• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Characterization of Sodium Sulfate/Silica Composite as a Shape-stabilized Phase Change Material by Sol-gel Method*

    2014-07-24 15:40:13GUOQiangandWANGTao

    GUO Qiang (郭 強(qiáng)) and WANG Tao (王 濤)

    State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    Preparation and Characterization of Sodium Sulfate/Silica Composite as a Shape-stabilized Phase Change Material by Sol-gel Method*

    GUO Qiang (郭 強(qiáng)) and WANG Tao (王 濤)**

    State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    A sodium sulfate (Na2SO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3as the silica source. Na2SO4in the composite acts as a latent heat storage substance for solid-liquid phase change, while SiO2acts as a support material to provide structural strength and prevent leakage of melted Na2SO4. The microstructure and composition of the prepared composite were characterized by the N2adsorption, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The results show that the prepared Na2SO4/SiO2composite is a nanostructured hybrid of Na2SO4and SiO2without new substances produced during the phase change. The macroscopic shape of the Na2SO4/SiO2composite after the melting and freezing cycles does not change and there is no leakage of Na2SO4. Determined by differential scanning calorimeter (DSC) analysis, the values of phase change latent heat of melting and freezing of the prepared Na2SO4/SiO2(50%, by mass) composite are 82.3 kJ·kg?1and 83.7 kJ·kg?1, and temperatures of melting and freezing are 886.0 °C and 880.6 °C, respectively. Furthermore, the Na2SO4/SiO2composite maintains good thermal energy storage and release ability even after 100 cycles of melting and freezing. The satisfactory thermal storage performance renders this composite a versatile tool for high-temperature thermal energy storage.

    sodium sulfate, silicon dioxide, phase change material, shape-stabilized, sol-gel method

    1 INTRODUCTION

    The technique of thermal energy storage is an effective way to improve the utilization of energy. In recent years, the interest for latent heat storage technology using phase-change materials (PCMs) increases, since they can store a large amount of thermal energy at a constant temperature due to their high fusion heat during phase transition [1-5]. The phase-change materials have been applied in many fields, such as solar energy storage, building energy saving, heat storage in space stations, and waste heat recovery and storage from industrial furnaces [6-9].

    A shape-stabilized PCM composed of a phasechange substance and a carrier matrix is a kind of novel PCMs, with phase change properties lying between solidsolid and solid-liquid phase change. They keep solid state even though the phase-change substance change from solid to liquid, which is more convenient for applications than the solid-liquid system [10-13]. Among the composite PCMs available, inorganic salt/ceramic shape-stabilized PCMs for high-temperature (>300 °C) thermal energy storage has significant advantages: good chemical and thermal stability, good high-temperature resistance and high heat conductivity [14-19].

    Na2SO4/SiO2composites are one kind of shapestabilized PCM with good heat storage performance at high temperatures [20-22]. As a phase-change substance, Na2SO4has a high latent heat of phase transition, excellent stability, and low vapor pressure. As a support material, SiO2, which will soften at 1400 °C, has good mechanical property, good thermal conductivity and thermal stability. Two main methods have been used for the preparation of Na2SO4/SiO2shape-stabilized phase change composites. In the infiltration method, the Na2SO4powder melts in an electric furnace and infiltrates into the porous SiO2matrix previously prepared with specific shape and size, and the Na2SO4/SiO2composite is formed when the furnace cools to room temperature [20]. In another method, a mixture of SiO2powder, Na2SO4, and an appropriate amount of an additive is pressed to form a short cylinder and sintered at high temperature [21]. In both methods, pure SiO2and Na2SO4are used as the raw materials, and a lot of energy is consumed for high-temperature sintering.

    In this study, Na2SiO3is used as the silicon source for the preparation of shape-stabilized PCM Na2SO4/SiO2composites by a sol-gel process. The Na2SiO3solution reacts with sulfuric acid to form a silica gel, and Na2SO4is generated in situ in the sol-gel process. A Na2SO4/SiO2shape-stabilized PCM for thermal energy storage is prepared by embedding Na2SO4in the silica xerogel network structure. The composites are characterized with respect to chemical compatibility by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The thermal properties and thermal reliabilities of the composite PCMs are investigated using the differential scanning calorimeter (DSC) analysis technique. The morphology and microstructure are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results demonstrate this composite has good properties and will be useful for the high-temperature thermal energy storage.

    2 EXPERIMENTAL

    2.1 Chemicals and materials

    Sodium metasilicate nonahydrate (Na2SiO3·9H2O, AR), sodium form cation exchange resin (732) and Na2SO4(98%, AR) were bought from Beijing Modern Eastern Fine Chemicals (Beijing, China). Deionized water was prepared in our laboratory by electrodialysis.

