• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas-Liquid Mass Transfer Characteristics in a Gas-Liquid-Solid Bubble Column under Elevated Pressure and Temperature☆

    2014-07-25 11:29:32HaiboJinSuoheYangGuangxiangHeDelinLiuZeminTongJianhuaZhu

    Haibo Jin*,Suohe YangGuangxiang HeDelin LiuZemin TongJianhua Zhu

    Fluid Dynamics and Transport Phenomena

    Gas-Liquid Mass Transfer Characteristics in a Gas-Liquid-Solid Bubble Column under Elevated Pressure and Temperature☆

    Haibo Jin1,*,Suohe Yang1,Guangxiang He1,Delin Liu1,Zemin Tong1,Jianhua Zhu2

    1Department of Chemical Engineering,Beijing Institute of Petrochemical Technology,Beijing 102617,China2Faculty of Chemical Science and Engineering,China University of Petroleum,Beijing 102249,China

    A R T I C L EI N F O

    Article history:

    Mass transfer characteristic

    Bubble column

    Elevated pressure

    Elevated temperature

    The volumetric mass transfer coeff i cient kLa of gases(H2,CO,CO2)and mass transfer coeff i cient kLon liquid paraff i n side were studied using the dynamic absorption method in slurry bubble column reactors under elevated temperature and elevated pressure.Meanwhile,gas-holdup and gas-liquid interfacial area a were obtained. The effects of temperature,pressure,superf i cial gas velocity and solid concentration on the mass transfer coeff icient were discussed.Experimental results show that the gas-liquid volumetric mass transfer coeff i cient kLa and interfacialareaaincreasedwiththeincreaseofpressure,temperature,andsuperf i cialgasvelocity,anddecreased with the slurry concentration.The mass transfer coeff i cient kLincreased with increasing superf i cial gas velocity and temperature and decreased with higher slurry concentration,while it changed slightly with pressure.According to analysis of experimental data,an empirical correlation is obtained to calculate the values of kLa for H2(CO,CO2)in the gas-paraff i n-quartz system in a bubble column under elevated temperature and elevated pressure.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Bubble column reactors(BCR)have been widely used in chemical, petrochemical,coal chemical,chemical-metallurgical industries and environmentengineering,suchasoilfractionhydrogenation, desulphurization and denitrif i cation of coal,oxidization of dimethyl benzene,Fisher-Tropsch(FT)synthesis,synthesis of methanol,synthesis of dimethyl ether,wet oxidization of wastewater containingorganic materials and soon[1,2].They offer many advantages over other multiphase reactors—simple construction,no mechanically moving parts, goodmasstransferproperties,highthermalstability,lowenergysupply and hence low construction and operation costs understood.However, the design and scale-up of reactors for the industrial processes require a lot of basic data,such as reaction kinetics,thermodynamics,hydrodynamics,and characteristics of heat transfer and mass transfer under industrial conditions.

    Inrecentyears,alotofresearchworkshavebeencarriedoutin mass transfer characteristics of SBCR(slurry bubble column reactor).Most of the research work focused on mass transfer characteristics in such reactors at atmospheric conditions and with water as liquid phase. There are only few data obtained on volumetric mass transfer coeff icient at high temperature and high pressure.In recent studies,Yang et al.studied the gas-liquid mass transfer behavior of syngas components(H2and CO)in a three-phase bubble column reactor at industrial conditions,and proposed the empirical correlations to predict kLand a values for H2and CO in liquid paraff i n/solid particles slurry bubble columnreactors[3,4].Sehabiagueetal.reportedkLavaluesinalarger-scale SBCR operating under high pressure(0.17-3.0 MPa)and temperature (298-453 K)in Fischer-Tropsch molten wax and showed the impact of operating temperature,superf i cial gas velocity,and solid concentrations and temperatures on these parameters[5].Lemoine et al.described the effects of temperatures and solid concentrations on kLa values under high pressure(0.17-3.0 MPa)in organic liquid mixtures [6].VanduandKrishnastudiedtheeffectsofliquidpropertiesandslurry concentration[25%(by volume)]on kLa in churn-turbulent f l ow regime under atmospheric condition[7].Han and Al-Dahhan showed the effects of pressure(0.1-1.0 MPa)and high superf i cial gas velocity(up to 0.6 m·s?1)on kLa values,but without temperature effect[8].Also Chaumat et al.studied the mass transfer in a bubble column with water and organic media in industrial conditions and the connection with mass transfer and hydrodynamics[9].Schaaf et al.and Chilekar etal.studiedgas-liquidmasstransferina0.15mdiameterslurrybubble columnwithapressurefrom0.1to1.3MPa,andpresentedacorrelation of mass transfer coeff i cient[10,11].Lemoine et al.developed theempirical and neural network correlations for predicting gas holdups,volumetric liquid-side mass transfer coeff i cients,Sauter mean bubble diameters,gas-liquid interfacial areas and liquid-side mass transfer coeff i cients for total,small and large gas bubbles in BCRs and SBCRs[12].

    A series of liquid-phase technologies have been developed rapidly,such as Fisher-Tropsch,methanol to gasoline,liquid phase methanol,and liquid phase di-methyl ether processes.These processes adopt syngas components as reactants to produce liquid fuel.Understanding and improvement of the mass transfer process for syngas components in bubble columns with organic liquid under industrial conditions has important guiding and reference signif i cance.This paper presents the volumetric mass transfer coeff i cient kLa of gases (H2,CO,CO2)and mass transfer coeff i cient kLof liquid paraff i n surface using a dynamic absorption method under elevated temperature and elevated pressure.

