• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy,Resources and Environmental Technology Experimental and Modeling Study on de-NOxCharacteristics of Selective Non-catalytic Reduction in O2/CO2Atmosphere☆

    2014-07-12 08:33:16HuiLiKuihuaHanHongtaoLiuChunmeiLu

    Hui Li,Kuihua Han*,Hongtao Liu,ChunmeiLu

    Energy,Resources and Environmental Technology Experimental and Modeling Study on de-NOxCharacteristics of Selective Non-catalytic Reduction in O2/CO2Atmosphere☆

    Hui Li,Kuihua Han*,Hongtao Liu,ChunmeiLu

    NationalEngineering Laboratory for Coal-fired Pollutants Emission Reduction,School of Energy and Power Engineering,Shandong University,Jinan 250061,China

    A R T I C L E I N F o

    Article history:

    Received 4 March 2013

    Received in revised form 16 September 2013

    Accepted 12 December 2013

    Available online 16 June 2014

    Selective non-catalytic reduction

    Denitrification

    Ammonia

    Kinetic modeling

    O2/CO2

    SO2

    Additives

    An experimental study of the rmalde-NOxusing NH3as reductant in O2/CO2atmosphere with the effect of SO2and different additives was performed in a drop tube furnace.Results show that the optimum temperature window is 841-1184°C,and the optimum reaction temperature is about900°C with a de-NOxefficiency of95.4%.A certain amount of SO2has an inhibiting effect on NOreduction.The effect of additives,including Na2CO3,C2H5OH and FeCl3,on NOreduction by NH3is also explored.The addition of Na2CO3and FeCl3is useful to widen the temperature window and shift the reaction to lower temperature for the efficiency is increased from 30.5%to 74.0% and 67.4%respectively at 800°C.Qualitatively,the modeling results using a detailed kinetic modeling mechanism represent well most of the process features.The effect of Na2CO3,C2H5OH and FeCl3addition can be reproduced well by the Na2CO3,C2H5OH and Fe(CO)5sub-mechanism respectively.The reaction mechanism analysis shows that the effects of these additives on NOreduction are achieved mainly by promoting the production of OH radicals at lower temperature.

    ?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.Allrights reserved.

    1.Introduction

    Nitrogen oxides(NOx),responsible for air pollution and harming human health are mainly emitted from coal plants.The recently released Emission Standard of Air Pollutants for Thermal Power Plants (GB13223-2011)by the Chinese government is implementing more and more stringent NOxregulation.The selective non-catalytic reduction(SNCR)process is widely used for NOxreduction by injecting into fuelgas nitrogenous compounds containing-NH-or-CN-function groups such as ammonia(NH3)[1,2],urea[(NH2)2CO][3,4]or cyanuric acid[(HNCO)3][5,6].Ammonia based SNCR techniques are cost effective,space saving,simple of fl owsheetand with high compatibility compared with other NOxcontrol technologies.However,SNCR cannot achieve 90%of NOxreduction out of the laboratory.The reduction efficiency of ammonia based SNCR is about 30%-75%depending on the facility type and scale,operating conditions,reductant mixture composition and many other variables[7].Selective catalytic reduction(SCR) has higher efficiency(60%-95%)but is also highly costly[8].Hybrid NOxreduction technologies can be an effective method to meet the more stringentemission standard,such as hybrid coalreburning/SNCR and hybrid SCR/SNCR processes[9-11].The O2/CO2combustion technology is an innovative combustion technology which can control CO2,SO2and NOxemissions simultaneously[12-14].Previous studies have shown that there are several factors in using O2/CO2atmosphere that contribute to the decrease in NOxemission level.One is the elimination of thermal NOxand prompt NOxbecause of the absence of N2.The other is the high CO2concentration which can inhibit conversion of fuel-N to NO.The third and most important factor is the interaction between the recycled NOxand the fuel-N released from coal which may further decrease NOxformation[15,16].These factors can also influence the SNCR process. Combining the O2/CO2atmosphere technique with SNCR will reduce NOxemissions further and can meet the increasingly stringent standards.

    Many studies of SNCR process in air atmosphere have been performed but there is hardly any study on the O2/CO2atmosphere.In this study,new experimental results were presented for NO reduction characteristics through a drop tube furnace to provide further insight into the NOxreduction in O2/CO2atmosphere.Computational kinetic modeling using a detailed chemicalkinetic mechanism was then performed to analyze the de-NOxprocess so as to provide a direct comparison of modeling prediction with experimental measurements.

