• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of a Novel Solid Acid with both Sulfonic and Carbonyl Acid Groups and Its Catalytic Activities in Acetalization*

    2014-07-24 15:40:13CHENGYuxiao程欲曉ZHOUYuyan周宇艷ZHANGJidong張繼東FEIXudong費(fèi)旭東MATengzhou馬騰洲andLIANGXuezheng梁學(xué)正
    關(guān)鍵詞:旭東

    CHENG Yuxiao (程欲曉), ZHOU Yuyan (周宇艷), ZHANG Jidong (張繼東), FEI Xudong (費(fèi)旭東), MA Tengzhou (馬騰洲)and LIANG Xuezheng (梁學(xué)正)

    1Inspection Center of Industrial Products and Raw Materials, Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, China

    2Institute of Applied Chemistry, Shaoxing University, Shaoxing 312000, China

    Synthesis of a Novel Solid Acid with both Sulfonic and Carbonyl Acid Groups and Its Catalytic Activities in Acetalization*

    CHENG Yuxiao (程欲曉)1, ZHOU Yuyan (周宇艷)1, ZHANG Jidong (張繼東)1, FEI Xudong (費(fèi)旭東)1, MA Tengzhou (馬騰洲)1and LIANG Xuezheng (梁學(xué)正)2,**

    1Inspection Center of Industrial Products and Raw Materials, Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, China

    2Institute of Applied Chemistry, Shaoxing University, Shaoxing 312000, China

    The novel solid acid with both sulfonic and carbonyl acid groups has been synthesized from 3-((2-sulfoethoxy) carbonyl)acrylic acid and tetraethyl orthosilicate (TEOS). The catalytic activities were investigated through the acetalization. The results showed that the novel solid acid was very efficient for the reactions with the high yields. The high acidity, high stability and reusability were the key feature of the novel solid acid. Moreover, the sulfonic and carbonyl acid groups could cooperate during the catalytic process, which improved its catalytic activities. The catalyst shows recyclability, and hold great potential for replacement of homogeneous catalysts.

    solid acid with sulfonic and carbonyl acid groups, acetalization, green chemistry

    1 INTRODUCTION

    Acid catalysts are very important in chemical industries for production of various useful chemicals [1]. Large amounts of homogeneous acids such as sulfuric acid have been used for the purpose, which needs tedious post-treatment and produces numerous wastes [2, 3]. Various solid acids were developed to replace these acids [4-6]. Recently, carbon based solid acid catalysts attract much attention because of the high acidity and catalytic activities [7-9]. However, these acids have low Brunauer-Emmett-Teller (BET) surface with amorphous structures. The hydrophilic groups on the surface prevent incorporation of hydrophobic molecules interacted with the acid sites, which makes it unsuitable for the reactions between hydrophobic compounds. Furthermore, the amorphous structure adds the difficulty in recovery [10].

    The silica materials have attracted much attention because of their adjustable porous structures and potential applications in catalysis [11, 12]. However, the pure siliceous materials are difficult to act as catalysts for little functional groups [13]. Therefore, various acid sites are introduced onto the silica structure and act as solid acid catalysts. Sulfuric acid is successfully supported on silica-gel and showed high activities for aromatic nitration [14] and synthesis of trisubstituted imidazoles [15]. The silica-included heteropolyacid catalysts show high activities for the alkylation of phenol [16]. Lewis acid supported on silica-gel is developed and used for the synthesis of benzophenones [17]. Perchloric acid is also immobilized on silica and shows high activities for the protection of hydroxyl groups [18].

    Although the catalytic activities of these silica supported acid catalyst are very high for the first time, the recycled activities drop quickly, which indicates that the solid acids are not stable and the active sites are depleted from the solid substrate. It is generally known that the liquid acids such as sulfuric acid, perchloric acid, Lewis acid and heteropolyacid own relatively low molecule sizes and the active sites could pass through the silica pores and escape from the solid, which accounts for the low stability. In this work, novel solid acid was synthesized from 3-((2-sulfoethoxy) carbonyl)acrylic acid and tetraethyl orthosilicate (TEOS) (Fig. 1). 3-((2-Sulfoethoxy)carbonyl)acrylic acid was used as the functional molecule, which could supply both the sulfonic and carbonyl acid groups and could act as the active sites. Furthermore, the functional molecule owns double bonds, which could polymerize to increase the molecule size and avoid the release of acid sites. The silica offers the regular structure with high BET surface. The catalytic activities of the novel solid acid were tested through acetalization reaction. The results show that the novel solid acid owned high activity and stability for the reaction.

    2 EXPERIMENTAL

    2.1 Apparatus and reagents

    All organic reagents were commercial products of the highest purity available (>98%) and used for the reaction without further purification.