    2.Experimental

    2.1.Apparatus

    The bubble column had a 0.1 m internal diameter and a 1.25 m height and was made of stainless steel.The gas distributor is a perforated plate with holes having an inner diameter of 8 mm and an opening fractionof2.56%.Thereactorisheatedbycirculatingheatingoilthrough the wall jacket and the temperature of the reactor is controlled by a temperature control system as shown Fig.1.

    The system pressure is controlled by both a pressure regulator and a backpressure regulator.Gas f l ow rate is regulated by a mass fl ow controller.Gas components of the inlet and outlet are analyzed by means of gas chromatograph(H2)and infrared analyzer(CO, CO2).The holdups and the rising velocity for the small bubble swarm and large bubble swarm are determined using the differential pressure method and dynamic gas disengagement(DGD)method[3, 13].

    In all the experiments,system temperature varied from 293 to 473 K,systempressurevaried form 1.0to 3.0MPa,super fi cialgasvelocity varied from 0.03 to 0.1 m·s?1and slurry concentration varied from 0 to 20%(by mass).

    Fig.1.Schematic diagram of experimental set-up.1—nitrogen bomb;2—compressor; 3—pressureregulator;4—massf l owcontroller;5—preheater;6—reactor;7—condenser; 8—gas—liquid separator;9—back pressure regulator;10—mass f l ow meter;11—gas chromatograph or infrared analyzer;12—computer;13—temperature.

    2.2.Experimental conditions

    The range of experimental condition is summarized in Table 1 and gas and liquid properties are shown in Tables 2 and 3,respectively.

    2.3.Experimental procedure

    The liquid phase volumetric mass transfer coef fi cient kLa was determinedbymeansofa dynamicabsorptiontechnique[3,13].Firstthesystem temperature and system pressure were elevated to given values. Then,the slurry was stripped out by an inert gas(N2)until the concentration of H2(or CO,CO2)in the slurry was 0.Then the nitrogen supply wasturned offand the compressed H2/N2is fed simultaneously into the reactor under certain volumetric fl owrate NGat t0=0 s.Themole fraction of H2(CO,CO2)in exit gas yG(ti)is measured at an equal interval with 2 s by gas chromatography.At the same time,the corresponding fl ow rate of the exit gas NG(ti)is recorded until the component of the exit gas is invariable.

    Inlet and outlet gas samples for H2were collected and analyzed using a GC14C gas chromatograph(Shimadzu,Shanghai,China)with a thermal conductivity detector,which were quanti fi ed by calibration curves.Gas samples for CO and CO2components were analyzed by means of infrared analyzer GXH-3011(Institute of BeijingHuayun AnalyticalInstrumentCo.,Beijing,China).Thesedataobtainedfromanalysis are weight fraction,which are later converted to mole fraction.

    2.4.Experimental data reduction

    The overall mass-transfer coeff i cient,KL,is the addition of mass transfer coeff i cients in the gas and liquid sides,kGand kL,respectively, and Henry's constant,H,as follows:

    For gas components(H2,CO etc.)having low solubility in the liquid phase(H2O,hydrocarbon),the gas-side mass transfer resistance is negligible.So,the liquid phase mass transfer coeff i cient determines overall mass transfer characteristics in a gas-liquid-solid bubble reactor.

    According to the mass conservation principle and the results obtained by GC,the kLa can be estimated from the slope of the curve of?ln[1?CG(t)/C*G]versus time as in Refs.[3,13].

    Thebubbleswarmconsistsofboth‘small’and‘large’bubblesoperated in the churn-turbulent regime in bubble column reactors[14],the small bubbles are in thesizerange of 3 to6 mm andare either spherical orellipsoidalinshapedependingoftheliquidproperties.Thelargebubbles are typically in the range of 20-80 mm and these bubbles undergo frequent coalescence and breakup[15].Gas-holdup and bubble rising velocity were measured by differential pressure-sampling technology [16,17].The large and small bubble gas-holdup and rising velocity were measured and calculated respectively.

    Table 1Experimental conditions

    Since the gas-liquid interfacial area a was closely related with bubblesize,bubblesizecanbeestimatedfromtheknowledgeoftheterminal rise velocity by using an appropriate correlation.The bubble formation and bubble characteristics are reviewed in Ref.[18].Several correlations are selected to calculate the relationship between terminal rise velocity and bubble size(Table 4).

    Therefore,we used the correlations proposed by Mendelson[19] andJamialahmadi[20]forsmallbubbles.Thesegeneralizedcorrelations can be used with a wide variety of liquids and are based on experimental measurements with bubbles in several liquids.The correlations proposed by Mendelson[19],Lehrer[21]and Talaia[22]were used to estimate large bubble size.These correlations are based on extensive dataforbubblesdispersedinliquidsandarevalidforbubblesizesgreater than 3 mm.So,the bubble size can be estimated from correlations in Table 4 based on the rise velocity obtained from DGD.It is important to use the bubble size obtained from this procedure with some caution.In some instances,correlations are unable to predict bubble size from known values of rise velocities.Therefore,we have a mean value from data obtained by these correlations as shown in Table 5.

