• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production*

    2014-07-24 15:39:57WUXianli吳現(xiàn)力HUYangdong胡仰棟WULianying伍聯(lián)營(yíng)andLIHong

    WU Xianli (吳現(xiàn)力), HU Yangdong (胡仰棟), WU Lianying (伍聯(lián)營(yíng)) and LI Hong (李 紅)

    College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

    Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production*

    WU Xianli (吳現(xiàn)力), HU Yangdong (胡仰棟)**, WU Lianying (伍聯(lián)營(yíng)) and LI Hong (李 紅)

    College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

    In order to improve the energy efficiency, reduce the CO2emission and decrease the cost, a cogeneration system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model of each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost, showing this design method was effective.

    cogeneration system, thermal power plant, multi-stage flash desalination, reverse osmosis desalination, non-linear programming, optimal design

    1 INTRODUCTION

    A large amount of energy (electricity, heat) and water is consumed in daily lives and utility systems of process industry. With the reduction of resources and increase of consumption, it is necessary to establish a suitable and economical production system to provide sufficient water, thermal and electricity with lower energy consumption.

    For a certain amount of water, heat and electricity demand, many different production structures can be applied to meet this demand. The styles of power generation can be back pressure, condensing and extraction condensing. Heat can be supplied by boiler or steam drawn from steam turbine. And multi-stage flash desalination (MSF), reverse osmosis desalination (RO) and other technologies for desalination can also be chosen.

    It has been done extensive research on the separate system of power generation, heat addition and desalination. Several models have been established to describe these production units [1-3]. And the optimal operation parameters have been obtained [4-6]. Now the study on water, heat and power cogeneration system is mainly focused on three aspects: combined heat and power generation (CHP), MSF and power cogeneration system, RO/MSF hybrid system. As it can greatly improve energy efficiency and reduce the CO2emission, the combined heat and power (CHP) has been greatly developed [7]. Similar to the CHP, the low-grade steam of power plant as the heat source of MSF has been used in the MSF and power cogeneration system. The water production cost is effectively reduced. It was reported that the MSF energy cost can be reduced by 1/3 to 1/2 compared to the separate MSF system [8, 9]. RO/MSF hybrid systems have potential advantages of a higher overall availability, low power demand, and improved water quality [10]. Especially for the high salinity water, the hybrid system has a great advantage [11].

    In this paper, combined with the above co-production systems, a new cogeneration system, including the coal-fired thermal power plant, the MSF system and RO desalination system, is established. A simplified superstructure model of the system is presented, which includes all the possible alternative configurations of the cogeneration system. And the mathematical model and economic model of cogeneration system are given, based on literature [12-19]. These maturity models can make an accurate evaluation of the process parameters and economic costs.

    2 MATHEMATICAL AND ECONOMIC MODEL OF THE COGENERATION SYSTEM

    In the process of power generation, heat addition and desalination, a lot of resource and energy is consumed. In the thermal power plant, where the extraction condensing turbines are widely used, the exhaust steam is condensed by cool water, which will take away a lot of heat, and reduce the efficiency of the energy usage. The steam used by residents heating and process heating in the plants, is relatively low grade, which can be provided by the thermal power plant. In terms of desalination, the multi-stage flash desalination will consume about 1 tone steam per 10 m3water produced. If the steam is supplied by the thermal power plant, the water production cost of MSF can greatly be reduced. At the same time, the thermal power plant will decrease the amount of condensate and waste heat. The RO needs to consume plenty of electricity. Ifthe power can be directly purchased from the power plant at cost price, the cost of the RO will significantly increase. Therefore, in a cogeneration system of water, heat and power, the energy can be used from high-grade to low-grade, which can effectively reduce the energy consumption of the entire system.

    2.1 Superstructure of the cogeneration system

    For given water, heat and power needs, the goal of system design is to determine the optimal structure of the cogeneration system. The super-structure of the simplified model is shown in Fig. 1. The system is mainly divided into three parts: the thermal power plant, the MSF system and the RO system.

    Firstly, the boiler backwater is heated to high-pressure steam in Boiler 1. Then the steam is driven to the turbines. After the steam is used to generate electricity, it is partly pumped out for some other heat users, and partly used for heating the brine in MSF brine heater. If the power plant cannot provide sufficient steam to MSF system, the shortage is supplied by the auxiliary boiler: Boiler 2. The mass flow of supplement steam is Ms2. The electricity is partly used by MSF and RO, while the other is delivered to the grid. The product water from MSF and RO is mixed and then sold. The water production ratio of MSF module and RO module is decided by the demands of water, heat and power. The mathematical model to describe the modules of this super-structure is as blow.

    2.2 Model of thermal power plant

    In this paper, supercritical and adjustable pumping turbine-generator units are adopted. The simplified thermal power plant model is shown in Fig. 2. After treatments, the water is heated into steam in the boiler, and overheated to 24.2 MPa, and 566 °C. Superheated high pressure steam drives the high pressure turbine, medium-pressure turbine and low-pressure turbine successively to generate power. Appropriate pressure steam is pumped out from each turbine for MSF module and other heat users. Then the steam is condensed to water and returned to the boiler. The mathematic model of thermal power plant is shown as blow [12, 13]:

    The boiler backwater is heated to superheated high pressure steam:

    Figure 1 Superstructure of the cogeneration system

    Figure 2 Schematic diagram of a thermal power plant

    The generating capacity of turbine i is:

    wheretr,1im?is the steam mass flow pumped out for MSF and other heat users in turbine 1i? .

