• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Correlations for Prediction of Viscosity of Iranian Crude Oils

    2014-07-24 15:40:13MajidTaghizadehandMehdiEftekhari

    Majid Taghizadehand Mehdi Eftekhari

    Chemical Engineering Department, Babol University of Technology, Babol 4714871167, Iran

    Improved Correlations for Prediction of Viscosity of Iranian Crude Oils

    Majid Taghizadeh*and Mehdi Eftekhari

    Chemical Engineering Department, Babol University of Technology, Babol 4714871167, Iran

    Empirical equations for predicting the viscosity of Iranian crude oils above, at and below the bubble-point pressure were developed based on pressure-volume-temperature (PVT) data of 57 bottom hole samples collected from central, southern and offshore oil fields of Iran. Both statistical and graphical techniques were employed to evaluate these equations compared with other empirical correlations. The results show that the developed correlations present better accuracy and performance for predicting the viscosity of Iranian crude oils than those correlations in literature.

    viscosity correlations, pressure-volume-temperature (PVT) data, viscosity prediction, Iranian crude oils

    1 INTRODUCTION

    One of the most important physical properties of crude oils is viscosity, which controls the flow of oil through porous media and pipes. The oil viscosity is a strong function of temperature, pressure, oil specific gravity, gas solubility and composition of oil mixture [1-5]. Although oil viscosity is measured isothermally at reservoir temperature and different pressures, viscosity data are needed at temperatures other than reservoir temperature for designing process equipment and pipelines, particularly for planning thermal methods of enhanced oil recovery [6-8]. Therefore, crude oil viscosity correlations are used to predict viscosity when experimental data are not available at temperatures other than reservoir temperature.

    Crude oil viscosity correlations are usually developed for three situations: at, above, and below the bubble-point pressure. Saturated oil viscosity is the viscosity of crude oil at the bubble-point pressure and reservoir temperature. Below the bubble-point pressure, dissolved gas in oil is released as pressure decreases. When the pressure reduces to atmospheric pressure, there is no gas left in the oil and such oil is called dead oil, whose viscosity is referred to as the dead oil viscosity. Oil viscosity above the bubble-point (under-saturated oil viscosity) is defined as the crude oil viscosity at pressures higher than the bubble-point pressure and reservoir temperature [1, 9]. Above the bubble-point pressure, oil is at single-phase state, no gas is dissolved into oil and pressure becomes the primary independent variable for predicting the viscosity of under-saturated oil. By increasing pressure above the bubble-point, oil density and oil viscosity will be increased. If the pressure falls below the bubble-point, gas will evolve from the liquid into the pore space and the oil composition changes continuously. The oil becomes heavier and more viscous, and two phases will flow in the reservoir. Thus oil viscosity has its minimum value at bubble-point [10, 11].

    In many cases, the information available from pressure-volume-temperature (PVT) analyses of an oil sample is simple and determined readily by measurable parameters such as oil relative density and gas/oil ratio. Direct viscosity measurement or complete compositional analyses of crude oils are expensive, so empirical correlations, which are functions of these readily measurable PVT properties, are usually used to estimate oil viscosity [12, 13].

    Viscosity data of saturated and under-saturated crudes at temperatures other than reservoir temperature are predicted from crude oil viscosity models. Most saturated oil viscosity models express saturated oil viscosity as a function of dead oil viscosity and solution gas/oil ratio (see Appendix A1). Beal [6], Beggs and Robinson [14], Kartoatmodjo and Schmidt [15], Vazquez and Beggs [16], Chew and Connally [17], and Elsharkawy and Alikhan [18] correlated oil viscosity with temperature, bubble-point pressure, oil American Petroleum Institute (API) gravity, dead oil viscosity and solution gas/oil ratio. Moreover, Khan et al. [10] used oil API gravity, specific gas gravity and reservoir temperature in addition to solution gas-oil ratio to predict the viscosity of saturated crudes at the bubble-point (see Appendix A1), while Labedi [19] used a direct function of dead-oil viscosity, API gravity, and bubble-point pressure.

    The objective of this study is to develop a modified Khan et al.’s [10] empirical viscosity correlation, which incorporates reservoir pressure, temperature, and other parameters obtained readily from PVT analysis. We develop our correlations in three different regimes: at the bubble-point pressure, below the bubblepoint pressure, and above the bubble-point pressure.