    Table 2Physical property of gas

    Table 3Physical property of paraff i n

    Table 4Correlations for estimating bubble size from bubble rise velocity

    The bubbles'Sauter diameter dScan be calculated with Eq.(2)[17]:

    The gas-liquid interfacial area a and transfer coeff i cient kLare then given by

    3.Results and Discussion

    Table 5Results from different correlations(T=298 K)

    3.1.Inf l uence of pressure

    Fig.2 shows the variation of(a)volumetric mass transfer coeff i cient kLa,(b)gas-liquid interfacial area a,and(c)mass transfer coeff i cient kLwithsystempressurePinH2-paraff i n,CO-paraff i nandCO2-paraff i nsystems.The higher gas holdup at elevated pressures is partially due to the change in liquid properties.The gas solubility in the liquid phase increases with pressure,which results in decreasing liquid viscosity and surface tension[3,23].On the one hand,higher gas density at elevated pressures also enhances bubble breakup and suppresses bubble coalescence,which further promotes the formation of smaller bubbles.Meanwhile,the small bubble size is the major contributor to the increase in gas holdup in the churn-turbulent regime,and in turn,a factor in the dramatic increase in the interfacial mass-transfer area[24].On the other hand,the rising velocity of the large bubble swarm decreases and the rising velocity of the small bubble swarm increases slightly with an increase of liquid viscosity[16],and consequently a relatively short contact time.Since the mass transfer coeff i cient is inversely proportionaltothesquarerootofthecontacttimeaccordingtotheHigbie's penetration theory[25],kLwill decrease.Moreover,the decrease of liquid viscosity will increase the mass transfer coeff i cient,because kLis inversely proportional to the liquid viscosity[3,26,27].So,the overall effect of pressure leads to the slight variation of kLvalues with the increase of pressure.

    3.2.Inf l uence of temperature

    Many researches had studied the effect of liquid properties(surface tension,viscosity)on kLa[7,28,29].kLa increased with an increase in temperature from Fig.3(a).Since the gas diffuse coeff i cient in liquid andliquidpropertieswerestronglyaffectedbythesystemtemperature, the effect of temperature on mass transfer coeff i cient was an integrated result of different factors mentioned above.Gas diffuse coeff i cient increased with increasing temperature and resulted in the increase of kLmainly in Fig.3(c).Gas-liquid surface tension and liquid viscidity decreased with temperature.On theonehand,thereduction of liquid surface tension will befavorable for theformationofsmall gas bubbles andfor gas-liquid interfacial area a.Moreover,the increase of operating temperature led to the increase of the gas holdup.On the other hand, the decrease of liquid viscidity force will result in a slight increase of bubble rising velocity and consequently a relatively short contact time. In overall,gas-liquid interfacial area a increased with system temperature as shown in Fig.3(b).

    Fig.2.Inf l uence of pressure on interfacial area and mass transfer coeff i cient.

    Fig.3.Inf l uence of temperature on interfacial area and mass transfer coeff i cient.

    3.3.In fl uence of super fi cial velocity

    The effect of the super fi cial gas velocity on the kLa,a and kLvalues at 1.0MPa can be seen in Fig.4.It is well known that gas-holdupincreased withgasvelocity,andsmallbubbleswarmincreasedinchurn-turbulent fl owregime,sodoesthegas-liquidinterfacial area.Theliquidside mass transfer coef fi cient kLincreases as UGincreases in the gas velocity rangeasFig.4(c)showed.Thegasvelocityeffectfoundinthisworkisinagreement with the previous studies[30-32].

    Fig.4.Inf l uence of superf i cial velocity on interfacial area and mass transfer coeff i cient.

    Fig.5.Inf l uence of slurry concentration on interfacial area and mass transfer coeff i cient.

    3.4.Inf l uence of slurry concentration

    In this work,quartz sand was used as solid phase.The slurry mass concentrationCSvariedfrom 0%to20%.Fig.5summarizesthemeasured interfacial area and mass transfer data for H2(CO,CO2)-paraff i n slurries in the column.The addition of solid particles caused a signif i cant reductioninthekLa,aandkLvaluesasshowninFig.5.Thestrongdecreasecan be attributed to theincrease in thesize of fast rising large bubbles in the churn-turbulentregimeandthedecreaseofgas-holdupwithhighslurryconcentration[7].On the other hand,with slurry concentration increasing,theapparent liquid viscosity increased,and the surfacerenewal and mobility decrease which results in reduced kL[33].This prevented the gas diffusion into liquid phase and the kLvalues decreased.

    3.5.Correlation of kLa

    Considering the effects of pressure,temperature,superf i cial velocity and slurry concentration on volumetric mass transfer coeff i cient of different gases in paraff i n systems,an attempt was made to correlate kLa valuesintermsofthephysicalpropertiesofthegas-liquid-solidsystem andtheoperatingvariablesusedandthefollowingempiricalcorrelation was obtained:

    with an overall average deviation of±30%in the range of 0≤Cs≤20%, 0.03m·s?1≤UG≤0.10m·s?1,15×10?5Pa·s≤μL≤100×10?5Pa·s, and 1.0 MPa≤P≤3.0 MPa.It can be seen that kLa is a function of gas density to the power of 0.524.Dewes and Schumpe[34]studied the effect of gas density(up to 18.8 kg·m?3)on kLa in slurry bubble columns andfoundthata powerof 0.46.Inaddition,Behkishet al.[35]presented the effect of pressure and solid concentration on kLa and found that kLa wasa functionof gas density to the power of 0.49,whichis veryclose to the value obtained in this study.

    4.Conclusions

    The experimental results show that system pressure,gas velocity and concentration of the solid are major factors in volumetric mass transfer coeff i cient.It increases with an increase in system pressure, temperature and gas velocity,and decreases with an increase in slurry mass concentration up to 20%.According to the experimental data,a correlation for volumetric gas-liquid mass transfer of H2,CO,and CO2inliquidparaff i nisobtained.Basedonthemeasurementsofgasholdups and risingvelocity for small bubble swarm and large bubble swarm,the Sauter bubble diameter(ds)and gas-liquid interfacial area are derived. It is found that system pressure,superf i cial gas velocity and solid concentration affected strongly gas-liquid interfacial areas(a),but mass transfer coeff i cient(kL)is only affected by superf i cial gas velocity,temperature,solid concentration,and slightly by pressure.The hydrodynamic and mass transfer characteristics of bubble columns are mainly controlled by small bubble behaviors.