    2.2 Synthesis of the novel solid acid

    In the typical procedure, maleic anhydride (1.96 g, 20 mmol) was dissolved in 15 ml ethyl acetate. Hydroxyethylsulfonic acid (2.52 g, 20 mmol) was addedto the solution drop by drop. The mixture was kept stirred for 4 h at room temperature (25 °C). Then, the solvent was evaporated under reduced pressure using a rotary evaporator to obtained the colorless liquid monomer 3-((2-sulfoethoxy)carbonyl)acrylic acid with the purity over 98%. 2 g monomer, 2 g tetraethyl orthosilicate (TEOS), 0.01 g azobisisobutyronitrile (AIBN), 15 ml ethanol and 2 ml water were mixed together to form homogenous solution, which was heated to 70 °C and stirred for 12 h to form solid gel. The gel was directly dried at room temperature overnight and ground to powder. It was washed with hot water (>80 °C) and filtered until no acidity detected in the filtrate. The novel solid acid was obtained after drying at 120 °C overnight in oven.

    Figure 1 The synthesis route of a novel solid acid

    2.3 Preparation of acetals and ketals

    The typical procedure is: An aldehyde or ketone (0.1 mol), 10 ml cyclohexane, a diol (0.15 mol) and the catalyst (0.05 g) were mixed together in a three necked round bottomed flask equipped with a magnetic stirrer and a thermometer, and a Dean-Stark apparatus was used to remove the water continuously from the reaction mixture. The mixture was heated at 120 °C for the specified time as shown in Table 1. The process of reaction was monitored by gas chromatograph (GC) analysis of the small aliquots withdrawn at 0.5 h intervals. Quantitative analysis of the product was carried out on a temperature-programmed Shimadzu gas chromatograph (GC-14C) with OV-17 column and flame ionization detector (FID) using nitrogen as carrier gas. The column temperature was raised from 40 to 260 °C at a rate of 10 °C·min?1. On completion, the catalyst was recovered by filtering and washed with acetone, then dried in oven at 80 °C for about 1 h.

    3 RESULTS AND DISCUSSION

    3.1 Characterization of the solid acid

    The dual acidic solid was white powder, with the acidity of 2.6 mmol·g?1as determined through neutralizing titration. The novel solid acid owned much higher acidity than that of the traditional heterogeneous acids such as Nafion. Moreover, the acidity could be adjusted through changing the molar ratio of the functional compounds and TEOS. The more functional molecule used, the higher acidity obtained. The highest acidity of 5.4 mmol·g?1could be achieved when 4.8 g functional compounds and 2 g TEOS was used. On the other hand, the structure and BET surface were affected by the TEOS amount. The viscous resin-like mixture instead of solid material when the mass ratio of the function molecule to TEOS was above 2.5.

    The thermal stability of the novel solid acid was investigated on Mettler-Toledo Thermogravimetric Analyzer (Model SDTA851e) with heating rate of 10 °C·min?1under nitrogen atmosphere. The thermogravimetry (TG) analysis showed that the mass loss took place above 180 °C, which indicated that solid acid had much higher thermal stability than the traditional ions exchange resins (below 120 °C). The thermodesorption of chemisorbed ammonia [NH3-TPD (temperature programmed desorption)] of the solid acid was taken on the Micrometrics Chem BET (Model TPD/TPR2900, USA) with heating rate of 10 °C·min?1from 100 to 800 °C to examine the acid strength. The results showed that the solid acid owned both the weak acidity in which ammonia was desorbed below 200 °C and strong acidity in which ammonia was desorbed at 400 to 600 °C, which were quite in accord with the chemical structure of the solid acid. The BET surface area measurements were performed by Quancachrome BET equipment (Model 02108-KR-1) using nitrogen adsorption-desorption isotherms at the temperature of liquid nitrogen. The solid acid had the BET surface of 325 m2·g?1, which was quite high compared to the carbon based solid acid [7-10].

    The Fourier transform infrared spectroscopy (FT-IR) of the solid acid was carried out on the Nicolet Nuxes 670 instrument using the KBr tablet compression method. The IR spectrum (Fig. 2) showed the strong sulfonic acid group absorbability at 1040 and 850 cm?1and carbonyl group (C O) absorbability at 1640 cm?1, which confirmed the dual acidic groups.FT-IR spectrum also showed that the solid acid contained resident functionalities including(1150 cm?1), and OH (3400 cm?1).

    Table 1 Catalytic acetalization of various carbonyl compounds and diols

    Figure 2 The IR spectrum of the solid acid

    The scanning electron microscope (SEM) of the solid acid was done on the Hitachi S-4800 scanning electron microscope. The SEM images showed that the resulting particles were irregular spheres structure with the particle sizes of 2-5 μm as depicted in Fig. 3. The particle sizes decreased when the acid amount was increased and only gel molecules instead of solid precipitates formed when the acid amount was too high. The sol-gel process was catalyzed by H+ions, and more nuclei formed when more acid functional molecules were used, which resulted in smaller particle size and the particles adhered with each other. Meanwhile, the acidity of the solid acid changed with the acid functional molecule amount and the higher acidity was obtained when more functional molecules used. On the other hand, the silica structure might be destroyed when the TEOS amount was quite low so that no solid product formed then. The regular spherical structure with big dimension made the recovery ofthe solid acid quite simple without special procedure except for filtration.