    2 PVT DATA ACQUISITION FOR IRANIAN CRUDE OILS

    We develop our correlations with PVT data of 57 bottom hole samples collected from central, southernand offshore oil fields of Iran. These samples were separated by flash to obtain solution gas-oil ratio, gas relative density, and oil API gravity. Viscosity data were measured by rolling ball viscometry at various pressures and accessed with cooperation by Research Institute of Petroleum Industry of Iran (RIPI). Data include measurements of crude oil viscosity at reservoir temperature for 376 points below the bubble-point pressure and 287 points above the bubble-point pressure.

    3 MODEL DEVELOPMENT

    Most of published correlations correlate the saturated oil viscosity to dead oil viscosity obtained from other correlations [14-18]. Khan et al. (see Appendix A1) developed a saturated oil viscosity model independent of dead oil viscosity, using the variables such as temperature, bubble-point pressure, solution gas-oil ratio, specific oil or gas gravity [10]. We develop our models based on Khan’s correlations for predicting the viscosity of saturated crude oil, the viscosity below and above the bubble-point pressure (under-saturated oil viscosity). These correlations were obtained by nonlinear regression analysis using MATLAB software.

    3.1 Viscosity model at bubble-point pressure

    Most reservoir oils follow the general trend of oil viscosity as a function of pressure. In single phase, oil viscosity decreases with pressure reduction and this trend continues to bubble-point. Pressure reduction below the bubble-point pressure causes gas release, increasing oil density and oil viscosity. Thus oil viscosity has its minimum value at the bubble-point [18].

    In this study saturated oil viscosities is predicted as a function of solution gas-oil ratio, temperature, and specific oil gravity. Best results are obtained by nonlinear multiple regression analysis from the following empirical model

    whereobμ is saturated oil viscosity,SR is solution gas-oil ratio,rθ is relative temperature, andoγ is oil specific gravity.

    Table 1 shows the source of crude oils and saturated crude oil viscosity from different models.

    3.2 Viscosity model below the bubble-point pressure

    In production, when the pressure drops below the bubble point, gas comes out of solution and the oil composition changes continuously. Most of researchers use the same correlation as saturated oil for prediction of crude oil viscosity below the bubble-point pressure. Khan et al. [10] and Labedi [19] proposed a function to predict the viscosity of saturated crudes below the bubble-point, which is different from that at the bubble-point. An independent correlation for predicting the oil viscosity below the bubble-point is developed in this study wherebμ is oil viscosity below the bubble point, P and Pbare pressure and bubble point pressure, respectively.

    3.3 Under-saturated oil viscosity model

    Above the bubble-point pressure, viscosity increases with pressure. The rate of viscosity increase of under-saturated oils is a function of pressure. As no gas is dissolved into oil above the bubble-point, pressure is an independent variable for predicting the viscosity of under-saturated oil (see Appendix A2). For under-saturated oil, viscosity correlation is presented as

    whereoμ is under-saturated oil viscosity,obμ is saturated oil viscosity, P and Pbare pressure and bubble point pressure, respectively.

    Table 2 shows the source of crude oils and data range for some under-saturated oil viscosity correlations.

    As a typical example, the comparison between the measured and predicted viscosity from correlations developed in this study as a function of pressure for three oil samples is demonstrated in Fig. 1.

    4 RESULTS AND DISCUSSION

    In order to compare the performance of the empirical correlations, statistical error analysis was performed. The accuracy of different models is given inTables 3-5, showing the average percent relative error (Er), average absolute percent relative error (Ea), standard deviation (S), and the correlation coefficient (r) (see Appendix A3).

    Table 1 Data from some correlations for saturated oil viscosity

    Table 2 Data range of some existing correlations for under-saturated oil viscosity

    Table 3 Statistical accuracy of bubble-point oil correlations for estimating viscosity of Iranian crude oils

    Table 4 Statistical accuracy of correlations for estimating viscosity of Iranian crude oils below the bubble-point pressure

    Table 5 Statistical accuracy of under-saturated oil correlations for estimating viscosity of Iranian crude oils

    Figure 1 Comparison between the measured and predicted oil viscosity as a function of pressure for three oil samples

    4.1 Saturated oil viscosity model

    4.1.1 Viscosity model at bubble-point pressure

    Table 3, Figs. 2 and 3 show that our correlation presents the smallest average relative error, absolute error, and standard deviations compared to other correlations for estimating bubble-point oil viscosity of Iranian crude oils. Compared to some correlations that underestimate viscosity [10, 19] and some correlations with irrational estimation (not shown here) [14, 15], the results of this work are in better agreement with experimental data.

    4.1.2 Viscosity model below the bubble-point pressure

    Table 4 gives the results of the correlations for prediction of Iranian oil viscosity below bubble-point pressures. Our correlation presents the lowest average relative error, average absolute relative error and standard deviations, followed by the model of Elsharkawy and Alikhan [18]. Figs. 4 and 5 show thatour model has the smallest error range and least scatter around the zero error line, while Labedi’s correlation [19] has the largest relative error for estimation of the viscosity for Iranian crude oils.