    [1]W.D.Deckwer,Bubble Column Reactors,John Wiley and Sons,USA,1992.

    [2]M.Xu,H.Liu,C.Y.Li,Y.Zhou,S.F.Ji,Connection between liquid distribution and gasliquid mass transfer in monolithic bed,Chin.J.Chem.Eng.19(5)(2011)738-746.

    [3]W.Yang,J.Wang,Y.Jin,Mass transfer characteristicsof syngas components inslurry system at industrial conditions,Chem.Eng.Technol.24(6)(2001)651-657.

    [4]W.Yang,J.Wang,Y.Jin,Gas-liquid mass transfer in a slurry bubble column reactor under high temperature and high pressure,Chin.J.Chem.Eng.9(3) (2001)253-257.

    [5]L.Sehabiague,L.O.Lemoine,A.Behkish,Y.J.Heintz,B.Morsi,Hydrodynamic and mass transfer parameters in a slurry bubble column reactor operating under Fischer-Tropsch conditions,Conference Proceedings of AIChE Annual Meeting, Cincinnati,USA,9918,2005.

    [6]R.Lemoine,A.Behkish,B.Morsi,Hydrodynamic and mass transfer characteristic in organic liquid mixtures in a large-scale bubble column reactor for toluene oxidation process,Ind.Eng.Chem.Res.24(19)(2004)6195-6212.

    [7]C.O.Vandu,R.Krishna,Volumtric mass transfer coef fi cients in slurry bubble columns operatng in the churn-turbulent fl ow regime,Chem.Eng.Proc.43(8) (2004)987-995.

    [8]L.Han,M.H.Al-Dahhan,Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs,Chem.Eng.Sci.62(2007)131-139.

    [9]H.Chaumat,A.M.Billet-Duquenne,F.Augier,C.Mathieu,H.Delmas,Mass transfer in bubble column for industrial conditions—effects of organic medium,gas and liquid lf ow rates and column design,Chem.Eng.Sci.60(22)(2005)5930-5960.

    [10]J.Schaaf,V.P.Chilekar,J.R.Ommen,B.F.M.Kuster,J.T.Tinge,J.C.Schouten,Effect of particle lyophobicity in slurry bubble column at elevated pressure,Chem.Eng.Sci. 62(2007)5533-5537.

    [11]V.P.Chilekar,J.Schaaf,B.F.M.Kuster,J.T.Ting,J.C.Schouten,In fl uence of elevated pressure and particle lyophobicity on hydrodynamics and gas-liquid mass transfer in slurry bubble columns,AIChE J.56(3)(2010)584-596.

    [12]R.O.Lemoine,A.Behkish,L.Sehabiague,Y.J.Heintz,R.Oukaci,B.I.Moris,An algorithm for predicting the hydrodynamic and mass transfer parameters in bubble column and slurry bubble column reactors,Fuel Process.Technol.89(2008)322-343.

    [13]H.Jin,D.Liu,S.Yang,G.He,Z.Guo,Z.Tong,Experimental study of oxygen mass transfer coef fi cient in bubble column with high temperature and high pressure, Chem.Eng.Technol.27(12)(2004)1267-1272.

    [14]R.Clift,J.R.Grace,M.E.Weber,Bubbles,Drops,and Particles,Academic Press,San Diego,1978.

    [15]J.W.A.De Swart,R.E.van Vliet,R.Krishna,Size,structure and dynamics of large bubbles in a two-dimensional slurry bubble column,Chem.Eng.Sci.51(1996) 4619-4629.

    [16]H.Jin,S.Yang,T.Zhang,Z.Tong,Bubble behavior of a barge-scale bubble column with elevated pressure,Chem.Eng.Technol.27(9)(2004)1007-1013.

    [17]S.A.Patel,J.G.Daly,D.B.Bukur,Holdup and interfacial area measurements using dynamic gas disengagement,AIChE J.35(6)(1989)931-942.

    [18]A.A.Kulkarni,J.B.Joshi,Bubble formation and bubble rise velocity in gas-liquid systems:A review,Ind.Eng.Chem.Res.44(2005)5873-5931.

    [19]H.D.Mendelson,The prediction of bubble terminal velocities from wave theory, AIChE J.13(1967)250-253.

    [20]M.Jamialahmadi,C.Branch,H.M.Steinhagen,Terminal bubble rise velocity in liquids,Chem.Eng.Res.Des.72(A)(1994)119-120.

    [21]H.G.Lehrer,A rational terminal velocity equation for bubbles and drops at intermediate and high Reynolds number,J.Chem.Eng.Jpn 9(1976)237-240.

    [22]M.A.R.Talaia,Terminal velocity of a bubble rise in a liquid column,World Acad.Sci. Eng.Technol.28(2007)264-268.

    [23]R.Lau,L.G.Velazquez-Vargas,G.Q.Yang,L.S.Fan,Gas-liquid mass transfer in highpressure bubble column,Ind.Eng.Chem.Res.43(2004)1302-1311.

    [24]P.Wilkinoson,H.Haringa,L.van Dierendonck,Mass transfer and bubble size in a bubble column under pressure,Chem.Eng.Sci.49(1994)1417-1468.

    [25]R.Higbie,The rate of absorption of pure gas into a still liquid during shortperiods of exposure,Trans.Am.Inst.Chem.Eng.31(2)(1935)365-389.

    [26]M.M.Melaloye,U.von Stockar,X.Lu,The in fl uence of viscosity on the liquid-phase mass transfer resistance in packed columns,Chem.Eng.J.47(1991)51-81.