    The total generating capacity of the thermal power plant is:

    Before driven to the medium-pressure turbine, the steam is overheated again in the boiler:

    The total heat duty of the boiler is:

    The mass flow rate of the coal is:

    2.3 Model of MSF

    MSF is divided into three different structures: OTMSF, MMSF and CMSF. In this paper, MSF with a brine mixer (MMSF) (see Fig. 3), including a brine distributor, a brine mixer, a heat recovery section and a brine heater four parts is adopted. The heat recovery section is composed of multiple flash units in series. The model of MMSF is adopting improved MSF-Once Through model [14].

    The simplified model of MMSF is based on the following basic assumptions:

    (1) The specific heat of all liquid streams is constant and equal.

    (2) The temperature drop for the flashing brine per stage is equal.

    (3) The latent heat of vaporization in each stage is assumed equal to the average value for the process.

    (4) Non-condensable gases have negligible effect on the heat transfer process.

    (5) Effects of the boiling point rise and nonequilibrium losses on the stage energy balance are negligible, however, their effects are included in the design of the condenser heat transfer area.

    2.3.1 Overall material balance

    The flow rate of distillate is calculated by Eq. (10) [14],

    2.3.2 Brine heater and condensers heat transfer area

    In this paper, the condensers heat transfer area of each stage is assumed equal. Condenser heat transfer area on stage 1 is:

    Brine heater heat transfer area is:

    The total heat transfer areas:

    The steam required by MSF is:

    wheres1M is the steam pumped from steam turbine ands2M is the steam provided by auxiliary boiler.

    When χ=0, the steam of MSF module needed will be supplied by auxiliary boiler, or the MSF module will not product water. When χ=1, all the steam will be extracted from the turbine. The style of power generation will be changed from extraction condensing turbine to backpressure steam turbine.

    Figure 3 Schematic diagram of multi-stage flash desalination

    The coal consumed for the auxiliary boiler is:

    2.4 Model of RO

    2.4.1 RO membrane mass transfer model

    The extensive researches on the reverse osmosis membrane mass transfer mechanism have been done. The schematic diagram of one stage reverse osmosis desalination is shown in Fig. 4. Now the often used model is the solution-diffusion model [14-17]:

    Figure 4 Schematic diagram of one stage reverse osmosis desalination

    The pure water flux is:

    The salt flux is given as:

    Applied pressure is:

    The osmotic pressure of seawater is:

    Permeate concentration is:

    Salt concentration at membrane wall is as shown in Eq. (28):

    The density of seawater is:

    Mass transfer coefficient is:

    2.4.2 Material balance of RO

    The RO module water production is:

    The reject brine flow rate is:

    The reject brine concentration is given as:

    Recovery fraction is:

    The total membrane area is:

    2.5 Economic model

    2.5.1 The economic model of thermal power plant [18] When the payback period is 25 years, the annual interest rate is 7% and the capital recovery factor is:

    Direct capital investment is given by

    Operation and maintenance cost is:

    The fuel cost is:

    The total annual cost of the thermal power plant is:

    2.5.2 Economic model of MSF [14]

    Direct capital investment is given as:

    Chemical treatment is:

    Spares cost is:

    Labor cost is:

    Fuel cost is:

    The operation pressure of circulating brine Mris. The pump efficiency is taken as 0.8. The power requirement of MSF is:

    The operation and maintenance cost is:

    The annual cost of MSF is:

    2.5.3 Economic model of RO

    Membrane cost is given by:

    Civil work cost is given by:

    Pumping and energy recovery system cost is:

    The direct capital investment cost is:

    The Ratis the capacity ratio rate, which is expressed as:

    The pretreatment cost (ultrafiltration) is [19]:

    The annual membrane replacement cost is:

    The annual labor cost is:

    The power consumed of RO is given by the follow equations [20].

    The electricity consumed by high pressure pump is:

    The energy recovery from the energy recovery system is:

    The RO module consumed electricity is:

    The annual cost of RO is:

    2.6 Objective function of mathematical programming model

    The superstructure of the cogeneration system is shown in Fig. 1. Under a certain demand, the amount of electricity (WE), water (Wtotal) and heat (mtr) supply are constant values.

    The power supply to the grid is given as:

    where PMSFand PROare the consumed electricity of MSF module and RO module.

    The water produced by the entire cogeneration system is:

    And the mass flow rate of the heat supply is given by:

    The optimization design of the cogeneration system is presented as a non-linear programming (NLP)and solved by GAMS program. The generalized reduced gradient algorithm CONOPT is used as NLP solver. Since the problem presents a lot of non-convexities, several local optimal solutions is obtained from different initial points. Then the best local optimal solution is selected as the global optimal solution. The objective is to minimize the annual cost of the cogeneration system.

    The model satisfies the constraints of thermodynamics, unit operations and the design requirements.

    3 CASE STUDY

    In this paper, a chemical park is taking as an example. According to different demands of water, heat and power production, optimal cogeneration systems were given. For comparison, two separate production systems were shown. One was thermal power plant for providing power and heat, and MSF plant for production water using steam form steam generator (TPP + MSF). The other was thermal power plant for providing power and heat, and RO plant (TPP + RO) for production water using electricity produced by TPP.

    3.1 Case 1

    The main project of this chemical industry park is an annual output 1 million tons of soda ash production plant. The process consumes a lot of water, heat and power. A suitable cogeneration system is needed to meet this demand. The specific needs of this industry park are shown in Table 1.