    2.Experimental Methods

    The experiments performed in this study were conducted in a drop tube furnace shown in Fig.1.The experimental setup consists of a gas feeding system,an additive feeding system,a reaction system and a gas analysis system.The reaction system includes an electricity-heated corundum flow reactor which has an inner diameter of 4 cm and a length of104 cm.12 carborundum sticks are located along the reactor to control the reaction temperature in the 800-1200°C range.Theactual temperature distribution along the reactor length under typical conditions is shown in Fig.2.The length of the constant temperature zone was 55 cm which was regarded as the reaction zone,and the preheating zone was about 35 cm.The sampling probe was initially located in 85 cm from the inlet of the reactor.A water-cooled system was used to cool the inlet of the reactor and the gas sampling probe.

    Fig.1.experimental system schematic.1—CO2;2—O2;3—NO;4—NH3;5—Ar;6—N2;7—SO2;8—pressure reducing valve;9—flow meter;10—mixer;11—additive inlet;12—peristaltic pump;13—additive solution;14—corundum tube;15—carborundum stick;16—temperature controller;17—thermocouple;18—sphericalvalve;19—filter;20—water-cooled heat exchanger;21—vacuum pump;22—sampling probe;23—gas analyzer;24—computer.

    Fig.2.Measured temperature distribution along the reactor as a function of axial position (initial conditions:O2/CO2/NH3/NO,gas inlet temperature=20°C,gas flow rate in the reaction zone=2 m3·h-1,φNO=600μl·L-1,φO2=3%,CO2balanced,residence time=1.2 s,feed[NH3]/[NO]ratio=1.5).

    Supplies of O2,CO2,N2and Ar were bottled standard gases with purity of99.5%.The concentration of NO and NH3was 10%and balanced respectively by Ar and CO2streams from gas bottles.All the gases were premixed in a mixture before entering the reactor.The gas inlet temperature was 20°C.The flow rates were measured and controlled by flow meters.Optima 7,a German-made multiple gas analyzer was used to continuously analyze the concentrations of O2,CO2,NO,NO2and SO2through the sampling probe.The gas flow rate and sampling probe position were controlled to change the residence time.The gas flow rate was 2 m3·h-1with a residence time of 1.2 s in the reaction zone.The NO initial concentration was 600μl·L-1and O2was 3%.The [NH3]/[NO]molar ratio(R)was 1.5.This study also concerned on the influence of SO2and NH3in combination with aqueous additives such as Na2CO3,C2H5OHand FeCl3on NO reduction.Allthe additives were analytically pure and dissolved by the deionized water.The additive initial concentration injected into the reactor was 200μl·L-1.The additive was injected into the reactor through the additive inlet by a peristaltic pump and it was gasified immediately since its flow rate was as low as 10 ml·min-1.The initialconcentration of NO2was around 30μl·L-1with 600μl·L-1of NO,and the outlet concentration was below 10μl-1.The gas analyzer could notanalyze the concentration of N2O.

    According to the modeling results and previous experimental results by other researchers[17,18],the concentration of N2O was negligible, and thus the effect of N2O was neglected.The NO reduction efficiency was calculated by

    whereηwas the NO reduction efficiency,andφNO,0andφNO,1were the inlet and outlet concentrations of NO respectively.

    3.Kinetic Modeling

    Many works have been done to establish the chemicalkinetic mechanism of SNCR in traditional combustion atmosphere.The MG99 model [19]has been proved to be reliable to predictthermalde-NOxprocess.In this study,the kinetic mechanismis builtstarting from the MG99 model complemented with the reactions taken from the Leeds model[20]todescribe the interactions between SO2and nitrogenous compounds.The additive reactions that come from the Rota model[21],Zamansky model[22]and Rumminger model[23]are also included into the mechanism.Some gas phase reactions are modified according to the experimental results to better reveal the realprocess nature.On the whole, the mechanism contains 570 elementary gas phase reactions and 114 chemical species.A plug-flow reactor(PFR)module which runs in conjunction with Chemkin 4.0 is used to perform the kinetic model calculations.The length of the model reactor is 55 cm which is the same with the reaction zone and the contribution of reaction in the preheating zone is neglected for its low temperature.

    Sensitivity Analysis(SA)in Chemkin is a powerful and systematic way to determine quantitatively the relationship between the various elementary reactions and reacting species that appear in the model.In this study,the fi rst-order sensitivity analysis of NO concentration at the reactor outlet has been performed to find out which elementary reaction exerts the most influence on NO reduction.The sensitivity coefficient S is basically the ratio of the change in exiting NO concentration per change of the rate constant kiof elementary reaction i in the chemical system,while all other parameters remain constant:

    The value of S stands for the intensity of influence of reaction i on NO removal.Its positive value means that reaction i produces NO and on the contrary,the negative value means that it contributes to NO reduction [24-26].