    [27]C.P.Stemmet,F.Bartelds,J.van der Schaaf,B.F.M.Kuster,J.C.Shcouten,In fl uence of liquid viscosity and surface tension on the gas-liquid mass transfer coef fi cient forsolid foam packings in co-current two-phase f l ow,Chem.Eng.Res.Des.86(2008) 1094-1106.

    [28]G.Grund,A.Schumpe,W.D.Deckwer,Gas-liquid mass transfer in a bubble column with organic liquids,Chem.Eng.Sci.47(13/14)(1992)3509-3516.

    [29]V.Jordan,K.Terasaka,G.Kunda,A.Schumpe,Mass transfer in high-pressure bubble column with organic liquids,Chem.Eng.Technol.25(2002)262-265.

    [30]J.S.Gopal,M.M.Sharma,Mass transfer characteristics of low H/D bubble columns, Can.J.Chem.Eng.61(4)(1983)517-526.

    [31]R.Lemoine,A.Behkish,B.Morsi,Hydrodynamic and mass transfer characteristics in organic liquidmixturesina large-scalebubblecolumnreactor for the tolueneoxidation process,Ind.Eng.Chem.Res.43(19)(2004)6195-6212.

    [32]J.H.J.Kluytmans,B.G.M.van Wachem,B.F.M.Kuster,J.G.Schouten,Mass transfer in sparged and stirred reactors:inf l uence of carbon particles and electrolyte,Chem. Eng.Sci.58(20)(2003)4719-4728.

    [33]P.Mena,A.Ferreira,J.A.Teixera,F.Rocha,Effectof some properties onthe gas-liquid mass transfer in a bubble column,Chem.Eng.Proc.50(2011)181-188.

    [34]I.Dewes,A.Schumpe,Gas density on mass transfer in the slurry bubble column, Chem.Eng.Sci.52(1997)4105-4109.

    [35]A.Behkisha,Z.Men,J.R.Inga,B.I.Morsi,Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures,Chem.Eng.Sci.57(2002) 3307-3324.

    1 November 2012

    ☆Supported by the National Natural Science Foundation of China(20776018),and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20130325).

    *Corresponding author.

    E-mail address:jinhaibo@bipt.edu.cn(H.Jin).