    Table 1 Demands of water, heat and power production

    The parameters of cogeneration system are shown in Tables 2-4. Bringing these parameters and the valueof power, steam and water into the model, then the optimal results is obtained by solving this NLP model.

    Table 2 Process parameters of thermal power plant

    Table 4 Process parameters of RO

    Table 5 Optimal results of the cogeneration system

    Separate system Project TPP + MSF TPP + RO Optimized results TPP direct capital investment 106USD·a?1 22.8 30.3 25.0 operation and maintenance cost 106USD·a?1 18.8 24.9 20.6 fuel cost 106USD·a?1 118.9 143.3 133.0 MSF direct capital investment 106USD·a?1 12.4 8.7 chemical treatment 106USD·a?1 5.3 3.3 labor cost 106USD·a?1 8.8 5.5 spares cost 106USD·a?1 7.2 4.5 fuel cost 106USD·a?1 84.3 0 RO direct capital investment cost 106USD·a?1 14.4 5.0 pretreatment cost 106USD·a?1 17.0 6.2 labor cost 106USD·a?1 6.7 1.7 membrane replacement cost 106USD·a?1 11.8 4.3 total annual cost 106USD·a?1 278.5 248.4 217.9

    The optimal results are shown in Table 5.

    The comparison of annual cost among the optimized cogeneration systems and other two separate production systems is shown in Table 6.

    3.2 Case 2

    The water, heat and power demand of the chemical industry park is appropriate changed. Then the optimal production structure of the cogeneration system after the demand changed is studied. The changedwater, heat and power demands are shown in Table 7.

    Table 7 Demands of water, heat and power production

    The process parameters of TPP, MSF and RO are the same as these parameters in Case 1.

    The optimal results are shown in Table 8. The comparison of annual cost among the optimized cogeneration systems and other two separate production systems is shown in Table 9.

    The above two cases reveal that with different demands of water, heat and power, the corresponding optimal cogeneration structures are also different. In Case 1, the optimal cogeneration system is TPP generating electricity and heat, and MSF and RO hybrid system producing water. This is because water production requirement in Case 1 is relatively high. If the system only uses MSF to produce water, the auxiliary boiler needs to provide a certain amount of steam, leading to higher total annual cost. If the system only uses RO to produce water, in order to meet the water quality requirements, two stages RO system should be adopt, and the annual cost is also relatively high. When MSF and RO are used at the same time, additional steam is not needed, and the total annual cost is the lowest. Compared to the other two separate production structures, the optimal cogeneration system can reduce 21.7% of the annual cost.

    In Case 2, the TPP can supply the MSF with more steam and water production requirement is reduced. Thus the steam can meet the need of MSF. Therefore, the optimal cogeneration system is TPP generating electricity and heat, and MSF producing water. Compared to the other two structures, 16.1% of the annual cost can be reduced.

    4 CONCLUSIONS

    In this paper, a cogeneration system for water, heat and power production was studied. An optimal design method was given. The unit models and cogeneration system model were established. The system design was presented as a non-linear programming (NLP) and solved by GAMS program.

    According to different demands of water, heat and power production, an optimal cogeneration system can be obtained by solving this model. The result showed that using exhaust steam from power plant as heat source, the MSF can be used as a priority water production style. The production capacity of MSF wassubjected to the amount of steam extracted from the thermal power plant. When the demand of water supply was higher than the MSF production capacity, the MSF and RO cogeneration system will be a better choice. Compared to separate systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. Subsystems involved in this study such as combined heat and power generation (CHP), MSF and power cogeneration system, RO/MSF hybrid system have been widely used, and the technologies were relatively mature. After a suitable production scheduling, the new cogeneration system can also be achieved. It indicated that this design method was effective.

    Table 8 Optimal results of the cogeneration system

    Table 9 Comparison of annual cost of optimized cogeneration systems and other two separate production systems