    Figure 3 The SEM images of the novel solid acid

    3.2 Catalytic procedure for the synthesis of acetals and ketals

    The catalytic activities of the novel solid acid were investigated through the acetalization of various carbonyl compounds with diols (Table 1). The reactions were difficult to carried out when no catalyst was used, and only the aldehydes with high reactivities showed the yield of 63% in 12 h (Entry 1). Other reactants obtained the yield below 40% under the same reaction conditions. As was anticipated, the solid acid showed high activities for all the reactions. Aliphatic aldehydes transformed to the corresponding acetals with very high yield under the reaction conditions (Entries 1-3). The neopentyl glycol with high steric hindrance was also efficiently acetalized (Entry 2). The ketalization reaction of cyclohexanone worked very well with the active sites and the equal activities as the aliphatic aldehydes (Entry 4) were demonstrated. The ring structure fixed the carbonyl group of cyclohexanone, which made the carbonyl groups easier to be attacked by the acid sites. The linear ketones such as butanone owned relatively low activity for the alkyl chain on both sides of carbonyl added the steric hindrance (Entry 5). Aromatic aldehydes such as benzaldehyde could also be acetalized with high yields (Entry 6). The aromatic ring attached to the carbonyl group reduced the nucleophilicity greatly. The solid acid was also still very active for the reaction with the yield of 95% in 2.0 h. The groups attached to the aromatic ring affected the reactivities greatly. The aromatic aldehydes with electron-donating groups such as methyl or methoxyl groups showed relatively low activity, which might reduce the nucleophilicity of the carbonyl groups (Entries 7-9). On the other hand, electron-withdrawing groups enhanced the reactivities and the aromatic aldehydes with F and nitro groups showed higher activities (Entries 10-12). Different diols such as 1,2-ethanediol, 1,2-propylene glycol and neopentyl glycol were all efficiently transformed to the acetals smoothly. The conversions reduced as follows: 1,2-ethanediol>1,2-propylene glycol>neopentyl glycol for the steric hindrance of the diols. The result further confirmed that the solid acid owned high activity and wide applicability for the acetalization and ketalization.

    3.3 The recycled activity of the solid acid

    After reactions, the catalyst was recovered by filtration, and its activity was investigated through the acetalization of benzaldehyde and 1,2-ethenediol (Entry 6 in Table 1) carefully. Although the high acidities were obtained and showed high activities for the first time for other silica supported solid acids as reported in Refs. [14-18], the active sites covered on the silica surface released from the solid acid easily and the recycled activities dropped quickly. The novel solid acid owned much higher stability and the yields remained unchanged even after the sample had been recycled for a sixth time (Fig. 4). The sample composition of the novel solid acid remained unchanged after recycled for five times according to the results of the element analysis. Furthermore, the filtrate from catalyst recovery showed almost no activity for the reactions and the element analysis of the filtrate showed almost no element sulfur, which further confirmed the high stability of the solid acid.

    Figure 4 The recycled activity of the catalyst

    3.4 The comparison of the catalytic activities

    Figure 5 The reaction kinetics of acetalization

    A comparative study on the catalytic activities of the novel solid acid with the reported catalysts were taken through the reaction between benzaldehyde and 1,2-ethanediol (Table 2). Amberlyst-15 was obtained from Fluck with the acidity of 0.8 mmol·g?1. H2SO4has relatively high activities. Although H2SO4owned strong acidity and the H+dissociated quite easily, both the acetalization and other side reactions including carbonization and oxidation could be activated by the strong acid sites (Entry 2). After tedious post treatment, the acetal product with deep color was obtained. The traditional carbon based solid acid with only sulfonic acid group also owned relatively high activities for the reaction [9] (Entry 4). The butyl acid with the single carbonyl acid group showed low activities and the results indicated that the low acid strength of carbonyl acid groups was not active enough to catalyze the reaction (Entry 3). As to the widely-used Amberlyst-15 with only sulfonic group, the catalytic activities was still low. (Entry 5). The novel solid acid showed the best activities of all. The solid acid owned high acidity and BET surface, which made the acid sites more accessible by the reactants compared to the other solid acid (Entries 4, 5). The reaction route was shown in Fig. 5. It can be seen that the H+should be given to the carbonyl groups at beginning to initiate the reaction and afterwards it was dissociated from the product to complete the catalytic cycle. The novel solid acid owned the dual acid sites. The strong acid sites from sulfonic acid groups gave the H+at the beginning to initiate the reaction and H+was absorbed by the low acid sites from carbonyl acid groups in the end to complete a catalytic cycle. The dual acidic groups cooperated during the catalytic process, whichimproved the activities. The novel solid acid held great potential for the green chemical processes.