    http://dx.doi.org/10.1016/j.cjche.2014.06.019

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 2 September 2013

    Accepted 20 September 2013

    Available online 28 June 2014

    毛片女人毛片| 在线观看美女被高潮喷水网站 | 精品久久久久久久人妻蜜臀av| 狂野欧美激情性xxxx| 亚洲欧美一区二区三区黑人| 国产高清视频在线观看网站| 国产精品九九99| 亚洲一码二码三码区别大吗| 色精品久久人妻99蜜桃| 狂野欧美激情性xxxx| 久久久久精品国产欧美久久久| 久99久视频精品免费| 亚洲国产欧洲综合997久久,| 国产精品影院久久| 亚洲一区中文字幕在线| 国产激情久久老熟女| 黑人巨大精品欧美一区二区mp4| 成人欧美大片| 国产高清videossex| 日韩av在线大香蕉| 国产成人精品无人区| 别揉我奶头~嗯~啊~动态视频| 亚洲五月天丁香| 久久久国产成人免费| 日本撒尿小便嘘嘘汇集6| 久久精品aⅴ一区二区三区四区| 久久草成人影院| 亚洲成人久久爱视频| 国产熟女午夜一区二区三区| 久久午夜亚洲精品久久| 日本 欧美在线| 嫁个100分男人电影在线观看| 嫁个100分男人电影在线观看| x7x7x7水蜜桃| 国产视频内射| 可以免费在线观看a视频的电影网站| 久久草成人影院| 特大巨黑吊av在线直播| 真人一进一出gif抽搐免费| 亚洲av第一区精品v没综合| 麻豆成人午夜福利视频| 一级毛片精品| 妹子高潮喷水视频| 亚洲国产精品合色在线| 动漫黄色视频在线观看| 亚洲美女视频黄频| 精品免费久久久久久久清纯| 日本撒尿小便嘘嘘汇集6| 久久热在线av| 久热爱精品视频在线9| 午夜免费成人在线视频| 久久久国产精品麻豆| 男人的好看免费观看在线视频 | 国产成+人综合+亚洲专区| 午夜老司机福利片| 老汉色∧v一级毛片| 成人18禁在线播放| 亚洲av成人精品一区久久| 免费一级毛片在线播放高清视频| 免费观看精品视频网站| 成人国语在线视频| 久久午夜综合久久蜜桃| 亚洲色图av天堂| 嫩草影视91久久| 十八禁网站免费在线| 亚洲七黄色美女视频| 色噜噜av男人的天堂激情| www日本黄色视频网| 18禁国产床啪视频网站| 99热只有精品国产| 国产又色又爽无遮挡免费看| 国产成人系列免费观看| 午夜福利欧美成人| 国产精品一及| 国产精品日韩av在线免费观看| 欧美黑人欧美精品刺激| 在线免费观看的www视频| 久久久久久久久久黄片| 亚洲精品粉嫩美女一区| 免费看美女性在线毛片视频| 毛片女人毛片| 亚洲人成网站高清观看| 久久婷婷成人综合色麻豆| 少妇人妻一区二区三区视频| 18禁观看日本| 亚洲中文av在线| 一本久久中文字幕| 精品第一国产精品| 黑人巨大精品欧美一区二区mp4| 国产真人三级小视频在线观看| 视频区欧美日本亚洲| 在线观看免费日韩欧美大片| 久久国产精品人妻蜜桃| 久久久久久免费高清国产稀缺| 日本 av在线| 亚洲性夜色夜夜综合| 三级毛片av免费| 欧美最黄视频在线播放免费| 好男人电影高清在线观看| 久久精品影院6| 给我免费播放毛片高清在线观看| 人妻久久中文字幕网| 精品第一国产精品| 亚洲av五月六月丁香网| 亚洲精品中文字幕在线视频| 妹子高潮喷水视频| 亚洲成人中文字幕在线播放| АⅤ资源中文在线天堂| 高清毛片免费观看视频网站| 在线看三级毛片| 在线播放国产精品三级| 看片在线看免费视频| 欧美精品亚洲一区二区| 欧美精品啪啪一区二区三区| 国产黄片美女视频| 亚洲一区二区三区色噜噜| 亚洲真实伦在线观看| 国产av一区二区精品久久| 99久久无色码亚洲精品果冻| 成人18禁在线播放| 久久久久久免费高清国产稀缺| 美女高潮喷水抽搐中文字幕| 亚洲人与动物交配视频| 黄色毛片三级朝国网站| 18禁观看日本| 听说在线观看完整版免费高清| 久久香蕉激情| 中文字幕久久专区| www.自偷自拍.com| 国产黄色小视频在线观看| 国产亚洲欧美98| 精品久久久久久久人妻蜜臀av| 天天躁夜夜躁狠狠躁躁| 久久久久久国产a免费观看| 好男人在线观看高清免费视频| 国产精品永久免费网站| 精品一区二区三区视频在线观看免费| 久久久久久大精品| 欧美日韩一级在线毛片| 啦啦啦观看免费观看视频高清| 中文亚洲av片在线观看爽| 五月伊人婷婷丁香| 在线视频色国产色| 亚洲五月天丁香| 久久久久性生活片| 热99re8久久精品国产| 成年免费大片在线观看| 久久精品国产99精品国产亚洲性色| 丰满人妻熟妇乱又伦精品不卡| 国内精品久久久久精免费| 男男h啪啪无遮挡| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久免费高清国产稀缺| 亚洲最大成人中文| 又黄又粗又硬又大视频| 精品人妻1区二区| 天天添夜夜摸| a级毛片在线看网站| 国产精品永久免费网站| 麻豆久久精品国产亚洲av| 日本精品一区二区三区蜜桃| 久久久精品国产亚洲av高清涩受| 欧美日韩国产亚洲二区| av国产免费在线观看| 岛国在线免费视频观看| 久久午夜综合久久蜜桃| 免费在线观看影片大全网站| 色综合站精品国产| 欧美一级毛片孕妇| 成人特级黄色片久久久久久久| 亚洲国产欧洲综合997久久,| 国产麻豆成人av免费视频| 99国产精品99久久久久| 午夜影院日韩av| 岛国在线免费视频观看| 亚洲欧美日韩高清在线视频| 午夜福利在线在线| 舔av片在线| e午夜精品久久久久久久| 欧美日韩国产亚洲二区| 中文字幕人成人乱码亚洲影| 麻豆av在线久日| 国产成人啪精品午夜网站| 曰老女人黄片| 九色成人免费人妻av| 别揉我奶头~嗯~啊~动态视频| 人人妻人人看人人澡| 欧美+亚洲+日韩+国产| 免费看美女性在线毛片视频| 高清在线国产一区| 人妻夜夜爽99麻豆av| 国产亚洲欧美在线一区二区| 国产成人欧美在线观看| 成人国产综合亚洲| 日本精品一区二区三区蜜桃| aaaaa片日本免费| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 日韩高清综合在线| 看片在线看免费视频| 亚洲真实伦在线观看| av视频在线观看入口| √禁漫天堂资源中文www| 麻豆成人av在线观看| 亚洲av美国av| 国产av又大| 看免费av毛片| 亚洲美女黄片视频| a在线观看视频网站| 