    4.2 Under-saturated oil viscosity model

    Figure 3 Performance plot for bubble-point oil viscosity correlations

    Figure 3 Performance plot for bubble-point oil viscosity correlations

    Figure 4 Error distribution for oil viscosity correlations below the bubble-point pressure

    Table 5 shows that the correlation proposed in this work has the smallest errors and standard deviations for predicting Iranian under-saturated oil viscosity, followed by the model of Elsharkawy and Alikhan [18]. Figs. 6 and 7 show that Khan’s [10] and Labedi’s [19] correlations underestimate under-saturated oil viscosity for Iranian crudes. Our model is in better agreement with experimental data compared with the other predictions.

    Our viscosity correlations based on Iranian field data do not require compositional information and can be used for black oil type fluids. The correlation can be tuned easily and provides better estimation for oil viscosity than previous correlations, most of which are based on specific regions/crude oils and have limited accuracy for the viscosity of Iranian crude oils. These results are expectable since the viscosity highly depends on oil nature and source [20, 21].

    5 CONCLUSIONS

    The modified Khan et al.’s [10] empirical viscosity correlations were assessed for the Iranian crudes using the viscosity data from the region. These correlations incorporate oil API gravity, saturation pressure, reservoir temperature and pressure, which are easily measured in oil fields. Our correlations were developed using 57 points for saturated oil viscosity, 376 points for viscosity below the bubble-point pressure, and 287 points for viscosity above the bubble-point pressure. The average relative errors for these equations were 0.1%, 1.37% and 0.37%. Several empirical models in literature for estimating the viscosity ofcrude oils were evaluated using the viscosity data of crude oils from Iran. The comparison shows that our correlations present better accuracy and performance for predicting the viscosity of Iranian oils.

    Figure 5 Performance plot for oil viscosity correlations below the bubble-point pressure

    Figure 6 Error distribution for under-saturated oil viscosity correlations

    Figure 6 Error distribution for under-saturated oil viscosity correlations

    Figure 7 Performance plot for under-saturated oil viscosity correlations

    NOMENCLATURE

    Eaaverage absolute percent relative error

    Eipercent relative error

    Eraverage percent relative error

    i observation index

    n number of data points

    P pressure, Pa

    Pbbubble point pressure, Pa

    RSsolution gas-oil ratio

    r correlation coefficient

    S standard deviation

    Tfreservoir temperature, °C

    Xestestimated value for any fluid property

    Xexpexperimental value for any fluid property

    γggas specific gravity (air=1.0)

    γooil specific gravity (water=1)

    μboil viscosity below the bubble point, Pa·s

    μounder-saturated oil viscosity, Pa·s

    μobsaturated oil viscosity, Pa·s

    μoddead oil viscosity, Pa·s

    θr(Tf+ 459.67)/459.67=relative temperature

    REFERENCES

    1 Ahmed, T., Hydrocarbon Phase Behavior, Gulf Publishing Company, Houston, 424 (1989).

    2 Egbogah, E.O., Ng, J.T., “An improved temperature-viscosity correlation for crude oil systems”, J. Pet. Sci. Eng., 4 (3), 197-200 (1990).

    3 Burg, P., Selves, J.L., Colin, J.P., “Prediction of kinematic viscosity of crude oil from chromatographic data”, Fuel, 76 (11), 1005-1011 (1997).

    4 Riazi, M.R., Al-Sahhaf, T.A., “Physical properties of heavy petroleum fractions and crude oils”, Fluid Phase Equilib., 117 (1-2), 217-224 (1996).

    5 Martín-Alfonso, M.J., Martínez-Boza, F.J., Navarro, F.J., Fernández, M., Gallegos, C., “Pressure-temperature-viscosity relationship for heavy petroleum fractions”, Fuel, 86 (1-2), 227-233 (2007).

    6 Beal, C., “The viscosity of air, water, natural gas, crude oil and its associated gases at oil field temperature and pressures”, Trans. AIME, 165 (11), 94-115 (1946).

    7 Moharam, H.M., Al-Mehaideb, R.A., Fahim, M.A., “New correlation for predicting the viscosity of heavy petroleum fractions”, Fuel, 74 (12), 1776-1779 (1995).

    8 Das, S. K., “Vapex: An efficient process for the recovery of heavy oil and bitumen”, SPE J., 3 (3), 232-237 (1998).

    9 Bergman, D.F., Sutton, R.P., “Under saturated oil viscosity correlation for adverse conditions”, In: SPE Annual Technical Conference and Exhibition (SPE103144), San Antonio, 20 (2006).