    Table 2 The activity comparison of different catalysts

    4 CONCLUSIONS

    The novel solid acid with both sulfonic and carbonyl acid groups has been synthesized from 3-((2-sulfoethoxy)carbonyl)acrylic acid and tetraethyl orthosilicate (TEOS). The novel solid acid shows high activities for acetalization with the average yields over 90%. The catalyst has the advantages of high acidity, high BET surface, low cost and high thermal and chemical stability, and hold great potential for the replacement of the homogeneous catalysts in green chemical processes.

    REFERENCES

    1 Anastas, P.T., Kirchhoff, M.M., “Origins, current status, and future challenges of green chemistry”, Acc. Chem. Res., 35, 686-694 (2002).

    2 Anastas, P.T., Zimmermann, J.B., “Design through the 12 principles of green engineering”, Environ. Sci. Technol., 37, 94A-101A (2003). 3 Clark, J.H., “Solid acids for green chemistry”, Acc. Chem. Res., 35, 791-797 (2002).

    4 Shu, Q., Gao, J., Liao, Y., Wang, J., “Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst”, Chin. J. Chem. Eng., 19, 163-168 (2011).

    5 Misono, M., Acad, C.R., “Heterogeneous catalysis”, Sci. Ser. Iic., 3, 471-475 (2000).

    6 Okuhara, T., “Water-tolerant solid acid catalysts”, Chem. Rev., 102, 3641-3666 (2002).

    7 Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Hayashi, S., Domen, K., “A carbon material as a strong protonic acid”, Angew. Chem. Int. Ed., 43, 2955-2958 (2004).

    8 Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi S., Domen, K., Hara, M., “Green chemistry: Biodiesel made with sugar catalyst”, Nature, 438 (7065), 178 (2005).

    9 Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hare, M., Hayashi S., “Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon”, Chem. Mater., 18, 3039-3045 (2006).

    10 Nakajima, K., Okamura, M., Kondo, J.N., Domen, K., Tatsumi, T., Hayashi, S., Hara, M., “Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst”, Chem. Mater., 21, 186-193 (2009).

    11 Xia, Y., Mokaya, R., “On the hydrothermal stability of mesoporous aluminosilicate MCM-48 materials”, J. Phys. Chem. B, 107, 6954-6960 (2003).

    12 Li, C., “Chiral synthesis on catalysts immobilized in microporous and mesoporous materials”, Catal. Rev., 46, 419-492 (2004).

    13 Wang, Y.J., Caruso, F., “Mesoporous silica spheres as supports for enzyme immobilization and encapsulation”, Chem. Mater., 17, 953-961 (2005).

    14 Riego, J.M., Sedin, Z., Zaldívar, J.M., Marziano, N.C., Tortato, C.,“Sulfuric acid on silica-gel: An inexpensive catalyst for aromatic nitration”, Tetrahedron Lett., 37, 513-516 (1996).

    15 Shaabani, A., Rahmati, A., “Silica sulfuric acid as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles”, J. Mol. Catal. A Chem., 249, 246-248 (2006).

    16 Izumi, Y., Hisano, K., Hida, T., “Acid catalysis of silica-included heteropolyacid in polar reaction media”, Appl. Catal. A Gen., 181, 277-282 (1999).

    17 Khadilkar, B.M., Borkar, S.D., “Synthesis of benzophenones using silica-gel supported Lewis acid catalyst”, Tetrahedron Lett., 38, 1641-1642 (1997).

    18 Shaterian, H. R., Shahrekipoor, F., Ghashang, M., “Silica supported perchloric acid (HClO4-SiO2): A highly efficient and reusable catalyst for the protection of hydroxyl groups using HMDS under mild and ambient conditions”, J. Mol. Catal. A Chem., 272, 142-151 (2007).

    CATALYSIS, KINETICS AND REACTION ENGINEERING

    Chinese Journal of Chemical Engineering, 22(3) 312—317 (2014)

    10.1016/S1004-9541(14)60048-3

    2012-05-27, accepted 2013-03-14.

    *Supported by the Chinese National General Administration of Quality Supervision, Inspection and Quarantine (2012IK048, 2011IK041) and the National Natural Science Foundation of China (21103111).