欧美大码av| 亚洲 国产 在线| 精品国产乱码久久久久久男人| 久久草成人影院| 三级男女做爰猛烈吃奶摸视频| 香蕉av资源在线| 在线观看免费日韩欧美大片| 久久久久久久久中文| 亚洲精品一区av在线观看| 国产一区二区三区在线臀色熟女| 亚洲国产中文字幕在线视频| 在线观看www视频免费| 国产午夜精品久久久久久| 亚洲免费av在线视频| 变态另类成人亚洲欧美熟女| 19禁男女啪啪无遮挡网站| 国产成人欧美在线观看| 日本免费一区二区三区高清不卡| 亚洲aⅴ乱码一区二区在线播放 | 无遮挡黄片免费观看| 夜夜爽天天搞| 人妻丰满熟妇av一区二区三区| 欧美又色又爽又黄视频| 69av精品久久久久久| 精品第一国产精品| 久久久久亚洲av毛片大全| 欧美zozozo另类| 久久久精品大字幕| av欧美777| 亚洲色图 男人天堂 中文字幕| netflix在线观看网站| 少妇被粗大的猛进出69影院| 免费在线观看亚洲国产| 精品福利观看| 国产一区二区三区在线臀色熟女| 50天的宝宝边吃奶边哭怎么回事| 搡老岳熟女国产| 久久午夜亚洲精品久久| 曰老女人黄片| 免费看美女性在线毛片视频| 黄色a级毛片大全视频| 国产亚洲精品第一综合不卡| 成年人黄色毛片网站| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 午夜福利18| 一本一本综合久久| 亚洲一区中文字幕在线| 午夜福利免费观看在线| 日韩欧美国产在线观看| 亚洲乱码一区二区免费版| 午夜免费激情av| 91九色精品人成在线观看| 日韩欧美一区二区三区在线观看| 久久久精品国产亚洲av高清涩受| 亚洲电影在线观看av| 亚洲av熟女| 亚洲欧美日韩高清在线视频| 精品国产美女av久久久久小说| 三级毛片av免费| 亚洲 欧美 日韩 在线 免费| 亚洲aⅴ乱码一区二区在线播放 | 两个人视频免费观看高清| 高潮久久久久久久久久久不卡| 欧美一区二区精品小视频在线| 啪啪无遮挡十八禁网站| 成人永久免费在线观看视频| 亚洲人成77777在线视频| 最新美女视频免费是黄的| 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 麻豆成人av在线观看| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清在线视频| 日本 av在线| 国产av又大| 国产精品乱码一区二三区的特点| 久久精品综合一区二区三区| 国内精品久久久久精免费| 巨乳人妻的诱惑在线观看| 99精品久久久久人妻精品| 亚洲一区二区三区不卡视频| 亚洲av成人av| 夜夜夜夜夜久久久久| 日韩精品中文字幕看吧| 亚洲精品国产精品久久久不卡| 久久精品国产99精品国产亚洲性色| 亚洲熟女毛片儿| 18禁国产床啪视频网站| 欧美中文日本在线观看视频| 日本免费一区二区三区高清不卡| 色精品久久人妻99蜜桃| 熟妇人妻久久中文字幕3abv| 99精品欧美一区二区三区四区| 国产成人一区二区三区免费视频网站| 国产精品久久久久久久电影 | 精品少妇一区二区三区视频日本电影| 在线观看舔阴道视频| 草草在线视频免费看| 99久久国产精品久久久| 欧美三级亚洲精品| 日日干狠狠操夜夜爽| 伦理电影免费视频| 999久久久精品免费观看国产| 国产伦人伦偷精品视频| 国产激情偷乱视频一区二区| 在线永久观看黄色视频| aaaaa片日本免费| 日韩中文字幕欧美一区二区| 日韩av在线大香蕉| 中文资源天堂在线| 一二三四社区在线视频社区8| 91麻豆av在线| 一进一出抽搐gif免费好疼| 亚洲国产精品成人综合色| 亚洲精品av麻豆狂野| 午夜a级毛片| 久久久精品国产亚洲av高清涩受| 欧美日韩黄片免| 18禁美女被吸乳视频| 99热这里只有是精品50| 亚洲国产精品999在线| 两性夫妻黄色片| 手机成人av网站| 舔av片在线| 99热这里只有是精品50| 1024香蕉在线观看| 欧美国产日韩亚洲一区| avwww免费| 久久久久性生活片| 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 国产精品一区二区精品视频观看| 亚洲七黄色美女视频| 日韩欧美在线乱码| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区av网在线观看| 免费电影在线观看免费观看| 国产久久久一区二区三区| 久久久国产欧美日韩av| 99久久精品国产亚洲精品| 日本黄大片高清| 一级片免费观看大全| 搡老熟女国产l中国老女人| АⅤ资源中文在线天堂| 国产成人av激情在线播放| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 午夜福利在线在线| 一进一出抽搐动态| 日本免费一区二区三区高清不卡| 成人手机av| 亚洲欧美精品综合一区二区三区| 男女视频在线观看网站免费 | 1024手机看黄色片| 麻豆久久精品国产亚洲av| 午夜精品在线福利| 成人av一区二区三区在线看| 亚洲人成电影免费在线| 大型黄色视频在线免费观看| 热99re8久久精品国产| 久久精品人妻少妇| 在线看三级毛片| 精品人妻1区二区| 国产日本99.免费观看| 97碰自拍视频| 两人在一起打扑克的视频| av天堂在线播放| 无人区码免费观看不卡| 精品人妻1区二区| 日本撒尿小便嘘嘘汇集6| 日本五十路高清| 国产亚洲欧美98| 无遮挡黄片免费观看| 性欧美人与动物交配| 成人三级黄色视频| 成熟少妇高潮喷水视频| 一a级毛片在线观看| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 亚洲男人的天堂狠狠| av在线播放免费不卡| 老司机福利观看| 日韩精品免费视频一区二区三区| 日本在线视频免费播放| 美女高潮喷水抽搐中文字幕| 国产av麻豆久久久久久久| 琪琪午夜伦伦电影理论片6080| 可以在线观看毛片的网站| 女生性感内裤真人,穿戴方法视频| 国产激情偷乱视频一区二区| 国产精品av久久久久免费| 在线观看舔阴道视频| 少妇裸体淫交视频免费看高清 | 国产午夜精品久久久久久| 看片在线看免费视频| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 淫秽高清视频在线观看| 国产精品亚洲美女久久久| 51午夜福利影视在线观看| 亚洲最大成人中文| 免费看十八禁软件| 身体一侧抽搐| 