    NOMENCLATURE

    A total heat transfer area, m2

    Accondenser heat transfer area, m2

    Abbrine heater heat transfer area, m2

    Amemone membrane area, m2

    Assalt mass transfer parameter, m·s?1

    Atotaltotal membrane area, m2

    Awwater permeability coefficient, m·s?1·Pa?1

    a capital recovery factor

    BPE boiling point elevation, °C

    CAMMSF total annual cost, USD·a?1

    CcaptialTPP direct capital investment, USD·a?1

    CcheMSF chemical treatment cost, USD·a?1

    CcivilRO civil work cost, USD·a?1

    CDMMSF direct capital investment, USD·a?1

    CfuelTPP fuel cost, USD·a?1

    Cfuel,1MSF fuel cost, USD·a?1

    ClabMSF labor cost, USD·a?1

    Cmemtotal membrane cost, USD·a?1

    COMMSF operation and maintenance cost, USD·a?1

    CopTPP operation and maintenance cost, USD·a?1

    CpowerTPP total annual cost, USD·a?1

    Cpumppumping and recovery system cost, USD

    CRO,totalRO total annual cost, USD·a?1

    CsparMSF spares cost, USD·a?1

    Ctotalannual cost of the cogeneration system, USD·a?1

    c salt concentration, kg·m?3

    cfseawater concentration, kg·m?3

    cpheat capacity, kJ·t?1·°C?1

    cppermeate concentration, kg·m?3

    cwsalt concentration at membrane wall, kg·m?3

    cwaterfinished water concentration, kg·m?3

    cost1RO direct capital investment, USD·a?1

    cost2RO pretreatment cost, USD·a?1

    cost3RO annual membrane replacement cost, USD·a?1

    cost4RO annual labor cost, USD·a?1

    costmemone membrane cost, USD

    c_rj reject brine concentration, kg·m?3

    Eppenergy required for pre-post-treatment plant

    Erecenergy recovery from energy recovery system, kW·m?3

    Ereqelectricity consumed by high pressure pump, kW·m?3

    Eff efficiency of high pressure pump

    Effrecefficiency of energy recovery system

    Fffeed seawater flow rate, t·h?1

    Fpproduct water flow rate, t·h?1

    F_rj reject brine flow rate, t·h?1

    h enthalpy of steam or liquid, kJ·t?1

    i annual interest rate

    k1mass transfer coefficient, m·s?1

    Lamdas latent heat of steam, kJ·t?1

    LHV lower heat value of coal, kJ·t?1

    LMTD logarithmic mean temperature difference, °C

    LMTDclogarithmic mean temperature difference of condenser, °C

    LMTDblogarithmic mean temperature difference of brine heater, °C

    Mbbrine flow rate, t·h?1

    Mddistillate flow rate, t·h?1

    Mffeed seawater of MSF, t·h?1

    Mrflow rate of recycle brine, t·h?1

    Msthe steam of MSF needed, t·h?1

    m parameter defined in Eq. (30), °C

    mcombthe boiler steam mass flow rate, t·h?1

    mfuelcoal consumed by TPP, t·h?1

    mfuel,1coal consumed by MSF, t·h?1

    mtrmass flow rate of steam extracted from turbine, t·h?1

    Nmemnumber of membrane per train

    Ntrainnumber of trains

    Nssalt flux, kg·m?2·s?1

    Nwpure water flux, m·s?1

    NEA non-equilibrium allowance, °C

    n number of flash stage

    PMroperation pressure of circulating brine, Pa

    PMSFMSF module consumed electricity, kW

    PRORO module consumed electricity, kW

    p1operated pressure, Pa

    p2atmospheric pressure, Pa

    Q heat duty of boiler, kJ·h?1

    Qrefreference RO plant capacity, m3·d?1

    Rfrecovery fraction

    T temperature of flash stage, °C

    Trtemperature of recycle brine, °C

    Tvtemperature of distillate, °C

    t payback period, year

    Ubthe brine heater overall heat transfer coefficient, kW·m?2·°C?1

    Ucthe condenser overall heat transfer coefficient, kW·m?2·°C?1

    ubvelocity of brine, m·s?1

    WEthe electricity supply to the grid, kW

    Wtotalthe total water production, t·h?1

    We the electricity generating capacity, kW

    χbthe concentration of brine, kg·L?1

    χfthe concentration of seawater, kg·L?1

    y parameter defined in Eq. (11)

    η efficient

    λavaverage latent heat of brine, kJ·t?1

    Π osmotic pressure, Pa

    ρ density, kg·m?3

    ρpdensity of permeate water

    Ψ parameter

    REFERENCES

    1 Helal, A.M., “The one-throught MSF design for future large capacity desalination plants”, Desalination, 166, 25-39 (2004).

    2 Mussati, S.F., Aguirre, P.A., Scenna, N.J., “Novel configuration for multi stage flash-mixer desalination system”, Ind. Eng. Chem. Res., 42 (20), 4828-4839 (2003).

    3 Malek, A., Hawlader, M.N.A., “Design and economics of RO seawaterdesalination”, Desalination, 105, 245-261 (1996).

    4 Mussati, S.F., Aguirre, P.A., Scenna, N.J., “Optimal MSF plant design”, Desalination, 138, 341-347 (2001).

    5 Du, X.Z., Wu, S.R., “Performance of seawater desalination system coupled with nuclear heating reactor under unsteady state operation conditions”, CIESC Journal, 54 (3), 362-367 (2003).

    6 Li, Q.F., Liu, Z.L., Han, B., Pang H.Z., Zhang, J., Zhu, W., “Process simulation and analysis of thermal vapor compression based oilfield waster desalination systems”, CIESC Journal, 63 (6), 1859-1864 (2012).

    7 Martens, A., “The energetic feasibility of CHP compared to the separate production of heat and power”, Applied Thermal Engineering, 18 (11): 935-946 (1998).

    8 Hammond, R.P., “Modernising the desalination industry”, Desalination, 107, 101-109 (1996).

    9 Buros, O.K., The ABCs of Desalting, International Desalination Association, Massachusetts, USA (1999).

    10 Marian, G., Marcovecchio, M.G., Sergio, F., “Optimization of hybrid desalination processes including multi stage flash and reverse osmosis systems”, Desalination, 182, 111-122 (2005).

    11 Turek, M., Dydo, P., “Hybrid membrane-thermal versus simple membrane systems”, Desalination, 157, 51-56 (2003).

    12 Kamal, I., “Integration of seawater desalination with power generation”, Desalination, 180, 217-229 (2005).

    13 Bruno, J.C., Fernandez, F., Castells, F., Grossmann, L.E., “A rigorous MINLP model for the optimal synthesis and operation of utility plants”, Tran IChemE, 76, 246-258 (1998).