    **To whom correspondence should be addressed. E-mail: liangxuezheng@126.com

    猜你喜歡
    旭東
    開(kāi)學(xué)第一天
    給春天開(kāi)門(mén)
    城里的老鼠
    胡旭東
    心聲歌刊(2019年1期)2019-05-09 03:21:36
    蠟筆畫(huà)
    郭沫若給旭東的題詞
    神奇的種子
    看圖說(shuō)話(huà),揭開(kāi)冪函數(shù)的廬山真面目
    Implementation and integration of a systematic DBPM calibration with PLL frequency synthesis and FPGA?
    SPATIAL REGULARIZATION OF CANONICAL CORRELATION ANALYSIS FOR LOW-RESOLUTION FACE RECOGNITION
    高清视频免费观看一区二区| 乱人伦中国视频| 欧美精品亚洲一区二区| 岛国在线观看网站| 色老头精品视频在线观看| 757午夜福利合集在线观看| 一级a爱视频在线免费观看| 国产1区2区3区精品| 国产99久久九九免费精品| 久久久久国产一级毛片高清牌| 丝瓜视频免费看黄片| 激情视频va一区二区三区| 巨乳人妻的诱惑在线观看| 大香蕉久久网| 精品久久久久久久毛片微露脸| 一二三四社区在线视频社区8| 午夜福利欧美成人| 免费少妇av软件| 日韩精品免费视频一区二区三区| 国产一区在线观看成人免费| 国产不卡一卡二| av视频免费观看在线观看| 久久狼人影院| 国产精品免费一区二区三区在线 | 12—13女人毛片做爰片一| 欧美+亚洲+日韩+国产| 无遮挡黄片免费观看| 国产不卡av网站在线观看| 黄频高清免费视频| 国产色视频综合| e午夜精品久久久久久久| 操出白浆在线播放| 99久久国产精品久久久| 大香蕉久久成人网| 大片电影免费在线观看免费| 人妻久久中文字幕网| 日韩欧美在线二视频 | 国产av精品麻豆| 1024视频免费在线观看| 精品国产一区二区久久| 国产精品久久电影中文字幕 | 老司机亚洲免费影院| 欧美日韩精品网址| ponron亚洲| 国产蜜桃级精品一区二区三区 | 看免费av毛片| 九色亚洲精品在线播放| 午夜影院日韩av| 日本精品一区二区三区蜜桃| 精品福利永久在线观看| 在线观看免费午夜福利视频| 久久久国产一区二区| 美女福利国产在线| 欧美日韩av久久| 999精品在线视频| 亚洲国产看品久久| 啦啦啦 在线观看视频| 最近最新中文字幕大全免费视频| 中国美女看黄片| bbb黄色大片| 国产激情久久老熟女| 国产在线精品亚洲第一网站| 欧美日韩国产mv在线观看视频| 成年版毛片免费区| 欧美亚洲日本最大视频资源| av在线播放免费不卡| 捣出白浆h1v1| 狠狠狠狠99中文字幕| 免费女性裸体啪啪无遮挡网站| 欧美乱妇无乱码| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 中文字幕av电影在线播放| 成年版毛片免费区| 国产精品久久久久久精品古装| 在线观看www视频免费| 不卡一级毛片| 亚洲国产欧美日韩在线播放| 丝瓜视频免费看黄片| 亚洲视频免费观看视频| 中文字幕人妻丝袜制服| 久久亚洲真实| a在线观看视频网站| 老司机午夜十八禁免费视频| 欧洲精品卡2卡3卡4卡5卡区| 黄色a级毛片大全视频| 一本综合久久免费| 一区二区三区激情视频| 乱人伦中国视频| a级片在线免费高清观看视频| 一个人免费在线观看的高清视频| a级毛片在线看网站| 国产成人一区二区三区免费视频网站| 欧美国产精品一级二级三级| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜精品| 久久国产乱子伦精品免费另类| 亚洲精品美女久久av网站| 黑丝袜美女国产一区| 久久中文字幕人妻熟女| 香蕉国产在线看| 亚洲免费av在线视频| 50天的宝宝边吃奶边哭怎么回事| 国产日韩一区二区三区精品不卡| 一级片'在线观看视频| 一级毛片女人18水好多| 超碰成人久久| 999久久久国产精品视频| 国产一区在线观看成人免费| 免费高清在线观看日韩| 电影成人av| 黄色片一级片一级黄色片| 性少妇av在线| 久久精品亚洲精品国产色婷小说| 午夜免费观看网址| 老司机午夜十八禁免费视频| 欧美精品亚洲一区二区| 久久久久久久午夜电影 | 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 亚洲中文av在线| 两人在一起打扑克的视频| 天天躁日日躁夜夜躁夜夜| 国产亚洲av高清不卡| 丰满的人妻完整版| 母亲3免费完整高清在线观看| 免费观看a级毛片全部| 国产精品电影一区二区三区 | 免费在线观看完整版高清| 黄片播放在线免费| 