    10 Khan, S.A., Al-Marhoun, M.A., Duffuaa, S.O., Abu-Khamsin, S.A.,“Viscosity correlations for Saudi Arabian crude oils”, SPE Annual Technical Conference and Exhibition, (SPE 15720), Bahrain, 251-259 (1987).

    11 Dexheimer, D., Jackson, C.M., Barrufet, M.A., “A modification of Pedersen’s model for saturated crude oil viscosities using standard black oil PVT data”, Fluid Phase Equilib., 183-184, 247-257 (2001).

    12 Al-Marhoun, M.A., “Evaluation of empirically derived PVT properties for Middle East crude oils”, J. Pet. Sci. Eng., 42 (2-4), 209-221 (2004).

    13 Jaubert, J.N., Avaullee, L., Souvay, J.F., “A crude oil data bank containing more than 5000 PVT and gas injection data”, J. Pet. Sci. Eng., 34 (1-4), 65-107 (2002).

    14 Beggs, H.D., Robinson, J.R., “Estimating the viscosity of crude oil systems”, J. Pet. Technol., 27 (9), 1140-1141 (1975).

    15 Kartoatmodjo, T., Schmidt, Z., “Large data bank improves crude physical property correlations”, Oil Gas J., 92 (27), 51-55 (1994).

    16 Vazquez, M., Beggs, H.D., “Correlations for fluid physical property prediction”, J. Pet. Technol., 32 (6), 968-970 (1980).

    17 Chew, J.N., Connally Jr., C.A., “A viscosity correlation for gas-saturated crude oils”, Pet. Trans. AIME, 216, 23-25 (1959).

    18 Elsharkawy, A.M., Alikhan, A.A., “Models for predicting the viscosity of Middle East crude oils”, Fuel., 78 (8), 891-903 (1999).

    19 Labedi, R., “Improved correlations for predicting the viscosity of light crudes”, J. Pet. Sci. Eng., 8 (3), 221-234 (1992).

    20 Ikiensikimama, S.S., Ogboja, O., “Evaluation of empirically derived oil viscosity correlations for the Niger Delta crude”, J. Pet. Sci. Eng., 69 (3-4), 214-218 (2009).

    21 Mahmood, M.A., Al-Marhoun, M.A., “Evaluation of empirically derived PVT properties for Pakistani crude oils”, J. Pet. Sci. Eng., 16 (4), 275-290 (1996).

    APPENDIX

    A1 Saturated oil viscosity models

    A1.1 Beggs and Robinson [14]

    A1.2 Labedi [19]

    At the bubble-point,

    Below the bubble-point,

    A1.3 Kartoatmodjo and Schmidt [15]

    A1.4 Khan et al. [10]

    At the bubble-point, Below the bubble-point,

    A1.5 Elsharkway [18]

    A2 Undersaturated oil viscosity models

    A2.1 Elsharkway [18]

    A2.2 Khan et al. [9]

    A2.3 Kartoatmodjo and Schmidt [15]

    A2.4 Vazquez and Beggs [16]

    A2.5 Labedi [19]

    A3 Statistical analysis

    A3.1 Percent relative error

    A3.2 Average percent relative error

    A3.3 Average absolute percent relative error

    A3.4 Standard deviation

    A3.5 Correlation coefficient

    where

    CHEMICAL ENGINEERING THERMODYNAMICS

    Chinese Journal of Chemical Engineering, 22(3) 346—354 (2014)

    10.1016/S1004-9541(14)60017-3

    2012-06-19, accepted 2013-01-15.