    14 Al-Khudhiri, A.I., “Optimal design of hybrid MSF/RO desalination plants”, Ph. D. Thesis, Saudi Arabia (2006).

    15 Taniguchi, M., Kimura, S., “Estimation of transport parameters of RO menbranes for seawater desalination”, AIChE Journal, 46 (10), 1967-1973 (2000).

    16 Hu, Y.D., Lu, Y.Y., Xu, D.M., Wu, L.Y., “Cleaning strategy of membrane modules in reverse osmosis seawater desalination system”, CIESC Journal, 56 (3), 499-505 (2005).

    17 Wang, Y., Wang, S.C., Xu, S.C., “Hydraulic energy recovery for SWRO desalination plants”, CIESC Journal, 54 (6), 878-879 (2003).

    18 El-Nashar, A.M., “Cogeneration for power and desalination-state of the art review”, Desalination, 134, 7-28 (2001).

    19 Helal, A.M., El-Nashar, A.M., “Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms”, Desalination, 154, 43-66 (2003).

    20 Cardona, E., Piacentino, A., Marchese, F., “Energy saving in two-stage reverse osmosis systems coupled with ultrafiltration processes”, Desalination, 184, 125-137 (2005).

    PROCESS SYSTEMS ENGINEERING AND PROCESS SAFETY

    Chinese Journal of Chemical Engineering, 22(3) 330—338 (2014)

    10.1016/S1004-9541(14)60036-7

    2012-10-29, accepted 2013-04-28.

    *Supported by the National Natural Science Foundation of China (21076202).