    2.2 Methods

    Na2SiO3solution (0.5 mol·L?1) passed through the sodium form cation exchange resin to remove Na+until pH of the solution reached 7. The solution (pH=7) was stirred vigorously for 10 min after adding Na2SO4. The mixture was kept at 25 °C in a water bath to gelatinize for 24 h. The gel formed was dried in the oven at 100 °C for 48 h to produce a powder Na2SO4/SiO2composite. The composite was pressed to form circular shapes at 4 MPa for 2 min to study the shape stability of the composite. The maximum mass percentage of Na2SO4dispersed into the PCM composites was determined as 50%. There was no leakage of Na2SO4from the surface of the composite up to this mass ratio even when it melts.

    2.3 Characterization

    The composition and structure of the prepared samples were characterized by infrared (IR) spectroscopy (FTIR-8201, Shimadzu, Kyoto, Japan), X-ray diffraction (XRD; D8A, Bruker, Karlsruhe, Germany), N2adsorption analyzer (Autosorb-1-C Quantachrome, USA), high-resolution transmission electron microscopy (TEM; JEM2010, JEOL, Kyoto, Japan) and scanning electron microscopy (SEM; JSM7401, Shimadzu, Kyoto, Japan). Differential scanning calorimetry (DSC; STA409PC, Selb, Netzsch, Germany) measurements were conducted to determine the phase-transition enthalpy, phase-transition temperature, and thermal stability for the prepared Na2SO4/SiO2shape-stabilized PCM. is caused by the SO stretching vibration and a peak at 617 cm?1is caused by the S O symmetric stretch-

    3 RESULTS AND DISCUSSION

    3.1 IR analysis of Na2SO4/SiO2composite

    The IR spectra of Na2SO4, SiO2, and the Na2SO4/SiO2[50% (by mass) Na2SO4] composite are shown in Fig. 1 (a). For Na2SO4, a peak at 1126 cm?1represents the SiOSi antisymmetric stretching vibration, and the peaks at 800 cm?1and 473 cm?1are caused by the SiO Si symmetric stretching and ing vibration [23]. For SiO2, the peak at 1049 cm?1bending vibrations. The peak at 3483 cm?1 in the IR spectrum of silica corresponds to the OH stretching vibration from the SiOH groups and adsorbed H2O in the silica [24]. Characteristic peaks at 1103 cm?1, 794 cm?1, 621 cm?1, and 486 cm?1are found in the IR spectrum of the composite PCM without significant new peaks. Fig. 1 (b) shows the IR spectrum of the supporting SiO2with removal of Na2SO4in the composite by washing and extracting, which is quite consistent with the IR spectrum of pure SiO2. Thus there is no residual Na2SO4in the supporting SiO2after washing and extracting Na2SO4. The IR spectral analysis indicates that the prepared composite PCM is a physical hybrid of Na2SO4and SiO2only.

    3.2 XRD analysis of Na2SO4/SiO2composite

    X-ray spectra of the Na2SO4/SiO2[50% (by mass) Na2SO4] composites after different heating and cooling cycles are shown in Fig. 2. Although they look different, only Na2SO4and SiO2are present in the composite by phase analysis. The difference in the X-ray spectra is mainly caused by crystal structure change of SiO2and Na2SO4during the melting and cooling cycle. The much stronger SiO2peaks are attributed to the change of SiO2in the composite PCM from an amorphous structure to a crystalline structure, while the change of Na2SO4peaks indicates the crystal transformation of Na2SO4after the heating-cooling process [25]. Formation of new compounds is not found during the process, demonstrating good chemical stability of this Na2SO4/SiO2composite.

    Figure 1 FTIR spectra for: Na2SO4, SiO2, and Na2SO4/SiO2composite (a), pure SiO2and supporting SiO2(b)

    Figure 2 X-ray spectrum of Na2SO4/SiO2composite after different heating and cooling cycles

    3.3 Morphology characterization of Na2SO4/SiO2composite

    The macroscopic and external SEM photographs of the Na2SO4/SiO2[50% (by mass) Na2SO4] composite are shown in Fig. 3. Apart from a slight shrink after the first heating-cooling cycle, the macroscopic shape of the composite does not change after other cycles of melting and cooling and there is no leakage of Na2SO4in the composite [Fig. 3 (a)]. The average thermal expansion coefficient of the composite determined is 35×10?6°C?1at 800-900 °C, which is in the similar level as reported by Huang et al [25]. These results indicate that the Na2SO4/SiO2composite is well shape-stable. The surface SEM shows that SiO2and Na2SO4are distributed in a staggered way with scales less than 100 nm [Fig. 3 (b)]. After heating to 950 °C and cooling to room temperature, Na2SO4crystals are found in some small disjunctive regions (< 1 μm2) on the external surface of the sample [Fig. 3 (c)]. This phenomenon implies that some Na2SO4permeates through from the interior of the sample when it melts. However, the melted Na2SO4only penetrates and adheres to the micro-areas, so the solid shape of the sample is unchanged. There are a number of honeycomb-like holes on the surface of the sample after 10 heating-cooling cycles [Fig. 3 (d)], caused by the seepage of melted Na2SO4into the void of the SiO2matrix due to capillary force and surface tension. All these results show that the Na2SO4/SiO2composite is capable of maintaining its shape in the solid state without losing melted Na2SO4during the phase-change process.