    *To whom correspondence should be addressed. E-mail: m_taghizadehfr@yahoo.com

    午夜两性在线视频| 欧美黄色片欧美黄色片| 俄罗斯特黄特色一大片| 久久久色成人| 精品人妻一区二区三区麻豆 | 黄色成人免费大全| 国产不卡一卡二| 18禁在线播放成人免费| 97超级碰碰碰精品色视频在线观看| 日本一本二区三区精品| 国产99白浆流出| 精华霜和精华液先用哪个| 90打野战视频偷拍视频| 黄片大片在线免费观看| 国产精品永久免费网站| 麻豆成人av在线观看| 日韩免费av在线播放| 久久这里只有精品中国| 91在线精品国自产拍蜜月 | 国产精品久久久久久精品电影| 亚洲七黄色美女视频| 国产亚洲欧美98| 国产激情偷乱视频一区二区| 神马国产精品三级电影在线观看| 我要搜黄色片| 性欧美人与动物交配| 在线观看舔阴道视频| 国产三级中文精品| 国产欧美日韩精品亚洲av| 午夜免费激情av| 国产av一区在线观看免费| 一个人看的www免费观看视频| www日本黄色视频网| 少妇裸体淫交视频免费看高清| 狂野欧美白嫩少妇大欣赏| 日日夜夜操网爽| 人妻夜夜爽99麻豆av| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 9191精品国产免费久久| 少妇人妻一区二区三区视频| 91久久精品国产一区二区成人 | 国产精品影院久久| 在线观看美女被高潮喷水网站 | 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产精品人妻aⅴ院| 欧美av亚洲av综合av国产av| 超碰av人人做人人爽久久 | 日韩欧美 国产精品| 亚洲国产欧洲综合997久久,| 1024手机看黄色片| 中文字幕av在线有码专区| 国内少妇人妻偷人精品xxx网站| 亚洲18禁久久av| 欧美成狂野欧美在线观看| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 国产av不卡久久| 国产欧美日韩一区二区精品| 91在线观看av| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 噜噜噜噜噜久久久久久91| 操出白浆在线播放| 欧美+日韩+精品| 亚洲国产精品sss在线观看| 亚洲av一区综合| 国产69精品久久久久777片| 国产伦一二天堂av在线观看| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看| 老司机福利观看| 欧美乱色亚洲激情| eeuss影院久久| 91久久精品国产一区二区成人 | 亚洲成人中文字幕在线播放| 午夜老司机福利剧场| 制服人妻中文乱码| 国产精品综合久久久久久久免费| 听说在线观看完整版免费高清| 免费在线观看成人毛片| 成人永久免费在线观看视频| 国产蜜桃级精品一区二区三区| 18美女黄网站色大片免费观看| 级片在线观看| 91久久精品电影网| 久久久久久久午夜电影| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 免费高清视频大片| 桃色一区二区三区在线观看| 成年版毛片免费区| 女人高潮潮喷娇喘18禁视频| 深夜精品福利| 国产精品爽爽va在线观看网站| 国内毛片毛片毛片毛片毛片| 毛片女人毛片| 亚洲成a人片在线一区二区| 久久久久精品国产欧美久久久| 91在线观看av| 国产99白浆流出| 午夜a级毛片| 国产精品自产拍在线观看55亚洲| 中国美女看黄片| 91麻豆av在线| 色综合婷婷激情| 不卡一级毛片| 日韩欧美一区二区三区在线观看| 极品教师在线免费播放| 国产欧美日韩一区二区精品| 国产高清videossex| 在线十欧美十亚洲十日本专区| 国产免费一级a男人的天堂| 国产主播在线观看一区二区| 黄色视频,在线免费观看| 给我免费播放毛片高清在线观看| 日本一本二区三区精品| 色哟哟哟哟哟哟| 国产av不卡久久| 最后的刺客免费高清国语| 久久久久久久亚洲中文字幕 | 国产国拍精品亚洲av在线观看 | 欧美日韩国产亚洲二区| av欧美777| 亚洲精品久久国产高清桃花| 看片在线看免费视频| 久久精品人妻少妇| 一夜夜www| 亚洲久久久久久中文字幕| 黄色日韩在线| 亚洲精品国产精品久久久不卡| 51国产日韩欧美| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 深夜精品福利| 亚洲一区高清亚洲精品| 欧美三级亚洲精品| 搡老妇女老女人老熟妇| 制服人妻中文乱码| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 