    **To whom correspondence should be addressed. E-mail: ydhuhd@ouc.edu.cn

    一级毛片高清免费大全| 黄色片一级片一级黄色片| 久久国产乱子伦精品免费另类| 久久久久国产精品人妻aⅴ院| 成年免费大片在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲激情在线av| 精品人妻1区二区| 岛国在线观看网站| 日本一二三区视频观看| 观看美女的网站| 97人妻精品一区二区三区麻豆| 色老头精品视频在线观看| 国产成人av激情在线播放| 桃色一区二区三区在线观看| 色播亚洲综合网| 美女黄网站色视频| 色哟哟哟哟哟哟| 99久久99久久久精品蜜桃| 99热这里只有精品一区| 精品欧美国产一区二区三| 琪琪午夜伦伦电影理论片6080| 波多野结衣高清无吗| 亚洲 欧美 日韩 在线 免费| 欧美日本视频| 美女cb高潮喷水在线观看| 色吧在线观看| 国产成人系列免费观看| 亚洲真实伦在线观看| 精品一区二区三区视频在线观看免费| 日韩欧美在线二视频| 欧美日韩亚洲国产一区二区在线观看| 日本撒尿小便嘘嘘汇集6| 国产美女午夜福利| 最近视频中文字幕2019在线8| 国内精品美女久久久久久| 黄色丝袜av网址大全| 欧美成人免费av一区二区三区| 亚洲成a人片在线一区二区| 亚洲精华国产精华精| 搡女人真爽免费视频火全软件 | 国产精品综合久久久久久久免费| 麻豆成人av在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 最近最新中文字幕大全电影3| 特大巨黑吊av在线直播| 美女 人体艺术 gogo| 麻豆成人午夜福利视频| 亚洲成人久久爱视频| aaaaa片日本免费| 51午夜福利影视在线观看| avwww免费| 最好的美女福利视频网| 日韩成人在线观看一区二区三区| 亚洲国产精品999在线| 国语自产精品视频在线第100页| 日韩大尺度精品在线看网址| 亚洲第一欧美日韩一区二区三区| 在线观看免费午夜福利视频| 99国产精品一区二区蜜桃av| 久久久久久大精品| 搡女人真爽免费视频火全软件 | 国产亚洲欧美98| 国产亚洲精品久久久com| 国产伦人伦偷精品视频| 日本精品一区二区三区蜜桃| 色在线成人网| 两个人的视频大全免费| 一级黄色大片毛片| 成人国产综合亚洲| 婷婷亚洲欧美| 欧美激情久久久久久爽电影| 欧美+日韩+精品| 一本精品99久久精品77| 三级毛片av免费| 在线观看免费午夜福利视频| 美女 人体艺术 gogo| 别揉我奶头~嗯~啊~动态视频| 亚洲精华国产精华精| 欧美性感艳星| 超碰av人人做人人爽久久 | 国产精品久久久久久人妻精品电影| 国内毛片毛片毛片毛片毛片| 亚洲av成人av| av天堂在线播放| 日韩人妻高清精品专区| 日本成人三级电影网站| 欧美日韩精品网址| 少妇高潮的动态图| 精品久久久久久久人妻蜜臀av| 亚洲在线观看片| 精品久久久久久久久久久久久| 成熟少妇高潮喷水视频| 国产v大片淫在线免费观看| 日本在线视频免费播放| 最近最新中文字幕大全电影3| 欧美一级毛片孕妇| 国产69精品久久久久777片| 国产精品美女特级片免费视频播放器| 男插女下体视频免费在线播放| 女人十人毛片免费观看3o分钟| 欧美成人性av电影在线观看| 免费高清视频大片| 此物有八面人人有两片| 日韩免费av在线播放| 久久久久亚洲av毛片大全| 亚洲精品成人久久久久久| 久久欧美精品欧美久久欧美| 精品一区二区三区人妻视频| 黄色成人免费大全| 亚洲国产日韩欧美精品在线观看 | www日本黄色视频网| 日韩人妻高清精品专区| 不卡一级毛片| 激情在线观看视频在线高清| 波野结衣二区三区在线 | 亚洲国产精品sss在线观看| 日韩精品青青久久久久久| 老汉色∧v一级毛片| 在线观看66精品国产| 成人国产综合亚洲| 亚洲va日本ⅴa欧美va伊人久久| 18+在线观看网站| 美女被艹到高潮喷水动态| 日日摸夜夜添夜夜添小说| 国产aⅴ精品一区二区三区波| 级片在线观看| 日日摸夜夜添夜夜添小说| netflix在线观看网站| 免费一级毛片在线播放高清视频| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 性色av乱码一区二区三区2| 最后的刺客免费高清国语| 十八禁人妻一区二区| 亚洲人与动物交配视频| 国产日本99.免费观看| 蜜桃亚洲精品一区二区三区| 法律面前人人平等表现在哪些方面| 真实男女啪啪啪动态图| 九色国产91popny在线| 日韩欧美国产在线观看| xxx96com| 中文字幕av在线有码专区| 日韩精品中文字幕看吧| 老汉色∧v一级毛片| 人人妻,人人澡人人爽秒播| 午夜福利在线在线| 91av网一区二区| 五月伊人婷婷丁香| 一区福利在线观看| 国产欧美日韩精品亚洲av| 精品免费久久久久久久清纯| 精品久久久久久久末码| 日韩欧美精品免费久久 | 天美传媒精品一区二区| 69av精品久久久久久| 在线观看午夜福利视频| 狂野欧美白嫩少妇大欣赏| 亚洲成a人片在线一区二区| 国产中年淑女户外野战色| 欧美日韩福利视频一区二区| 亚洲第一欧美日韩一区二区三区| 亚洲av成人精品一区久久| 特级一级黄色大片| 韩国av一区二区三区四区| 国产精品99久久久久久久久| 成人高潮视频无遮挡免费网站| 精品福利观看| 日本黄色视频三级网站网址| 悠悠久久av| 日本五十路高清| 国产不卡一卡二| 久久中文看片网| 国产私拍福利视频在线观看| 国产国拍精品亚洲av在线观看 | 午夜免费激情av| 女人被狂操c到高潮| 特大巨黑吊av在线直播| 成熟少妇高潮喷水视频| 国产成人啪精品午夜网站| 国内久久婷婷六月综合欲色啪| 国产aⅴ精品一区二区三区波| 亚洲人成网站高清观看| 欧美一级a爱片免费观看看| 国产精品电影一区二区三区| 亚洲国产欧美网| 日本熟妇午夜| 国产精品99久久99久久久不卡| 国产亚洲精品久久久久久毛片| 亚洲一区二区三区色噜噜| 日本五十路高清| av欧美777| 久久久久久国产a免费观看| 日韩av在线大香蕉| 欧美日韩一级在线毛片| 女人被狂操c到高潮| 日本三级黄在线观看| 亚洲中文日韩欧美视频| 波野结衣二区三区在线 | 亚洲激情在线av| 18禁在线播放成人免费| 欧美黑人巨大hd| 国产麻豆成人av免费视频| 制服人妻中文乱码| 