    3.4 Microstructure and pore size distribution analysis of Na2SO4/SiO2composite

    TEM image of the Na2SO4/SiO2composite shows that the supporting SiO2in the composite forms a porous network structure with the pore size below 20 nm to provide strong supporting body for the composite (Fig. 4). Fig. 5 shows the pore size distributions of the composite [50% (by mass) Na2SO4] and the supporting SiO2after removal of Na2SO4. There is no collapse of SiO2framework after removal of Na2SO4by washing and extracting without stirring, because the nanoporous SiO2framework has enough mechanical strength. The range of pore size and pore volume are 2.8-7.5 nm and 0.261 cm3·g?1for the composite, respectively, and 3.6-16.3 nm and 0.819 cm3·g?1for the supporting SiO2. From larger pore sizeand pore volume of the supporting SiO2after removing Na2SO4, we conclude that Na2SO4in the prepared composite is coated in SiO2porous network structure.

    Figure 3 Images of the Na2SO4/SiO2composite

    Figure 4 The TEM images of the Na2SO4/SiO2composite

    Figure 5 Isotherm N2adsorption-desorption curves and pore size distribution curves of Na2SO4/SiO2composite and SiO2support after removing Na2SO4

    3.5 Thermal analysis of Na2SO4/SiO2composite

    DSC curves of Na2SO4and the Na2SO4/SiO2composite at scanning rate of 20 °C·min?1are shown in Fig. 6. The melting heat and freezing latent heat are respectively 167.1 and 171.4 kJ·kg?1at its melting temperature of 888.7 °C and freezing temperature of 888.2 °C for pure Na2SO4. The phase-transition enthalpies of the prepared composite [50% (by mass) Na2SO4] are 82.3 kJ·kg?1at 886.0 °C for melting and 83.7 kJ·kg?1at 880.6 °C for freezing. The melting heat of both pure Na2SO4and the composite is less than its crystallization heat, possibly caused by crystal structure change of Na2SO4during freezing [25]. The melting point of Na2SO4confined in the network structure of the SiO2support is obviously lower than that of Na2SO4in the bulk state. This melting point depression is considered to be caused mainly by the small-size effect and the surface effect [26, 27].

    Figure 6 DSC curves of Na2SO4and Na2SO4/SiO2(50%, by mass) composite at scanning rate of 20 °C·min?1

    To test the thermal cycling stability, we determined the phase change latent heats of the Na2SO4/SiO2composite (50%, by mass) after 100 cycles of heating and cooling between 750 °C and 950 °C at a rate of 20 °C·min?1. Fig. 7 shows that the melting latent heat of the composite is less than the crystallization latent heat. In addition, the phase change latent heats of the composite decreases with the increase of the number of thermal cycles, which may be caused by crystal structure change of Na2SO4[25, 28].

    Figure 7 Phase change enthalpy of Na2SO4/SiO2(50%, by mass) composite after different cycles of melting and cooling

    4 CONCLUSIONS

    The Na2SO4/SiO2composite was prepared as the shape-stabilized phase-change material by sol-gel process. The composite [50% (by mass) Na2SO4] can maintain its solid shape without any leakage of Na2SO4after melting and freezing cycles. In the composite, Na2SO4is coated in SiO2porous network structure with average pore diameter less 20 nm. The phase change latent heats of melting and freezing of the prepared Na2SO4/SiO2composite are 82.3 and 83.7 kJ·kg?1, and temperatures are 886.0 °C and 880.6 °C, respectively. The Na2SO4/SiO2composite maintains good thermal energy storage and release ability after 100 cycles of meting and freezing. The thermal storage performance renders this composite a versatile tool for the high-temperature thermal energy storage.

    REFERENCES

    1 Zalba, B., Marin, J.M., Cabeza, L.F., Mehling, H., “Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications”, Appl. Therm. Eng., 23, 251-283 (2003).

    2 Farid, M.M., Khudhair, A.M., Razack, S.AK., Al-Hallaj, S., “A review on phase change energy storage: Materials and applications”, Energ. Convers. Manag., 45, 1597-1615 (2004).

    3 Sharma, S.D., Sagara, K., “Latent heat storage materials and systems: A review”, International Journal of Green Energy, 2, 1-56 (2005).

    4 Regin, A.F., Solanki, S.C., Saini, J.S., “Heat transfer characteristics of thermal energy storage system using PCM capsules: A review”, Renew. Sust. Energ. Rev., 12, 2438-2458 (2008).

    5 Raoux, S., “Phase change materials”, Ann. Rev. Mater. Res., 39, 25-48 (2009).

    6 Kenisarin, M., Mahkamov, K., “Solar energy storage using phase change materials”, Renew. Sust. Energ. Rev., 11, 1913-1965 (2007).