成人一区二区视频在线观看| 丁香欧美五月| 日本一二三区视频观看| 一区二区三区国产精品乱码| 国产主播在线观看一区二区| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 十八禁网站免费在线| 在线免费观看不下载黄p国产 | 9191精品国产免费久久| 国产精品av视频在线免费观看| tocl精华| 亚洲va日本ⅴa欧美va伊人久久| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 午夜视频国产福利| av国产免费在线观看| a在线观看视频网站| av专区在线播放| 亚洲精品日韩av片在线观看 | 白带黄色成豆腐渣| 久久久国产精品麻豆| 精品午夜福利视频在线观看一区| 精品国产超薄肉色丝袜足j| 国产精品爽爽va在线观看网站| 老司机福利观看| 国产99白浆流出| 叶爱在线成人免费视频播放| 亚洲第一电影网av| 午夜影院日韩av| 在线观看午夜福利视频| 熟妇人妻久久中文字幕3abv| 国产高清视频在线观看网站| 国产精品久久电影中文字幕| 嫩草影视91久久| 色播亚洲综合网| 免费观看精品视频网站| 久久亚洲精品不卡| 99久久精品国产亚洲精品| 免费无遮挡裸体视频| 波多野结衣高清作品| 又爽又黄无遮挡网站| 日韩中文字幕欧美一区二区| 一个人免费在线观看电影| 国产又黄又爽又无遮挡在线| 男人舔奶头视频| 母亲3免费完整高清在线观看| 人妻丰满熟妇av一区二区三区| 国产野战对白在线观看| 久9热在线精品视频| 国产精品99久久久久久久久| 国产欧美日韩精品亚洲av| 欧美中文日本在线观看视频| 成人av一区二区三区在线看| 欧美激情在线99| 成人一区二区视频在线观看| 国产精品一及| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 色播亚洲综合网| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩 | 久久国产精品影院| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 亚洲美女视频黄频| 无人区码免费观看不卡| 亚洲精品在线美女| 男女视频在线观看网站免费| 中文资源天堂在线| 九色成人免费人妻av| 亚洲欧美精品综合久久99| 亚洲成人久久性| 亚洲欧美日韩卡通动漫| 国产aⅴ精品一区二区三区波| 神马国产精品三级电影在线观看| 麻豆国产av国片精品| 日本熟妇午夜| 色综合站精品国产| 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 18美女黄网站色大片免费观看| 日韩欧美在线乱码| 国产精品一区二区三区四区久久| 99热这里只有精品一区| 亚洲欧美日韩无卡精品| 国产美女午夜福利| 亚洲中文字幕一区二区三区有码在线看| 一夜夜www| 日日夜夜操网爽| 亚洲美女视频黄频| 国产视频内射| 亚洲成人久久性| 日本 欧美在线| 亚洲国产日韩欧美精品在线观看 | 国产激情偷乱视频一区二区| 男女午夜视频在线观看| 男女之事视频高清在线观看| 99在线视频只有这里精品首页| 色综合欧美亚洲国产小说| 欧美日韩国产亚洲二区| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 日本三级黄在线观看| 又紧又爽又黄一区二区| 一二三四社区在线视频社区8| 国产欧美日韩一区二区精品| 真人做人爱边吃奶动态| 此物有八面人人有两片| 18禁在线播放成人免费| 欧美一级毛片孕妇| 精品福利观看| 国产私拍福利视频在线观看| 一本久久中文字幕| 少妇的逼水好多| 国产野战对白在线观看| 国产精品 国内视频| www.熟女人妻精品国产| 免费看a级黄色片| 男人和女人高潮做爰伦理| 色老头精品视频在线观看| 综合色av麻豆| 国产高清三级在线| 国产私拍福利视频在线观看| 国产精品 欧美亚洲| 国产三级在线视频| 国产中年淑女户外野战色| 国产精品久久久久久久电影 | 亚洲精品在线美女| 欧美成人一区二区免费高清观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩中文字幕国产精品一区二区三区| 免费av不卡在线播放| 精品久久久久久久毛片微露脸| 日本一本二区三区精品| 色吧在线观看| svipshipincom国产片| 日韩成人在线观看一区二区三区| 在线免费观看不下载黄p国产 | 在线观看66精品国产| 日本免费a在线| 国产欧美日韩精品一区二区| 亚洲精品美女久久久久99蜜臀| 国内久久婷婷六月综合欲色啪| 久久国产乱子伦精品免费另类| 国产美女午夜福利| ponron亚洲| 99riav亚洲国产免费| 欧美精品啪啪一区二区三区| 亚洲av一区综合| 色综合婷婷激情| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 一进一出好大好爽视频| 日韩欧美在线二视频| 色在线成人网| 两人在一起打扑克的视频| ponron亚洲| 青草久久国产| 国产极品精品免费视频能看的| 欧美成人a在线观看| 成人永久免费在线观看视频| 欧美一区二区亚洲| 亚洲国产日韩欧美精品在线观看 | 国产精品一区二区三区四区免费观看 | 黄片小视频在线播放| 亚洲av电影不卡..