成人永久免费在线观看视频| 一区二区三区激情视频| 国产高清视频在线播放一区| 1000部很黄的大片| 欧美一区二区精品小视频在线| 亚洲精品日韩av片在线观看 | 欧美成人a在线观看| 女警被强在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲男人的天堂狠狠| 高潮久久久久久久久久久不卡| 香蕉久久夜色| 亚洲 欧美 日韩 在线 免费| 热99在线观看视频| 深爱激情五月婷婷| 国产精华一区二区三区| 最新在线观看一区二区三区| 午夜精品一区二区三区免费看| 国产精品乱码一区二三区的特点| 12—13女人毛片做爰片一| 国产精品香港三级国产av潘金莲| 国产一区二区激情短视频| 欧美成人一区二区免费高清观看| 久久精品国产99精品国产亚洲性色| 国产色爽女视频免费观看| 人妻丰满熟妇av一区二区三区| 欧美日韩瑟瑟在线播放| 免费在线观看影片大全网站| 国产真人三级小视频在线观看| 欧美一区二区国产精品久久精品| 69人妻影院| 精品欧美国产一区二区三| 综合色av麻豆| 在线观看美女被高潮喷水网站 | eeuss影院久久| 久久久久久久午夜电影| 亚洲av美国av| 老鸭窝网址在线观看| 最新在线观看一区二区三区| 啦啦啦韩国在线观看视频| 国产精品亚洲一级av第二区| 国产av在哪里看| 免费av毛片视频| 国产亚洲欧美在线一区二区| 51午夜福利影视在线观看| 亚洲最大成人手机在线| 欧美3d第一页| 精品一区二区三区av网在线观看| 国产精品99久久久久久久久| 亚洲中文字幕日韩| 又粗又爽又猛毛片免费看| 久久精品国产清高在天天线| 制服丝袜大香蕉在线| 操出白浆在线播放| 国产色爽女视频免费观看| 少妇熟女aⅴ在线视频| 久久精品91蜜桃| 国产真实伦视频高清在线观看 | 天堂√8在线中文| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 午夜精品一区二区三区免费看| 黄色成人免费大全| 91av网一区二区| 极品教师在线免费播放| 国产成人av教育| 国产在线精品亚洲第一网站| 老熟妇乱子伦视频在线观看| 99久久久亚洲精品蜜臀av| 搡老岳熟女国产| or卡值多少钱| 亚洲成人久久爱视频| 成人一区二区视频在线观看| 久久精品91蜜桃| 最新中文字幕久久久久| 午夜福利免费观看在线| 日韩亚洲欧美综合| 精品人妻一区二区三区麻豆 | 亚洲av不卡在线观看| 老司机深夜福利视频在线观看| 波多野结衣高清无吗| 国产一区二区激情短视频| 桃红色精品国产亚洲av| 欧美国产日韩亚洲一区| 两性午夜刺激爽爽歪歪视频在线观看| 国产真实伦视频高清在线观看 | 免费观看精品视频网站| 全区人妻精品视频| 久久精品夜夜夜夜夜久久蜜豆| 69人妻影院| 欧美色欧美亚洲另类二区| 精品一区二区三区av网在线观看| 亚洲va日本ⅴa欧美va伊人久久| 最好的美女福利视频网| 听说在线观看完整版免费高清| 精品无人区乱码1区二区| 啦啦啦观看免费观看视频高清| 波野结衣二区三区在线 | 亚洲熟妇熟女久久| 性色avwww在线观看| 国产精品久久电影中文字幕| 91九色精品人成在线观看| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 亚洲精华国产精华精| 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| 搡老妇女老女人老熟妇| 桃色一区二区三区在线观看| 国产激情欧美一区二区| 精品不卡国产一区二区三区| 91av网一区二区| 精品久久久久久久毛片微露脸| 好男人在线观看高清免费视频| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩东京热| 又粗又爽又猛毛片免费看| 丁香欧美五月| 激情在线观看视频在线高清| 波多野结衣高清无吗| 老汉色av国产亚洲站长工具| av视频在线观看入口| 国产成人欧美在线观看| 亚洲中文日韩欧美视频| 人妻夜夜爽99麻豆av| 国产精品免费一区二区三区在线| 欧美zozozo另类| 首页视频小说图片口味搜索| 18+在线观看网站| 国产爱豆传媒在线观看| 国产黄a三级三级三级人| 精品免费久久久久久久清纯| 国产精品亚洲av一区麻豆| 99久久99久久久精品蜜桃| 村上凉子中文字幕在线| 精品免费久久久久久久清纯| 老司机午夜福利在线观看视频| 国产av麻豆久久久久久久| 老汉色∧v一级毛片| 精品国产三级普通话版| 久久精品91无色码中文字幕| 久久久久久久亚洲中文字幕 | 日日夜夜操网爽| 久久久久久人人人人人| 18禁在线播放成人免费| 亚洲欧美精品综合久久99| 久久精品91蜜桃| 麻豆国产97在线/欧美| 国产日本99.免费观看| 在线十欧美十亚洲十日本专区| 搡女人真爽免费视频火全软件 | 国产极品精品免费视频能看的| 婷婷六月久久综合丁香| www.www免费av| 99久久精品一区二区三区| 无遮挡黄片免费观看| 久久天躁狠狠躁夜夜2o2o| xxx96com| 免费在线观看影片大全网站| 国产一区二区激情短视频| 18禁黄网站禁片午夜丰满| 中文字幕高清在线视频| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 欧美一级毛片孕妇| av天堂中文字幕网| 久久精品影院6| 夜夜夜夜夜久久久久| 99国产精品一区二区三区| 美女免费视频网站| 一个人观看的视频www高清免费观看| 亚洲avbb在线观看| 内射极品少妇av片p| 床上黄色一级片| 免费在线观看亚洲国产| 搞女人的毛片| 精华霜和精华液先用哪个| 成人无遮挡网站| 欧美一级a爱片免费观看看| 此物有八面人人有两片| 国产不卡一卡二| 叶爱在线成人免费视频播放| av女优亚洲男人天堂| 搡老熟女国产l中国老女人| 亚洲成人中文字幕在线播放| 男人的好看免费观看在线视频| 人妻丰满熟妇av一区二区三区| 亚洲 国产 在线| 免费看美女性在线毛片视频| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av| 深夜精品福利| 99热6这里只有精品| 757午夜福利合集在线观看| 久久久成人免费电影| 国产精品嫩草影院av在线观看 | 小说图片视频综合网站| 有码 亚洲区| 久久久国产成人精品二区| 网址你懂的国产日韩在线| 欧美黄色片欧美黄色片| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 亚洲成人精品中文字幕电影| 偷拍熟女少妇极品色| 人妻久久中文字幕网| 欧美日韩综合久久久久久 | 亚洲精品久久国产高清桃花| 国产高清三级在线| 91久久精品电影网| 国产精品精品国产色婷婷| 精品午夜福利视频在线观看一区| 在线a可以看的网站| 久久精品影院6| 成年免费大片在线观看| 欧美日韩乱码在线| 一本精品99久久精品77| 神马国产精品三级电影在线观看| 99riav亚洲国产免费| 亚洲无线观看免费| 一区福利在线观看| 亚洲最大成人手机在线| 午夜视频国产福利| 在线观看一区二区三区| 99精品久久久久人妻精品| 久久久久国产精品人妻aⅴ院| 天堂动漫精品| 亚洲av电影不卡..