    7 Tyagi, V.V., Buddhi, D., “PCM thermal storage in buildings: A state of art”, Renew. Sust. Energ. Rev., 11, 1146-1166 (2007).

    8 Mondal, S., “Phase change materials for smart textiles—An overview”, Appl. Therm. Eng., 28, 1536-1550 (2008).

    9 Cabeza, L.F., Castell, A., Barreneche, C., Gracia, A., Fernandez, A.I.,“Materials used as PCM in thermal energy storage in buildings: A review”, Renew. Sust. Energ. Rev., 15, 1675-1695 (2011).

    10 Feng, L.L., Zheng, J., Yang, H.Z., Guo, Y.L., Li, W., Li, X.G.,“Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials”, Sol. Energ. Mater. Sol. C., 95, 644-650 (2010).

    11 Wang, Y., Xia, T.D., Zheng, H., Feng, H.X., “Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage”, Energ. Buildings, 43, 2365-2370 (2011).

    12 Ahmet, S., Kamil, K., “Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applications”, Chin. J. Chem. Eng., 14, 270-275 (2006).

    13 Sun, D., Wang, L.J., Li, C.M., “Preparation and thermal properties of paraffin/expanded perlite composite as form-stable phase change material”, Materials Letters, 108, 247-249 (2013).

    14 Petri, R.J., Ong, E.T., Claar, T.D., “High-temperature salt/ceramic thermal storage phase-change media”, In: Proceedings of the 18th Intersociety Energy Conversion Engineering Conference, American Institute of Chemical Engineers, Orlando, 1769-1774 (1983).

    15 Notter, W., Hahne, E., “Thermal expansion models for polycrystalline salt-ceramics”, Thermochim Acta, 290, 93-100 (1997).

    16 Kenisarin, M.M., “High-temperature phase change materials for thermal energy storage”, Renew. Sust. Energ. Rev., 14, 955-970 (2010).

    17 Mao, A., Park, J.H., Han, G.Y., Seo, T., Kang, Y., “Heat transfer characteristics of high temperature molten salt for storage of thermal energy”, Korean J. Chem. Eng., 27, 1452-1457 (2010).

    18 Zhao, C.Y., Wu, Z.G., “Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite”, Sol. Energ. Mater. Sol. C., 95, 636-643 (2011).

    19 Wang, T., Mantha, D., Reddy, R.G., “Thermal stability of the eutectic composition in LiNO3-NaNO3-KNO3ternary system used for thermal energy storage”, Sol. Energ. Mater. Sol. C., 100, 162-168 (2012).

    20 Notter, W., Lechner, T., Gro, U., Hahne, E., “Thermophysical properties of the composite ceramic-salt system (SiO2/Na2SO4)”, Thermochim Acta, 218, 455-463 (1993).

    21 Huang, P., Guo, Y., Quirk, R.P., Ruan, J., Lotz, B., Thomas, E.L., Hsiao, B.S., Avila-Orta, C.A., Sics, I., Cheng, Z.D., “Comparison of poly(ethylene oxide) crystal orientations and crystallization behaviors in nano-confined cylinders constructed by a poly(ethylene oxide)-β-polystyrene diblock copolymer and a blend of poly(ethylene oxide)-b-polystyrene and polystyrene”, Polymer, 47, 5457-5466 (2006).

    22 Shi, D.Z., Rapp, R.A., “The solubility of SiO2in fused Na2SO4at 900 °C”, J. Electrochem. Soc., 133, 849-850 (1986).

    23 Qu, Q., Li, L., Bai, W., Yan, C.W., “Initial atmospheric corrosion of zinc in presence of Na2SO4and (NH4)2SO4”, T. Nonferr. Metal. Soc., 16, 887-891 (2006). (in Chinese)

    24 Wang, W.L., Yang, X.X., Fang, Y.T., Ding, J., “Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials”, Appl. Energ., 86, 170-174 (2009).

    25 Huang, J., Zhang, R.Y., Wu, B., “Crystal forms transformation and thermal expansion property of polycrystalline Na2SO4/SiO2composite phase change energy storage materials”, J. Mater. Eng., 12, 16-20 (2006). (in Chinese)

    26 Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., “Effects of confinement on freezing and melting”, J. Phys-condens. Mater., 18, 15-68 (2006).

    27 Cheng, T., Charnaya, E.V., Podorozhkin, D.Y., Lee, M.K., Baryshnikov, S.V., “Ferroelectricity and gradual melting in NaNO2particles confined within porous alumina”, Physica. Status. Solidi. B., 246, 2346-2351 (2009).

    28 Jiang, S., Ji, X., An, L., Jiang, B., “Crystallization behavior of PCL in hybrid confined environment”, Polymer, 42, 3901-3907 (2001).

    MATERIALS AND PRODUCT ENGINEERING

    Chinese Journal of Chemical Engineering, 22(3) 360—364 (2014)

    10.1016/S1004-9541(14)60047-1

    2012-06-14, accepted 2013-01-07.

    *Supported by the National Natural Science Foundation of China (2107611).