    4.Results and Discussion

    4.1.Axial NO distribution and NH3consumption efficiency

    According to the modeling results,NH3and NO will not react under 750°C.Since there are some points with temperature higher than 750°C in the preheating zone,some influence on NO reduction may be resulted by the prolonged reaction zone.This influence was tested in the modified model by prolonging the reaction zone according to the temperature distribution.Fig.3 shows the original and modified results of NO reduction efficiency.The efficiency in the modified model is at most2.5%higher(experimentat 800°C)than that with the original results as shown in Fig.3.Some previous modeling results with the similar system[27,28]with the influence of the preheating zone neglected also reproduce well the experimentaldata.It is reasonable and reliable to neglect the influence of the preheating zone in the present work.

    Fig.3.Original and modified modeling results of NO reduction efficiency(closed symbols and solid lines:original results;open symbols and dashed lines:modified results.Initial conditions:O2/CO2/NH3/NO,φNO=600μl·L-1,φO2=3%,CO2balanced,R=1.5).

    Fig.4.NO distribution along the reaction zone as a function of axial position(closed symbols and solid lines:experimental results;open symbols and dashed lines:modeling results.Initial conditions:O2/CO2/NH3/NO,gas inlet temperature=20°C,gas flow rate in the reaction zone=2 m3·h-1,φNO=600μl·L-1,φO2=3%,CO2balanced,residence time=1.2 s,R=1.5).

    Fig.4 shows the experimentaland modeling results of axial NO distribution under typical conditions in the reaction zone.They present the same trend that NO concentration decreases rapidly over the first20 cm length and then changes slowly as the NO reduction reactions are almost completed.Higher temperature leads to a higher reaction rate, but the outlet concentration of NO becomes larger due to the oxidation of ammonia.

    The simulated NH3consumption efficiencies with different molar ratios are illustrated in Fig.5.The NH3consumption efficiency is calculated by

    whereφNH3,0andφNH3,1are the inlet and outlet concentrations ofNH3respectively.It can be seen that the efficiency increases with temperature and NH3can be totally consumed at higher temperature.The escape concentration of NH3is much higher for higher molar ratio at lower temperature.The excessive NH3can be completely oxidized and consumed by O2when the temperature is above 1100°C.However,previous studies indicate that because of the mixing of NH3and NO and the reactions of NH3with O2,the optimal NO reduction efficiency is achieved at a higher molar ratio more than needed.The[NH3]/[NO]molar ratio is fixed to the value of1.5 according to the previous studies [2,22,27].

    Fig.5.Simulated NH3consumption efficiencies with different molar ratios(initial conditions:O2/CO2/NH3/NO,gas flow rate in the reaction zone=2 m3·h-1,φNO=600μl·L-1, φO2=3%,CO2balanced,residence time=1.2 s).

    4.2.Reaction temperature and atmosphere on NO reduction

    Temperature is an important factor to NO reduction.In this study, temperature window is defined as the temperature range over where 80%of the maximum efficiency could be achieved.The experimental results of the effect of reaction temperature on NO reduction with a variation of atmospheres without additives in O2/CO2are illustrated in Fig.6 together with the modeling results.It is seen that as the reactor temperature increases in O2/N2,O2/Ar as well as O2/CO2,the NO reduction efficiency increases rapidly up to 900°C to reach a maximum.It is 97.5%in O2/N2,98.4%in O2/Ar and 95.4%in O2/CO2.Above 900°C,the NO reduction efficiency slowly decreases with increasing temperature.The temperature windows are all around 850-1200°C,i.e.841-1184°C in O2/ CO2,832-1200°C in O2/Ar and 843-1200°C in O2/N2.In the temperature windows of the three atmospheres,the NO reduction efficiencies show minor difference among each other.The highest efficiency is obtained in O2/Ar as well as the lowest in O2/CO2.The modeling results reproduce well the experimental data on the effect of reaction temperature on NO reduction.However,the predicted NO reduction efficiency in O2/CO2is little higher than experimental data at each temperature, possibly due to the departure from the ideal gas mixing,heat and flow conditions in the reactor leading to lower efficiency.

    Table 1 shows the sensitivity analyses of the main reactions which are responsible for NO reduction at 900°C.(115),(199)and(211) which can be promoted by OH and NH2radicals have the biggest influence on NO reduction.It is seen from Fig.7 that the key step of the the rmalde-NOxprocess is the reaction between NH3and OH to form NH2.Previous studies proposed by Wu and Niu[27,29]find that at lower temperature,little NO is removed due to the lower reaction rates and lack of OH radicals.The OH radical concentration increases with increasing temperature,which leads to the increase of the NO reduction efficiency.At higher temperature,the formation of NO from ammonia oxidation is favored compared to its destruction.Ar,N2and CO2have different heat specifics at constant pressure.The temperature of the reaction gases increases fastest in O2/Ar and slowestin O2/CO2,for Ar has the smaller heat specific at constant pressure as compared with CO2.Thus,in O2/Ar the higher NO reduction efficiency in a lower temperature is achieved than that in O2/N2and O2/CO2as shown in Fig.6.