在线观看| 精品电影一区二区在线| 欧美在线一区亚洲| 窝窝影院91人妻| 欧美bdsm另类| 国产欧美日韩一区二区精品| 国内精品一区二区在线观看| 身体一侧抽搐| 国产真人三级小视频在线观看| 在线观看午夜福利视频| av专区在线播放| 免费在线观看影片大全网站| 国产精品精品国产色婷婷| 国产成人欧美在线观看| 久久精品亚洲精品国产色婷小说| 久久精品国产亚洲av香蕉五月| 国产美女午夜福利| 国产午夜精品论理片| 久久精品国产亚洲av香蕉五月| 女警被强在线播放| 国语自产精品视频在线第100页| 国产高清视频在线观看网站| 两人在一起打扑克的视频| 成年女人看的毛片在线观看| 成年女人永久免费观看视频| 99久久成人亚洲精品观看| 精品人妻1区二区| 久久久久九九精品影院| 欧美日本视频| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 欧美区成人在线视频| 我要搜黄色片| 午夜精品一区二区三区免费看| av欧美777| 中文字幕精品亚洲无线码一区| 老熟妇乱子伦视频在线观看| 国产一区二区激情短视频| 亚洲精品乱码久久久v下载方式 | 精品免费久久久久久久清纯| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 成人亚洲精品av一区二区| 12—13女人毛片做爰片一| www.www免费av| 国产精品亚洲美女久久久| 波多野结衣高清作品| 人妻久久中文字幕网| 好男人电影高清在线观看| 中国美女看黄片| 国产免费男女视频| 变态另类丝袜制服| 国产高清videossex| 亚洲精品日韩av片在线观看 | 国产在视频线在精品| 男女午夜视频在线观看| 俺也久久电影网| 搞女人的毛片| 久久精品影院6| 欧美极品一区二区三区四区| 一区二区三区高清视频在线| 99久久无色码亚洲精品果冻| 午夜视频国产福利| 久久精品国产清高在天天线| 欧美丝袜亚洲另类 | 啪啪无遮挡十八禁网站| 少妇的逼水好多| 黄片小视频在线播放| 老司机午夜福利在线观看视频| 悠悠久久av| 18美女黄网站色大片免费观看| 91在线观看av| 亚洲国产欧洲综合997久久,| 欧美另类亚洲清纯唯美| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 日韩国内少妇激情av| 成年女人永久免费观看视频| www.熟女人妻精品国产| 久久人人精品亚洲av| 麻豆成人午夜福利视频| 黄色成人免费大全| 在线观看美女被高潮喷水网站 | 国产亚洲av嫩草精品影院| 国产乱人伦免费视频| 日本免费a在线| 国产亚洲精品综合一区在线观看| 久久精品影院6| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看| 美女高潮的动态| 国产爱豆传媒在线观看| 日韩高清综合在线| 成人国产综合亚洲| 久久久精品欧美日韩精品| 成人一区二区视频在线观看| 亚洲精品色激情综合| 午夜久久久久精精品| 久久亚洲精品不卡| 婷婷丁香在线五月| 国产男靠女视频免费网站| 在线观看日韩欧美| 久久香蕉精品热| 一个人免费在线观看电影| 国产激情欧美一区二区| 岛国视频午夜一区免费看| 亚洲av不卡在线观看| 国产三级在线视频| 国产中年淑女户外野战色| 亚洲电影在线观看av| 免费人成视频x8x8入口观看| 亚洲无线观看免费| 欧美性猛交黑人性爽| 美女被艹到高潮喷水动态| 长腿黑丝高跟| 看免费av毛片| 国产av不卡久久| 精品国内亚洲2022精品成人| www.999成人在线观看| 日本在线视频免费播放| 精品人妻1区二区| 国产欧美日韩一区二区精品| 国产99白浆流出| 久久性视频一级片| 亚洲成人免费电影在线观看| 丝袜美腿在线中文| 成人高潮视频无遮挡免费网站| 一二三四社区在线视频社区8| xxx96com| 欧美黄色片欧美黄色片| 制服人妻中文乱码| 黄片小视频在线播放| 最新美女视频免费是黄的| 国产免费男女视频| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆 | 成年版毛片免费区| 久久亚洲真实| 婷婷精品国产亚洲av| 亚洲精华国产精华精| 国产精品98久久久久久宅男小说| 69av精品久久久久久| 白带黄色成豆腐渣| 一个人观看的视频www高清免费观看| 色综合婷婷激情| 露出奶头的视频| 少妇的逼水好多| 亚洲精品粉嫩美女一区| 99久久精品一区二区三区| 亚洲内射少妇av| 小蜜桃在线观看免费完整版高清| 亚洲精品粉嫩美女一区| 精品国内亚洲2022精品成人| 国产欧美日韩精品亚洲av| 啦啦啦观看免费观看视频高清| 国产欧美日韩精品亚洲av| 天堂网av新在线| 变态另类丝袜制服| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 韩国av一区二区三区四区| 香蕉丝袜av| 成人高潮视频无遮挡免费网站| 国产精品久久久久久人妻精品电影| 白带黄色成豆腐渣| 久久精品91无色码中文字幕| 亚洲人成网站在线播放欧美日韩| 久久久久九九精品影院| 亚洲国产高清在线一区二区三| 亚洲五月婷婷丁香| 国产免费一级a男人的天堂| 日韩有码中文字幕| 欧美又色又爽又黄视频| 亚洲一区高清亚洲精品| 18禁黄网站禁片免费观看直播| 99久久综合精品五月天人人| 成人三级黄色视频| 一级作爱视频免费观看| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 在线十欧美十亚洲十日本专区| 国产一区二区激情短视频|