    **To whom correspondence should be addressed. E-mail: taowang@tsinghua.edu.cn

    18禁在线播放成人免费| 国产av国产精品国产| 国产黄片视频在线免费观看| 人妻系列 视频| 精品视频人人做人人爽| 你懂的网址亚洲精品在线观看| 亚洲精品日韩av片在线观看| 国产高清国产精品国产三级 | 人人妻人人爽人人添夜夜欢视频 | 免费人妻精品一区二区三区视频| 狂野欧美激情性xxxx在线观看| 国产淫片久久久久久久久| 狠狠精品人妻久久久久久综合| 日韩成人伦理影院| av网站免费在线观看视频| 婷婷色综合大香蕉| 久久久久久久精品精品| 国产欧美日韩一区二区三区在线 | 国产欧美日韩精品一区二区| 久久久亚洲精品成人影院| 亚洲av成人精品一二三区| 一边亲一边摸免费视频| 国产精品三级大全| 精品少妇久久久久久888优播| 热99国产精品久久久久久7| 久久久久性生活片| 老熟女久久久| 亚洲久久久国产精品| 寂寞人妻少妇视频99o| 老司机影院毛片| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 欧美一区二区亚洲| 日韩免费高清中文字幕av| 男人爽女人下面视频在线观看| 建设人人有责人人尽责人人享有的 | 国产精品免费大片| 欧美日韩精品成人综合77777| 街头女战士在线观看网站| 只有这里有精品99| 深夜a级毛片| 久久久久久九九精品二区国产| 男女边摸边吃奶| 成人毛片60女人毛片免费| 亚洲电影在线观看av| 99视频精品全部免费 在线| 人妻夜夜爽99麻豆av| 精品人妻视频免费看| 亚洲国产av新网站| 国产国拍精品亚洲av在线观看| 欧美精品国产亚洲| 搡老乐熟女国产| 久久6这里有精品| 99久久精品国产国产毛片| 狂野欧美激情性bbbbbb| 亚洲国产精品国产精品| 制服丝袜香蕉在线| 精品久久国产蜜桃| 干丝袜人妻中文字幕| 亚洲国产精品999| 一区二区三区精品91| 成人18禁高潮啪啪吃奶动态图 | 高清av免费在线| 久久久久网色| 中文资源天堂在线| 免费播放大片免费观看视频在线观看| 亚洲精品国产av成人精品| av在线app专区| 在线天堂最新版资源| 我的女老师完整版在线观看| 午夜福利影视在线免费观看| 国产欧美日韩精品一区二区| 汤姆久久久久久久影院中文字幕| 国产av国产精品国产| 久久久久久久国产电影| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级 | www.色视频.com| 一本久久精品| 赤兔流量卡办理| 亚洲av国产av综合av卡| 亚洲av电影在线观看一区二区三区| 久久人人爽人人片av| 日韩成人伦理影院| 亚洲怡红院男人天堂| 六月丁香七月| 亚洲三级黄色毛片| 亚洲欧美精品专区久久| 久久6这里有精品| 亚洲不卡免费看| 久久国产精品大桥未久av | 亚洲综合精品二区| 国产欧美日韩精品一区二区| 久久久午夜欧美精品| 99九九线精品视频在线观看视频| 亚洲图色成人| 欧美日韩一区二区视频在线观看视频在线| 男的添女的下面高潮视频| 国产精品免费大片| 欧美成人精品欧美一级黄| 大香蕉久久网| 九九在线视频观看精品| 一区二区三区精品91| 97在线视频观看| 国产精品熟女久久久久浪| 高清在线视频一区二区三区| 一个人看视频在线观看www免费| 身体一侧抽搐| 麻豆国产97在线/欧美| 麻豆成人午夜福利视频| 免费看光身美女| 成人国产麻豆网| 成人无遮挡网站| 国产一区有黄有色的免费视频| 国内少妇人妻偷人精品xxx网站| 中文精品一卡2卡3卡4更新| 国产片特级美女逼逼视频| 国产av一区二区精品久久 | 综合色丁香网| 在线亚洲精品国产二区图片欧美 | 国产一区二区在线观看日韩| 欧美另类一区| 女的被弄到高潮叫床怎么办| 欧美三级亚洲精品| 欧美另类一区| 国产深夜福利视频在线观看| 国产爱豆传媒在线观看| 啦啦啦视频在线资源免费观看| 高清在线视频一区二区三区| 91午夜精品亚洲一区二区三区| 99九九线精品视频在线观看视频| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 99久久综合免费| 最近最新中文字幕大全电影3| 性高湖久久久久久久久免费观看| 1000部很黄的大片| 精品人妻熟女av久视频| 欧美精品亚洲一区二区| 超碰97精品在线观看| 亚洲国产精品国产精品| 韩国高清视频一区二区三区| 麻豆乱淫一区二区| 亚洲国产精品成人久久小说| 麻豆成人午夜福利视频| 美女高潮的动态| 午夜视频国产福利| 久久国产精品大桥未久av | 久久久精品免费免费高清| 久久久欧美国产精品| 国产精品.