少妇猛男粗大的猛烈进出视频| 一级黄色大片毛片| 99国产极品粉嫩在线观看| 久久国产精品男人的天堂亚洲| 国产色视频综合| 无人区码免费观看不卡| 成年女人毛片免费观看观看9 | 欧美大码av| 亚洲情色 制服丝袜| 亚洲午夜理论影院| 色老头精品视频在线观看| 久久久久久久国产电影| 欧美在线黄色| 岛国在线观看网站| 亚洲熟女毛片儿| 捣出白浆h1v1| 国产亚洲欧美精品永久| 老司机靠b影院| 一个人免费在线观看的高清视频| 亚洲欧洲精品一区二区精品久久久| 身体一侧抽搐| 黄色视频,在线免费观看| 91麻豆av在线| 日韩免费av在线播放| 一个人免费在线观看的高清视频| 国产精品久久电影中文字幕 | 大型av网站在线播放| 久久影院123| 少妇粗大呻吟视频| 天天操日日干夜夜撸| 99久久精品国产亚洲精品| 成人三级做爰电影| 国产有黄有色有爽视频| 亚洲av第一区精品v没综合| 成年人黄色毛片网站| 亚洲在线自拍视频| 久久久久国产精品人妻aⅴ院 | 99久久人妻综合| 777米奇影视久久| 多毛熟女@视频| 人人妻人人添人人爽欧美一区卜| 成年人午夜在线观看视频| 成人av一区二区三区在线看| 亚洲欧美色中文字幕在线| 亚洲精品美女久久久久99蜜臀| 大型av网站在线播放| 无人区码免费观看不卡| 亚洲情色 制服丝袜| 在线国产一区二区在线| 丰满饥渴人妻一区二区三| 日本欧美视频一区| 中文字幕另类日韩欧美亚洲嫩草| 成年人黄色毛片网站| 精品久久久久久久久久免费视频 | 在线播放国产精品三级| 不卡av一区二区三区| 麻豆乱淫一区二区| 天堂俺去俺来也www色官网| 久热这里只有精品99| 日韩三级视频一区二区三区| 十八禁人妻一区二区| 热99re8久久精品国产| 50天的宝宝边吃奶边哭怎么回事| 曰老女人黄片| 久久精品国产a三级三级三级| 18禁国产床啪视频网站| 亚洲精品中文字幕一二三四区| 国产精品秋霞免费鲁丝片| 亚洲在线自拍视频| 日本黄色视频三级网站网址 | 校园春色视频在线观看| 国产1区2区3区精品| 99久久99久久久精品蜜桃| 欧美精品啪啪一区二区三区| 侵犯人妻中文字幕一二三四区| 人人妻,人人澡人人爽秒播| 黄色女人牲交| 国产欧美亚洲国产| 在线观看免费日韩欧美大片| 校园春色视频在线观看| 国产成+人综合+亚洲专区| 午夜精品国产一区二区电影| 国产精品二区激情视频| 国产欧美日韩一区二区精品| 黄色a级毛片大全视频| 一级a爱视频在线免费观看| 老熟女久久久| 极品少妇高潮喷水抽搐| 一a级毛片在线观看| 19禁男女啪啪无遮挡网站| 亚洲五月婷婷丁香| av网站在线播放免费| 在线国产一区二区在线| 一区二区三区激情视频| 日韩欧美一区视频在线观看| 天天操日日干夜夜撸| 久久久国产一区二区| 黄色成人免费大全| 热99久久久久精品小说推荐| 在线观看午夜福利视频| 男女高潮啪啪啪动态图| 50天的宝宝边吃奶边哭怎么回事| 午夜日韩欧美国产| 黑人巨大精品欧美一区二区mp4| 女人被躁到高潮嗷嗷叫费观| 少妇被粗大的猛进出69影院| 免费女性裸体啪啪无遮挡网站| 中出人妻视频一区二区| 成年人午夜在线观看视频| 国产精品影院久久| 女同久久另类99精品国产91| 亚洲三区欧美一区| 在线观看66精品国产| 亚洲伊人色综图| 国产成人欧美在线观看 | 成年人午夜在线观看视频| 午夜影院日韩av| 久久人妻福利社区极品人妻图片| 最近最新免费中文字幕在线| 国产精品美女特级片免费视频播放器 | 好男人电影高清在线观看| 国产蜜桃级精品一区二区三区 | 久久精品亚洲熟妇少妇任你| 丁香欧美五月| 最近最新中文字幕大全免费视频| 美女扒开内裤让男人捅视频| 久久久久国产精品人妻aⅴ院 | 1024视频免费在线观看| 国产精品美女特级片免费视频播放器 | 中文字幕另类日韩欧美亚洲嫩草| 日本撒尿小便嘘嘘汇集6| 午夜91福利影院| 无遮挡黄片免费观看| 亚洲精华国产精华精| 黄片播放在线免费| 亚洲国产看品久久| 国产成人精品无人区| 69精品国产乱码久久久| 法律面前人人平等表现在哪些方面| 亚洲情色 制服丝袜| 手机成人av网站| 99re在线观看精品视频| 极品教师在线免费播放| 国产精品美女特级片免费视频播放器 | 91老司机精品| 国产无遮挡羞羞视频在线观看| 精品视频人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久久久久大奶| 两性夫妻黄色片| 国产日韩一区二区三区精品不卡| 9热在线视频观看99| 亚洲av成人不卡在线观看播放网| 少妇裸体淫交视频免费看高清 | av一本久久久久| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 亚洲视频免费观看视频| 男女下面插进去视频免费观看| 国产亚洲欧美精品永久| 天天影视国产精品| 高清毛片免费观看视频网站 | 美女高潮到喷水免费观看| 男女之事视频高清在线观看| 91国产中文字幕| 亚洲国产中文字幕在线视频| 日韩免费高清中文字幕av| 91字幕亚洲| 老司机影院毛片| 别揉我奶头~嗯~啊~动态视频| 搡老乐熟女国产| 在线观看66精品国产| 天堂√8在线中文| 女人精品久久久久毛片| 国产视频一区二区在线看| 久久久久久久午夜电影 | 捣出白浆h1v1| 69av精品久久久久久| 成熟少妇高潮喷水视频| 91在线观看av| 99久久人妻综合| 亚洲中文av在线| 日本撒尿小便嘘嘘汇集6| 99国产精品一区二区三区| 国产精品.