国产欧美日韩一区二区精品| 欧美不卡视频在线免费观看 | aaaaa片日本免费| 亚洲男人天堂网一区| 真人一进一出gif抽搐免费| 麻豆成人av在线观看| 18禁美女被吸乳视频| 欧美日本视频| 美女高潮喷水抽搐中文字幕| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| 欧美成狂野欧美在线观看| 国产乱人伦免费视频| or卡值多少钱| 亚洲欧美日韩高清在线视频| 欧美黑人精品巨大| 国产v大片淫在线免费观看| 无遮挡黄片免费观看| 成年免费大片在线观看| 精品人妻1区二区| 亚洲成人久久爱视频| 日本免费一区二区三区高清不卡| 99精品久久久久人妻精品| av片东京热男人的天堂| 一二三四在线观看免费中文在| 亚洲精品美女久久久久99蜜臀| 国产成人啪精品午夜网站| 午夜福利18| 日韩有码中文字幕| 在线观看www视频免费| 久久天躁狠狠躁夜夜2o2o| 国产免费男女视频| 国产三级黄色录像| 国产又黄又爽又无遮挡在线| 国产又色又爽无遮挡免费看| 在线看三级毛片| 亚洲一区二区三区色噜噜| 久久精品成人免费网站| 欧美黑人欧美精品刺激| 国产精品自产拍在线观看55亚洲| 国内精品一区二区在线观看| 老鸭窝网址在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美成狂野欧美在线观看| 久久精品人妻少妇| 色综合欧美亚洲国产小说| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 最近视频中文字幕2019在线8| 免费在线观看视频国产中文字幕亚洲| a级毛片在线看网站| 999久久久精品免费观看国产| 99久久国产精品久久久| 99re在线观看精品视频| 亚洲国产中文字幕在线视频| 丁香欧美五月| 啦啦啦免费观看视频1| 真人一进一出gif抽搐免费| 又黄又粗又硬又大视频| 757午夜福利合集在线观看| 国产精品久久久久久精品电影| 欧美丝袜亚洲另类 | 12—13女人毛片做爰片一| 日韩av在线大香蕉| 欧美乱色亚洲激情| 热99re8久久精品国产| 久久久久性生活片| 久久精品91无色码中文字幕| 校园春色视频在线观看| 欧美日本亚洲视频在线播放| 麻豆国产av国片精品| 熟女电影av网| 久久人妻福利社区极品人妻图片| 久99久视频精品免费| 777久久人妻少妇嫩草av网站| 少妇裸体淫交视频免费看高清 | 久久草成人影院| 熟妇人妻久久中文字幕3abv| 亚洲自拍偷在线| 午夜福利在线观看吧| 久久久久久久久免费视频了| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清专用| 亚洲 欧美 日韩 在线 免费| 18美女黄网站色大片免费观看| 成人永久免费在线观看视频| 国产精品av久久久久免费| 中文字幕av在线有码专区| 国产av不卡久久| 久久久久久久久免费视频了| 亚洲男人天堂网一区| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 男人的好看免费观看在线视频 | 久久天躁狠狠躁夜夜2o2o| 亚洲av五月六月丁香网| 亚洲性夜色夜夜综合| 99久久精品热视频| 狂野欧美白嫩少妇大欣赏| 国产一级毛片七仙女欲春2| 99久久无色码亚洲精品果冻| 欧美日韩国产亚洲二区| 亚洲精品美女久久久久99蜜臀| 亚洲天堂国产精品一区在线| 男女下面进入的视频免费午夜| 国产69精品久久久久777片 | 熟妇人妻久久中文字幕3abv| 听说在线观看完整版免费高清| 久久久久久久久中文| 久久久水蜜桃国产精品网| 国产v大片淫在线免费观看| 午夜福利18| 精品久久蜜臀av无| 国内少妇人妻偷人精品xxx网站 | 一个人观看的视频www高清免费观看 | 亚洲欧美激情综合另类| 成人特级黄色片久久久久久久| 俄罗斯特黄特色一大片| 精品久久久久久久久久免费视频| 国产欧美日韩一区二区三| 精品久久久久久成人av| 日韩精品免费视频一区二区三区| 亚洲avbb在线观看| 国产精品香港三级国产av潘金莲| 色av中文字幕| 久久婷婷人人爽人人干人人爱| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 男女那种视频在线观看| 亚洲av美国av| xxx96com| 国产精品一及| 午夜成年电影在线免费观看| 国产一区二区在线观看日韩 | 国产av麻豆久久久久久久| 少妇人妻一区二区三区视频| 久久香蕉激情| 女同久久另类99精品国产91| 男女视频在线观看网站免费 | xxxwww97欧美| 免费电影在线观看免费观看| 国产精品亚洲美女久久久| 色精品久久人妻99蜜桃| 嫩草影视91久久| 欧美中文综合在线视频| av有码第一页| 精品福利观看| 女警被强在线播放| 久久亚洲精品不卡| 亚洲av中文字字幕乱码综合| 99久久无色码亚洲精品果冻| 国产三级中文精品| 国内久久婷婷六月综合欲色啪| 久久精品综合一区二区三区| 老熟妇乱子伦视频在线观看| 欧美日韩一级在线毛片| 国产高清激情床上av| 真人做人爱边吃奶动态| 一级片免费观看大全| 午夜福利在线在线| 正在播放国产对白刺激| 日韩欧美免费精品| 亚洲 欧美 日韩 在线 免费| 久久久久国产一级毛片高清牌| 国产亚洲av嫩草精品影院| 午夜福利成人在线免费观看| 午夜a级毛片| 国产高清videossex| 丰满的人妻完整版| 国产在线精品亚洲第一网站| 亚洲熟妇熟女久久| 国产亚洲精品综合一区在线观看 | 欧美一级毛片孕妇| 一区福利在线观看| 人妻久久中文字幕网| 国产av在哪里看| 免费在线观看亚洲国产| 久久精品人妻少妇| 色综合欧美亚洲国产小说| 成人特级黄色片久久久久久久| 欧美人与性动交α欧美精品济南到| 国内少妇人妻偷人精品xxx网站 | 亚洲免费av在线视频| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av在线| 国内精品久久久久久久电影| 欧美日本亚洲视频在线播放| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 老司机午夜十八禁免费视频| 大型黄色视频在线免费观看| 桃红色精品国产亚洲av| 白带黄色成豆腐渣| 99久久无色码亚洲精品果冻| 国产乱人伦免费视频| 日本 欧美在线| 变态另类成人亚洲欧美熟女| 午夜免费激情av| 免费在线观看影片大全网站| 女警被强在线播放|