在线观看| 少妇人妻一区二区三区视频| www国产在线视频色| 精品人妻1区二区| 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 欧美成狂野欧美在线观看| 欧美区成人在线视频| 亚洲av熟女| 中文字幕av在线有码专区| 一二三四社区在线视频社区8| 午夜久久久久精精品| 一区福利在线观看| 亚洲国产中文字幕在线视频| 少妇丰满av| 久久精品国产99精品国产亚洲性色| 此物有八面人人有两片| 国内精品久久久久久久电影| 此物有八面人人有两片| 久久久久性生活片| 色在线成人网| 国产v大片淫在线免费观看| 日本与韩国留学比较| 在线免费观看不下载黄p国产 | 亚洲 欧美 日韩 在线 免费| 一本久久中文字幕| 国产99白浆流出| 午夜免费激情av| 精品不卡国产一区二区三区| 午夜老司机福利剧场| av福利片在线观看| 18禁裸乳无遮挡免费网站照片| 网址你懂的国产日韩在线| 欧美zozozo另类| 亚洲欧美日韩东京热| 性色av乱码一区二区三区2| 国产熟女xx| 国产一区二区三区在线臀色熟女| 欧美乱码精品一区二区三区| 免费观看人在逋| 在线观看舔阴道视频| 最近视频中文字幕2019在线8| 在线国产一区二区在线| 黄色视频,在线免费观看| 18+在线观看网站| 久久久久久国产a免费观看| 99久久精品一区二区三区| 有码 亚洲区| 日韩大尺度精品在线看网址| 亚洲精品国产精品久久久不卡| 成人一区二区视频在线观看| 久久久久久大精品| 国产熟女xx| 欧美一区二区亚洲| 757午夜福利合集在线观看| 超碰av人人做人人爽久久 | 琪琪午夜伦伦电影理论片6080| 国产欧美日韩精品一区二区| 国产精品爽爽va在线观看网站| 中文字幕av在线有码专区| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 深爱激情五月婷婷| 久久精品国产亚洲av涩爱 | 色综合欧美亚洲国产小说| av国产免费在线观看| 亚洲av不卡在线观看| 啦啦啦免费观看视频1| 亚洲av不卡在线观看| 在线观看一区二区三区| 国产av一区在线观看免费| 一进一出好大好爽视频| 亚洲在线观看片| 中文字幕人妻丝袜一区二区| 日日摸夜夜添夜夜添小说| 女生性感内裤真人,穿戴方法视频| 国产精品野战在线观看| 天天添夜夜摸| 岛国在线观看网站| 亚洲精华国产精华精| 国产精品1区2区在线观看.| 日本 欧美在线| 欧美区成人在线视频| 国产精华一区二区三区| 久久久久久人人人人人| 两人在一起打扑克的视频| 亚洲欧美日韩无卡精品| 亚洲精品乱码久久久v下载方式 | 午夜日韩欧美国产| 日韩欧美免费精品| 久久久久国产精品人妻aⅴ院| 男女视频在线观看网站免费| 亚洲 欧美 日韩 在线 免费| 可以在线观看的亚洲视频| 亚洲精品亚洲一区二区| 国产精品亚洲av一区麻豆| 亚洲精品日韩av片在线观看 | 午夜福利18| 又爽又黄无遮挡网站| 国产一区二区在线观看日韩 | 亚洲成人中文字幕在线播放| 高清在线国产一区| 久久精品影院6| 亚洲中文日韩欧美视频| 一夜夜www| h日本视频在线播放| 一边摸一边抽搐一进一小说| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 免费看a级黄色片| 亚洲欧美精品综合久久99| 热99在线观看视频| 国产综合懂色| 国产精品日韩av在线免费观看| 欧美高清成人免费视频www| 观看美女的网站| 老司机在亚洲福利影院| 亚洲av免费高清在线观看| 大型黄色视频在线免费观看| 色视频www国产| 国产真人三级小视频在线观看| 法律面前人人平等表现在哪些方面| 99久久精品热视频| 免费在线观看日本一区| 乱人视频在线观看| 成年版毛片免费区| 成年人黄色毛片网站| 老熟妇仑乱视频hdxx| 国产视频内射| 国产精品av视频在线免费观看| 国产色爽女视频免费观看| АⅤ资源中文在线天堂| 在线观看免费午夜福利视频| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| av国产免费在线观看| 高清在线国产一区| 