久久久| 可以免费在线观看a视频的电影网站| 国产精品久久久久成人av| 久久久久久久国产电影| 亚洲欧美色中文字幕在线| 亚洲精品国产精品久久久不卡| 欧美成狂野欧美在线观看| 亚洲在线自拍视频| 女同久久另类99精品国产91| 久久天堂一区二区三区四区| 桃红色精品国产亚洲av| 黄色怎么调成土黄色| 精品国产美女av久久久久小说| 老司机福利观看| 日本黄色视频三级网站网址 | 日本wwww免费看| 亚洲第一欧美日韩一区二区三区| 国产1区2区3区精品| 99国产精品一区二区三区| 一进一出抽搐gif免费好疼 | 女人高潮潮喷娇喘18禁视频| 久久久水蜜桃国产精品网| 亚洲欧美激情综合另类| 久久精品国产a三级三级三级| 天天影视国产精品| 日本a在线网址| 亚洲一区高清亚洲精品| 国产在视频线精品| 国产男靠女视频免费网站| 亚洲av成人av| a在线观看视频网站| 国产精品一区二区在线不卡| 人人澡人人妻人| 水蜜桃什么品种好| 91成人精品电影| 国产免费现黄频在线看| 热99re8久久精品国产| 美女国产高潮福利片在线看| 他把我摸到了高潮在线观看| 黑丝袜美女国产一区| 青草久久国产| 欧洲精品卡2卡3卡4卡5卡区| 美国免费a级毛片| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩精品亚洲av| aaaaa片日本免费| 婷婷成人精品国产| 免费在线观看黄色视频的| 国产欧美日韩一区二区三区在线| 久久香蕉激情| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 久久午夜亚洲精品久久| 免费观看精品视频网站| 亚洲五月色婷婷综合| 亚洲第一青青草原| 欧美精品一区二区免费开放| 看免费av毛片| 国产在线观看jvid| 嫁个100分男人电影在线观看| 欧美乱色亚洲激情| 捣出白浆h1v1| 精品无人区乱码1区二区| 天天躁日日躁夜夜躁夜夜| 波多野结衣av一区二区av| 91精品三级在线观看| 国产国语露脸激情在线看| 啦啦啦在线免费观看视频4| 国产在线一区二区三区精| 国产亚洲精品久久久久5区| 99久久综合精品五月天人人| 精品电影一区二区在线| а√天堂www在线а√下载 | 欧美人与性动交α欧美软件| 91字幕亚洲| 国产精品一区二区在线观看99| 欧美日韩一级在线毛片| 国产1区2区3区精品| 村上凉子中文字幕在线| 久久中文字幕一级| 日韩欧美在线二视频 | 日本一区二区免费在线视频| 十八禁高潮呻吟视频| 极品人妻少妇av视频| 婷婷精品国产亚洲av在线 | 午夜福利视频在线观看免费| 99国产综合亚洲精品| 色婷婷av一区二区三区视频| 午夜日韩欧美国产| 午夜视频精品福利| 国产欧美亚洲国产| 久久久国产成人精品二区 | 久久国产亚洲av麻豆专区| 亚洲少妇的诱惑av| 十分钟在线观看高清视频www| 国产精品久久久av美女十八| 一区在线观看完整版| 午夜福利影视在线免费观看| 日韩精品免费视频一区二区三区| 嫁个100分男人电影在线观看| av一本久久久久| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美一区二区综合| 亚洲人成伊人成综合网2020| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩瑟瑟在线播放| 91成人精品电影| 首页视频小说图片口味搜索| 激情视频va一区二区三区| 国产亚洲精品久久久久5区| 首页视频小说图片口味搜索| 不卡av一区二区三区| 日韩欧美一区视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 啦啦啦免费观看视频1| 国产精品久久久久久人妻精品电影| 国产aⅴ精品一区二区三区波| 老熟妇仑乱视频hdxx| 香蕉丝袜av| 91老司机精品| 一个人免费在线观看的高清视频| 757午夜福利合集在线观看| 黄片小视频在线播放| 如日韩欧美国产精品一区二区三区| 欧美 亚洲 国产 日韩一| 老熟妇仑乱视频hdxx| 国产亚洲精品久久久久5区| 后天国语完整版免费观看| 亚洲 欧美一区二区三区| 色在线成人网| 久久中文字幕一级| 久久久国产一区二区| av免费在线观看网站| 天堂动漫精品| 国产精品秋霞免费鲁丝片| 亚洲精品成人av观看孕妇| 99久久国产精品久久久| 国产高清videossex| 午夜福利乱码中文字幕| 国产精品久久电影中文字幕 | 叶爱在线成人免费视频播放| 精品卡一卡二卡四卡免费| 