老女人| 人人妻人人爽人人添夜夜欢视频| 国产97色在线日韩免费| 国产精品综合久久久久久久免费 | www.精华液| 欧美午夜高清在线| 欧美最黄视频在线播放免费 | av国产精品久久久久影院| 91成年电影在线观看| av电影中文网址| avwww免费| 成人18禁在线播放| 久久精品影院6| 精品国产国语对白av| 天堂中文最新版在线下载| 99国产精品一区二区三区| cao死你这个sao货| 日韩中文字幕欧美一区二区| 18禁裸乳无遮挡免费网站照片 | 成人三级做爰电影| 久久精品国产亚洲av香蕉五月| 成人影院久久| 日韩三级视频一区二区三区| 香蕉久久夜色| 老鸭窝网址在线观看| 亚洲五月色婷婷综合| 成年人黄色毛片网站| 三上悠亚av全集在线观看| 日本wwww免费看| 涩涩av久久男人的天堂| 国产单亲对白刺激| 在线永久观看黄色视频| 怎么达到女性高潮| 亚洲性夜色夜夜综合| 久久久国产欧美日韩av| 久久草成人影院| 久久精品国产亚洲av香蕉五月| 国产日韩一区二区三区精品不卡| 久久香蕉国产精品| 欧美乱码精品一区二区三区| 久久久久久久精品吃奶| 天堂俺去俺来也www色官网| 欧美人与性动交α欧美精品济南到| 欧美+亚洲+日韩+国产| 亚洲免费av在线视频| 丁香欧美五月| www.熟女人妻精品国产| 欧美黑人欧美精品刺激| 亚洲中文日韩欧美视频| 最近最新中文字幕大全免费视频| 水蜜桃什么品种好| 欧美乱妇无乱码| 韩国精品一区二区三区| 成熟少妇高潮喷水视频| 亚洲精品一二三| 亚洲精品av麻豆狂野| 亚洲性夜色夜夜综合| a级毛片黄视频| 1024视频免费在线观看| 国产高清视频在线播放一区| 女人被狂操c到高潮| 一区福利在线观看| 黄色a级毛片大全视频| 91成年电影在线观看| 欧美人与性动交α欧美软件| 视频在线观看一区二区三区| 日韩免费av在线播放| 亚洲欧美精品综合久久99| 久久中文看片网| 国产1区2区3区精品| а√天堂www在线а√下载| 天堂俺去俺来也www色官网| 极品人妻少妇av视频| 男女做爰动态图高潮gif福利片 | 成年版毛片免费区| 99精品久久久久人妻精品| 在线观看一区二区三区激情| 精品一区二区三区av网在线观看| 99国产综合亚洲精品| 九色亚洲精品在线播放| 人人妻人人澡人人看| 午夜a级毛片| 人人妻人人添人人爽欧美一区卜| 中文字幕另类日韩欧美亚洲嫩草| 午夜两性在线视频| 亚洲人成伊人成综合网2020| 一区福利在线观看| 国产1区2区3区精品| 精品福利永久在线观看| 精品电影一区二区在线| 老司机福利观看| 欧美黄色片欧美黄色片| 亚洲午夜理论影院| 日韩大码丰满熟妇| av天堂在线播放| 国产精品 欧美亚洲| 女性生殖器流出的白浆| 老司机亚洲免费影院| 亚洲一区二区三区欧美精品| 久久欧美精品欧美久久欧美| 亚洲精品国产色婷婷电影| 91成年电影在线观看| 黄色成人免费大全| x7x7x7水蜜桃| 欧美老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 超色免费av| 日本五十路高清| 久久久久精品国产欧美久久久| 19禁男女啪啪无遮挡网站| 曰老女人黄片| 成人黄色视频免费在线看| 欧美在线黄色| 亚洲精品久久午夜乱码| 欧美在线一区亚洲| 91字幕亚洲| √禁漫天堂资源中文www| 女生性感内裤真人,穿戴方法视频| 手机成人av网站| 国产国语露脸激情在线看| 午夜福利一区二区在线看| 亚洲国产欧美网| 日韩大码丰满熟妇| 亚洲成人精品中文字幕电影 | 欧美黑人精品巨大| 一级毛片高清免费大全| 一边摸一边抽搐一进一小说| 午夜影院日韩av| 国产精品一区二区免费欧美| 日日干狠狠操夜夜爽| 国产精品综合久久久久久久免费 | 可以在线观看毛片的网站| 一个人观看的视频www高清免费观看 | 国产精品1区2区在线观看.| 美女 人体艺术 gogo| 国产欧美日韩一区二区三| 亚洲欧美一区二区三区久久| 麻豆成人av在线观看| 一区在线观看完整版| 一区福利在线观看| 国产亚洲精品综合一区在线观看 | 神马国产精品三级电影在线观看 | 大陆偷拍与自拍| 动漫黄色视频在线观看| 成人三级做爰电影| 久久久久久久午夜电影 | 日本wwww免费看| 国产精品免费一区二区三区在线| 午夜福利影视在线免费观看| 波多野结衣一区麻豆| 亚洲片人在线观看| 国产亚洲精品综合一区在线观看 | 日韩成人在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久人妻精品电影| 黑人巨大精品欧美一区二区蜜桃| 最新美女视频免费是黄的| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡 | 一区二区三区激情视频| 91麻豆av在线| 90打野战视频偷拍视频| 亚洲 欧美 日韩 在线 免费| 欧美一级毛片孕妇| 国产一区二区在线av高清观看| 少妇 在线观看| 在线av久久热| 亚洲精品国产精品久久久不卡| 黄色成人免费大全| 女人被狂操c到高潮| 19禁男女啪啪无遮挡网站| 麻豆成人av在线观看| www国产在线视频色| 五月开心婷婷网| 夜夜看夜夜爽夜夜摸 | 午夜免费成人在线视频| 精品国产乱子伦一区二区三区| av超薄肉色丝袜交足视频| 色在线成人网| 免费一级毛片在线播放高清视频 | 夜夜躁狠狠躁天天躁| 人成视频在线观看免费观看| 亚洲精品一区av在线观看| 免费在线观看日本一区| 色精品久久人妻99蜜桃| 欧美av亚洲av综合av国产av| 99国产精品99久久久久|