亚洲一区二区三区不卡视频| 精品免费久久久久久久清纯| 99视频精品全部免费 在线| 久9热在线精品视频| av天堂在线播放| 亚洲av不卡在线观看| 18禁国产床啪视频网站| a级一级毛片免费在线观看| 在线观看美女被高潮喷水网站 | 国内少妇人妻偷人精品xxx网站| 国产亚洲欧美98| 亚洲片人在线观看| 亚洲欧美日韩高清在线视频| 黄色视频,在线免费观看| 激情在线观看视频在线高清| 精品欧美国产一区二区三| 伊人久久大香线蕉亚洲五| 成人鲁丝片一二三区免费| 搡女人真爽免费视频火全软件 | 91麻豆精品激情在线观看国产| 啦啦啦韩国在线观看视频| 国产精品精品国产色婷婷| 又黄又爽又免费观看的视频| 久久午夜亚洲精品久久| 午夜福利18| 黄色丝袜av网址大全| 国产黄a三级三级三级人| 久久精品亚洲精品国产色婷小说| 亚洲精品久久国产高清桃花| 91字幕亚洲| 人妻久久中文字幕网| 亚洲av免费在线观看| 国产亚洲精品综合一区在线观看| 99国产精品一区二区蜜桃av| 国产一区二区三区视频了| 亚洲成a人片在线一区二区| 草草在线视频免费看| 啦啦啦韩国在线观看视频| 我要搜黄色片| 日本黄色视频三级网站网址| 午夜激情福利司机影院| 亚洲美女视频黄频| 天堂av国产一区二区熟女人妻| 少妇裸体淫交视频免费看高清| 久久国产精品影院| 在线免费观看不下载黄p国产 | 精品久久久久久,| 欧美国产日韩亚洲一区| 欧美一区二区国产精品久久精品| 少妇高潮的动态图| 久久久国产成人免费| 成人三级黄色视频| 最近最新中文字幕大全电影3| 国产亚洲欧美在线一区二区| 激情在线观看视频在线高清| 精品熟女少妇八av免费久了| 中文字幕人成人乱码亚洲影| 午夜精品一区二区三区免费看| 日韩欧美免费精品| 动漫黄色视频在线观看| 成人鲁丝片一二三区免费| 免费电影在线观看免费观看| 在线播放无遮挡| 18美女黄网站色大片免费观看| 久久精品人妻少妇| 欧美国产日韩亚洲一区| 淫秽高清视频在线观看| 欧美日韩精品网址| 无人区码免费观看不卡| 久久99热这里只有精品18| 美女被艹到高潮喷水动态| 欧美激情在线99| 日韩欧美 国产精品| 婷婷丁香在线五月| 九色成人免费人妻av| 亚洲国产精品合色在线| 欧美日韩一级在线毛片| avwww免费| 成人欧美大片| 亚洲黑人精品在线| ponron亚洲| 99热这里只有精品一区| 久久精品综合一区二区三区| 国产黄片美女视频| 亚洲人成伊人成综合网2020| 久久99热这里只有精品18| 看免费av毛片| a级毛片a级免费在线| 国产成+人综合+亚洲专区| 一区福利在线观看| 亚洲成av人片免费观看| 国产免费一级a男人的天堂| 欧美日韩福利视频一区二区| 97碰自拍视频| 免费看日本二区| 亚洲精品成人久久久久久| 日韩欧美国产在线观看| 长腿黑丝高跟| 欧美日韩国产亚洲二区| 嫩草影院入口| 欧美日韩黄片免| aaaaa片日本免费| av欧美777| 欧美一级a爱片免费观看看| 久久久久久大精品| 伊人久久精品亚洲午夜| 亚洲aⅴ乱码一区二区在线播放| 黄色成人免费大全| 久久久色成人| 精品电影一区二区在线| 非洲黑人性xxxx精品又粗又长| 亚洲真实伦在线观看| 少妇的丰满在线观看| 少妇丰满av| 一本精品99久久精品77| 久久精品影院6| 在线播放无遮挡| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 久久精品91无色码中文字幕| 亚洲欧美日韩东京热| 久久亚洲真实| 国产老妇女一区| 精品欧美国产一区二区三| 久久精品人妻少妇| 狂野欧美激情性xxxx| 亚洲美女视频黄频| xxx96com| 国产黄a三级三级三级人| 欧美乱码精品一区二区三区| 久久久久久久精品吃奶| 亚洲成人免费电影在线观看| 99精品久久久久人妻精品| 日本与韩国留学比较| 欧美极品一区二区三区四区| www.色视频.com| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 俺也久久电影网| 大型黄色视频在线免费观看| 亚洲精品456在线播放app | 国产精品 欧美亚洲| 国产av不卡久久| 欧美日韩国产亚洲二区| 亚洲精品影视一区二区三区av| 精品一区二区三区人妻视频| 两人在一起打扑克的视频| 亚洲美女视频黄频| 国产探花在线观看一区二区| 制服丝袜大香蕉在线| 日本成人三级电影网站| 无人区码免费观看不卡| eeuss影院久久| 国产成人a区在线观看| 国产精品女同一区二区软件 | 色视频www国产| 一进一出好大好爽视频| 国产精品乱码一区二三区的特点| 三级毛片av免费| 亚洲18禁久久av| 黄色日韩在线| 狂野欧美激情性xxxx| 成人特级av手机在线观看| 免费av不卡在线播放| 51国产日韩欧美|