久久久| 99视频精品全部免费 在线| 久久久久久九九精品二区国产| 亚洲国产欧美在线一区| 丰满少妇做爰视频| 日韩一区二区三区影片| 成人综合一区亚洲| 欧美+日韩+精品| 欧美+日韩+精品| 国产精品一区二区三区四区免费观看| 日韩av不卡免费在线播放| 日韩不卡一区二区三区视频在线| 欧美性感艳星| av女优亚洲男人天堂| 欧美精品亚洲一区二区| 一级av片app| 精品亚洲成国产av| av专区在线播放| 最近中文字幕2019免费版| 久久99蜜桃精品久久| 欧美另类一区| 日韩免费高清中文字幕av| 香蕉精品网在线| 免费黄频网站在线观看国产| 岛国毛片在线播放| 亚洲av中文av极速乱| 国产国拍精品亚洲av在线观看| 亚洲高清免费不卡视频| 久热久热在线精品观看| 国产精品人妻久久久久久| 亚洲av欧美aⅴ国产| 日韩中文字幕视频在线看片 | 中国美白少妇内射xxxbb| 欧美成人午夜免费资源| 亚洲,欧美,日韩| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频| 亚洲第一av免费看| 精品国产乱码久久久久久小说| 国产亚洲精品久久久com| 中文资源天堂在线| 啦啦啦在线观看免费高清www| 99热这里只有是精品在线观看| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 亚洲av不卡在线观看| 亚洲电影在线观看av| 欧美性感艳星| 免费人成在线观看视频色| 亚洲天堂av无毛| 最近手机中文字幕大全| 国产欧美亚洲国产| 丰满乱子伦码专区| av在线老鸭窝| 3wmmmm亚洲av在线观看| 亚洲精品第二区| 性高湖久久久久久久久免费观看| 久久影院123| 直男gayav资源| 国产乱人视频| 亚洲四区av| 亚洲久久久国产精品| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久国产电影| 高清黄色对白视频在线免费看 | 国产精品蜜桃在线观看| 欧美精品一区二区大全| 久久国产亚洲av麻豆专区| 青春草视频在线免费观看| 日本午夜av视频| 在线免费十八禁| 麻豆成人av视频| 五月玫瑰六月丁香| 97在线人人人人妻| 美女主播在线视频| 三级国产精品片| 精品国产露脸久久av麻豆| 少妇裸体淫交视频免费看高清| 国产成人精品一,二区| 国产一区二区三区av在线| 在现免费观看毛片| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 国产成人精品一,二区| 亚洲精品日韩av片在线观看| 麻豆乱淫一区二区| 午夜福利高清视频| 婷婷色综合www| 不卡视频在线观看欧美| 成人18禁高潮啪啪吃奶动态图 | 一本一本综合久久| 亚洲成色77777| 成人影院久久| 99国产精品免费福利视频| 成人国产av品久久久| 王馨瑶露胸无遮挡在线观看| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| 新久久久久国产一级毛片| 国产一区二区三区av在线| 国产淫片久久久久久久久| 亚洲色图av天堂| 91久久精品国产一区二区三区| 新久久久久国产一级毛片| 亚洲美女黄色视频免费看| 国产老妇伦熟女老妇高清| 国产欧美亚洲国产| 久久影院123| 在线观看人妻少妇| 日韩制服骚丝袜av| 亚洲精品国产av蜜桃| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 欧美少妇被猛烈插入视频| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 国产无遮挡羞羞视频在线观看| 亚洲av日韩在线播放| 亚洲高清免费不卡视频| 高清视频免费观看一区二区| 九色成人免费人妻av| 高清毛片免费看| 国产精品偷伦视频观看了| 国产淫片久久久久久久久| 成人亚洲欧美一区二区av| 欧美一区二区亚洲| 日韩成人伦理影院| 日韩强制内射视频| 久久毛片免费看一区二区三区| 我的女老师完整版在线观看| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 国产69精品久久久久777片| 1000部很黄的大片| 亚洲精品日本国产第一区| 大陆偷拍与自拍| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 久久影院123| h视频一区二区三区| 国产成人91sexporn| 成人二区视频| av播播在线观看一区| 国产黄色视频一区二区在线观看| 国产成人精品久久久久久| 99久久综合免费| 