女性被躁到高潮视频| 成在线人永久免费视频| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月 | 亚洲熟女毛片儿| 青草久久国产| 身体一侧抽搐| 国产av又大| 国产亚洲av高清不卡| 嫁个100分男人电影在线观看| 日本黄色视频三级网站网址 | 不卡一级毛片| 欧美日韩一级在线毛片| 久久久久久久国产电影| 很黄的视频免费| 欧美+亚洲+日韩+国产| x7x7x7水蜜桃| 老熟女久久久| 国产精品美女特级片免费视频播放器 | 真人做人爱边吃奶动态| 国产av一区二区精品久久| 日韩欧美在线二视频 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产毛片av蜜桃av| 中文字幕色久视频| 丁香欧美五月| 成人手机av| 12—13女人毛片做爰片一| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 久久中文字幕人妻熟女| 一区二区三区国产精品乱码| 日韩精品免费视频一区二区三区| √禁漫天堂资源中文www| 纯流量卡能插随身wifi吗| 国产一区二区三区视频了| 欧美日韩视频精品一区| 国产精品98久久久久久宅男小说| 男女下面插进去视频免费观看| 脱女人内裤的视频| 成年人免费黄色播放视频| 免费在线观看日本一区| 99re6热这里在线精品视频| 日韩欧美在线二视频 | 91老司机精品| 亚洲精品美女久久久久99蜜臀| 国产片内射在线| 91成人精品电影| 亚洲免费av在线视频| 亚洲一区高清亚洲精品| 国产深夜福利视频在线观看| 一进一出抽搐动态| 女人被躁到高潮嗷嗷叫费观| 这个男人来自地球电影免费观看| 9热在线视频观看99| 久久99一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩精品亚洲av| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久人人做人人爽| www.精华液| av中文乱码字幕在线| 精品无人区乱码1区二区| 日韩免费av在线播放| 国产av又大| 欧美日韩黄片免| 久久久久国内视频| 色婷婷久久久亚洲欧美| 99精国产麻豆久久婷婷| 午夜福利影视在线免费观看| 极品教师在线免费播放| 无限看片的www在线观看| 成在线人永久免费视频| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| 国产男女内射视频| 国产在线一区二区三区精| 久9热在线精品视频| 亚洲中文字幕日韩| 99riav亚洲国产免费| 亚洲午夜精品一区,二区,三区| av超薄肉色丝袜交足视频| 女性被躁到高潮视频| 亚洲av第一区精品v没综合| 欧美日韩瑟瑟在线播放| av超薄肉色丝袜交足视频| 久久香蕉精品热| 最新在线观看一区二区三区| 99精品欧美一区二区三区四区| 又黄又粗又硬又大视频| 久久九九热精品免费| 国产在线观看jvid| 亚洲 欧美一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 一区福利在线观看| 久久国产亚洲av麻豆专区| 亚洲精华国产精华精| 女同久久另类99精品国产91| 国产精华一区二区三区| 一区二区三区激情视频| 国产av又大| 亚洲精品中文字幕在线视频| 91国产中文字幕| 午夜激情av网站| 国内毛片毛片毛片毛片毛片| 国产精品久久电影中文字幕 | 国产亚洲欧美在线一区二区| 丁香六月欧美| 90打野战视频偷拍视频| 亚洲av片天天在线观看| 亚洲七黄色美女视频| 亚洲专区国产一区二区| 国产黄色免费在线视频| 亚洲精品国产区一区二| 99久久国产精品久久久| 亚洲精品在线观看二区| 亚洲免费av在线视频| 久久国产精品男人的天堂亚洲| 91麻豆av在线| 一进一出好大好爽视频| 男男h啪啪无遮挡| av网站免费在线观看视频| 亚洲成人免费电影在线观看| 中文字幕人妻熟女乱码| 韩国精品一区二区三区| 久久这里只有精品19| 亚洲国产毛片av蜜桃av| 亚洲成a人片在线一区二区| 男女午夜视频在线观看| 成年女人毛片免费观看观看9 | 国产欧美日韩精品亚洲av| 看免费av毛片| 国产精品一区二区在线观看99| 亚洲午夜理论影院| 极品教师在线免费播放| 老司机亚洲免费影院| 夜夜爽天天搞| 乱人伦中国视频| 国产成人av激情在线播放| 啪啪无遮挡十八禁网站| 男女午夜视频在线观看| 亚洲精品久久午夜乱码| 最近最新免费中文字幕在线| 久久久国产欧美日韩av| 丁香六月欧美| 嫁个100分男人电影在线观看| 欧美av亚洲av综合av国产av| 欧美精品av麻豆av| 亚洲精品国产精品久久久不卡| 午夜福利影视在线免费观看| av超薄肉色丝袜交足视频| 国产精品久久久久久精品古装| 99精品久久久久人妻精品| av线在线观看网站| 在线av久久热| 日本欧美视频一区| 高清av免费在线| 欧美黄色片欧美黄色片|