亚洲欧美日韩东京热| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| 少妇丰满av| 在线 av 中文字幕| 插逼视频在线观看| 亚洲综合精品二区| 波野结衣二区三区在线| 天天躁日日操中文字幕| 亚洲经典国产精华液单| 毛片一级片免费看久久久久| 国产成人精品福利久久| 国产成人免费无遮挡视频| 在线精品无人区一区二区三 | 国产欧美亚洲国产| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 久久影院123| av视频免费观看在线观看| 亚洲av福利一区| 国产日韩欧美亚洲二区| 久久精品久久久久久噜噜老黄| 亚洲av综合色区一区| 日韩av在线免费看完整版不卡| 国内精品宾馆在线| 亚洲欧美一区二区三区黑人 | 久久国产精品男人的天堂亚洲 | 亚洲性久久影院| av一本久久久久| 免费人成在线观看视频色| 亚洲精品乱久久久久久| 国产日韩欧美在线精品| xxx大片免费视频| av在线老鸭窝| xxx大片免费视频| av在线老鸭窝| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲第一区二区三区不卡| 天堂8中文在线网| 日韩欧美一区视频在线观看 | 久久久久网色| 91久久精品电影网| 亚洲欧美一区二区三区国产| 午夜日本视频在线| 国产乱来视频区| 久久热精品热| 免费在线观看成人毛片| 蜜臀久久99精品久久宅男| 久久久久国产精品人妻一区二区| 亚洲一区二区三区欧美精品| 亚洲精品成人av观看孕妇| 久久久久久九九精品二区国产| 国产淫片久久久久久久久| 寂寞人妻少妇视频99o| 高清欧美精品videossex| 九九在线视频观看精品| 99久国产av精品国产电影| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 永久网站在线| 精品人妻熟女av久视频| 亚洲精品久久久久久婷婷小说| 最近的中文字幕免费完整| 国产爱豆传媒在线观看| 久久人人爽人人片av| 午夜日本视频在线| 欧美丝袜亚洲另类| 日本午夜av视频| 如何舔出高潮| 亚洲国产av新网站| 一个人免费看片子| 午夜激情久久久久久久| 国产伦精品一区二区三区四那| 九色成人免费人妻av| 男女无遮挡免费网站观看| 久久人人爽人人爽人人片va| 午夜视频国产福利| 欧美一区二区亚洲| www.av在线官网国产| 欧美zozozo另类| 国产欧美亚洲国产| 欧美成人一区二区免费高清观看| 你懂的网址亚洲精品在线观看| 中文字幕精品免费在线观看视频 | 免费看av在线观看网站| 久久精品国产自在天天线| 纯流量卡能插随身wifi吗| 又大又黄又爽视频免费| 精品亚洲成国产av| 一边亲一边摸免费视频| kizo精华| 啦啦啦中文免费视频观看日本| 不卡视频在线观看欧美| 亚洲成人手机| 国产熟女欧美一区二区| 国产精品久久久久久精品电影小说 | 最近中文字幕2019免费版| 午夜老司机福利剧场| 久久女婷五月综合色啪小说| 国产亚洲精品久久久com| av在线蜜桃| 丝袜脚勾引网站| 日韩人妻高清精品专区| 国产乱来视频区| 一区二区三区精品91| 一级av片app| 日韩伦理黄色片| 亚洲图色成人| 免费不卡的大黄色大毛片视频在线观看| 色视频www国产| 国产真实伦视频高清在线观看| 国产69精品久久久久777片| 欧美日韩视频精品一区| 精品99又大又爽又粗少妇毛片| 视频区图区小说| av在线app专区| 大码成人一级视频| 小蜜桃在线观看免费完整版高清| 深爱激情五月婷婷| 国产欧美亚洲国产| 国产一区二区三区av在线| 晚上一个人看的免费电影| 亚洲av成人精品一二三区| av在线app专区| 大码成人一级视频| 国产精品人妻久久久久久| 视频中文字幕在线观看| 成人免费观看视频高清| 99久国产av精品国产电影| 亚洲av欧美aⅴ国产| 免费在线观看成人毛片| 久久精品国产自在天天线| 日日啪夜夜爽| 一级a做视频免费观看| 少妇的逼水好多| 国产精品精品国产色婷婷| 国产在线视频一区二区| 欧美日韩国产mv在线观看视频 | 干丝袜人妻中文字幕| 在线观看一区二区三区| 一级爰片在线观看| 欧美少妇被猛烈插入视频| 欧美+日韩+精品| 天天躁日日操中文字幕| 人妻夜夜爽99麻豆av| 少妇熟女欧美另类| 久久精品国产自在天天线| 国产日韩欧美亚洲二区| 国产亚洲午夜精品一区二区久久| 99re6热这里在线精品视频| 久久国产亚洲av麻豆专区| 国产有黄有色有爽视频| 国产精品一区www在线观看| 国产精品偷伦视频观看了| 中文字幕免费在线视频6| 亚洲av成人精品一二三区| 国产精品麻豆人妻色哟哟久久| 九色成人免费人妻av| 国产伦理片在线播放av一区| 六月丁香七月| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 国产一区二区在线观看日韩| 亚洲国产精品一区三区| 亚洲欧美日韩东京热| 久久午夜福利片| 国产成人精品久久久久久| 国产中年淑女户外野战色| 深夜a级毛片| 高清在线视频一区二区三区| 多毛熟女@视频| 亚洲,欧美,日韩| 欧美xxxx黑人xx丫x性爽| 永久免费av网站大全| 国产视频内射| 搡女人真爽免费视频火全软件| 夜夜爽夜夜爽视频| 欧美日韩视频高清一区二区三区二| 国产白丝娇喘喷水9色精品| 免费观看的影片在线观看| 亚洲一区二区三区欧美精品| 99热这里只有精品一区| xxx大片免费视频| 日韩成人伦理影院| av国产久精品久网站免费入址| 午夜福利网站1000一区二区三区| 妹子高潮喷水视频| 七月丁香在线播放| 欧美高清成人免费视频www| 女人十人毛片免费观看3o分钟| 亚洲第一区二区三区不卡| 韩国av在线不卡| 搡女人真爽免费视频火全软件| 中文字幕久久专区| 少妇裸体淫交视频免费看高清| 欧美日韩综合久久久久久| 亚洲欧美一区二区三区国产| 在线观看一区二区三区| 精品视频人人做人人爽| 亚洲色图综合在线观看| 欧美xxⅹ黑人| 国产精品久久久久久精品古装| 我的女老师完整版在线观看| 91精品一卡2卡3卡4卡| 国产精品久久久久久av不卡| 亚洲电影在线观看av| 国产精品国产三级国产专区5o| 九九久久精品国产亚洲av麻豆| av专区在线播放| 国产av国产精品国产| 亚洲欧美一区二区三区黑人 | 欧美激情极品国产一区二区三区 | 亚洲熟女精品中文字幕| 在线观看人妻少妇| 深爱激情五月婷婷| 肉色欧美久久久久久久蜜桃| 久久精品久久久久久久性| 国产精品一及| 亚洲欧美成人精品一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲精品视频女| 国产深夜福利视频在线观看| 丰满乱子伦码专区| 欧美最新免费一区二区三区| 久久久久国产精品人妻一区二区| 国产伦精品一区二区三区视频9| a级一级毛片免费在线观看| 国产黄片视频在线免费观看| av在线蜜桃| 香蕉精品网在线| 久久人人爽人人爽人人片va| 黄色配什么色好看| 国产亚洲精品久久久com| 国产午夜精品久久久久久一区二区三区| 少妇人妻精品综合一区二区| 亚洲美女视频黄频| 国产又色又爽无遮挡免| 大片免费播放器 马上看| 日韩av在线免费看完整版不卡| 国产深夜福利视频在线观看| 久久ye,这里只有精品| 成人亚洲欧美一区二区av| 少妇人妻精品综合一区二区| 美女国产视频在线观看| 18+在线观看网站| 午夜老司机福利剧场| 只有这里有精品99| 少妇精品久久久久久久| 久久久久久久精品精品| 纵有疾风起免费观看全集完整版| 精品99又大又爽又粗少妇毛片| 国产精品三级大全| 黄色日韩在线| 国产视频内射| 五月玫瑰六月丁香| www.av在线官网国产| 精品人妻熟女av久视频| 亚洲国产av新网站| 91精品一卡2卡3卡4卡| 亚洲欧美清纯卡通| 日本色播在线视频| 男人添女人高潮全过程视频| 校园人妻丝袜中文字幕| 久久女婷五月综合色啪小说| 国产精品久久久久成人av| 亚洲av日韩在线播放| 亚洲欧美一区二区三区国产| 久久99蜜桃精品久久| 国产精品久久久久久久久免| 成人国产麻豆网| 国产大屁股一区二区在线视频| 久久久久视频综合| 秋霞伦理黄片| 欧美日韩视频高清一区二区三区二| 女人久久www免费人成看片| 婷婷色综合www| 成人毛片a级毛片在线播放| 亚洲欧美日韩另类电影网站 | 久久久国产一区二区| av视频免费观看在线观看| 丰满迷人的少妇在线观看| 中文资源天堂在线| 国产黄片视频在线免费观看| 三级经典国产精品| 亚洲va在线va天堂va国产| 纵有疾风起免费观看全集完整版| 丝袜脚勾引网站| 久久精品人妻少妇| 免费看av在线观看网站| av国产免费在线观看| 又爽又黄a免费视频| 日韩中文字幕视频在线看片 | 2018国产大陆天天弄谢| 97超碰精品成人国产| 日本爱情动作片www.在线观看| av天堂中文字幕网| 在线 av 中文字幕| 只有这里有精品99| 欧美成人午夜免费资源| av又黄又爽大尺度在线免费看| 18+在线观看网站| 高清不卡的av网站| 亚洲第一区二区三区不卡| 免费黄色在线免费观看| 3wmmmm亚洲av在线观看| tube8黄色片| 成人特级av手机在线观看| 日本黄色日本黄色录像| 最近手机中文字幕大全| 亚洲精品视频女| 99热这里只有精品一区| av又黄又爽大尺度在线免费看| 亚洲精华国产精华液的使用体验| 国产av国产精品国产| 亚洲第一区二区三区不卡| 99热6这里只有精品| 少妇丰满av| 中文资源天堂在线|