    Fig.6.Temperature and atmosphere on NO reduction(closed symbols and solid lines:experimental results;open symbols and dashed lines:modeling results.Initial conditions: O2/CO2(Ar,N2)/NH3/NO,gas inlet temperature=20°C,gas flow rate in the reaction zone=2 m3·h-1,φNO=600μl·L-1,φO2=3%,residence time=1.2 s,R=1.5).

    Fig.7.Reaction path diagram for the thermalde-NOxprocess.

    Table 1 The main reactions responsible for NO reduction at 900°C

    4.3.SO2on NO reduction

    Fig.8 shows the effect of 2000μl·L-1SO2added on NO reduction.It can be seen from the experimental results that SO2has an inhibiting effect on NO reduction at each experimental temperature.It decreases from 95.4%to 77.8%at the optimum temperature.The modeling presents the same trend of inhibiting effect on NO reduction,but the predicted inhibition by SO2is much weaker than the experimental observation.In this study,O2,CO2,NOand NH3are premixed before entering the reactor while SO2is added into the reactor directly.These factors may influence the deviation of modeling from experiment.Further studies need to be done to better reveal the inhibiting mechanism and confirm these assumptions.

    Table 2 shows the main reactions of SO2responsible for NO reduction at 900°C.It can be seen from the table that all the reactions involved with sulfur compounds can promote the production of NO which is negative to NO reduction.Researchers[30]explained the SO2inhibition using the following sequence of reactions:

    Reaction(4)reduces the O-atom concentration,resulting in a reduction of OH radical production in reaction(5).Reaction(6)would also reduce the fraction of OH radical by replacing the formation of3OH radicals via reactions(4)and(7).SO2can react with NH2radical through reaction(8).As it is discussed before,the lack of OH and NH2radicals will lead to the decline of the NO reduction efficiency.

    Fig.8.Inhibition of added SO2on NO reduction(closed symbols and solid lines: experimental results;open symbols and dashed lines:modeling results.Initial conditions:O2/CO2/NH3/NO,gas inlet temperature=20°C,gas flow rate in the reaction zone=2 m3·h-1,φNO=600μl·L-1,φO2=3%,CO2balanced,residence time= 1.2 s,R=1.5,φSO2=2000μl·L-1).

    Fig.9.Na2CO3on NO reduction(closed symbols and solid lines:experimental results; open symbols and dashed lines:modeling results.Initial conditions:O2/CO2/NH3/NO, gas inlet temperature=20°C,gas flow rate in the reaction zone=2 m3·h-1,additive fl ow=10 ml·min-1,φNO=600μl·L-1,φO2=3%,CO2balanced,residence time= 1.2 s,R=1.5,φNa2CO3=200μl·L-1).

    Table 2 The main reactions of SO2responsible for NO reduction at 900°C

    4.4.EffectofNa2CO3

    Fig.9 shows the effect of Na2CO3on NOreduction,indicating that the addition of Na2CO3widens the temperature window and shifts the optimum reaction temperature to lower points as it increases the efficiency significantly in lower temperature conditions.The NO reduction efficiency is increased from 30.5%to 74.0%at 800°C.Qualitatively the modeling results exhibit the same trend.Despite that the model under-predicts the effect of Na2CO3on NO reduction below 850°C and over-predicts it above 1050°C,it captures the shift of temperature window with the addition of Na2CO3.

    Table 3 shows the sensitivity analyses of the main reactions of Na2CO3which are responsible for NO reduction at 850°C.It can be seen from the table that the reactions that involve sodium compounds are mostly positive to NO reduction and negative to few reactions. Na2CO3and the decomposition product can't react with NO but can produce OH radicals through a series of reactions.Once entering the reaction area,Na2CO3becomes a homogeneous configuration that then reacts with vapor to form NaOH,NaO,Na and many other sodium compounds.OH radicals will be produced through these reactions such as (328)and(343).The netaction is equivalent to H2O?H+OH resulting to an increase of H and OH radicals.At lower temperature,it can increase the NO reduction efficiency obviously as there are no enough OH radicals[31-33].

    4.5.Effect of C2H5OH

    The experimental and modeling results obtained are shown in Fig.10.The NO reduction efficiency below 900°C is increased by C2H5OH but the reaction temperature window is not widened in the experiments.The predicted efficiency curve reproduces well the effect of C2H5OH on NO reduction.Table 4 shows the main reactions of C2H5OH responsible for NO reduction at850°C.Athigher temperature above 700°C,C2H5OH is decomposed into CHiand OH radicals.Except for the decomposition,C2H5OH can also react with O2to form OH radicals at lower temperature.As the temperature increases,the oxidation of C2H5OH and CHibecomes more complete,and it forms CO2and H2O instead of OH radicals that have little influence to the efficiency[21, 28,34].

    4.6.Effect of FeCl3

    The effect of FeCl3on NO reduction is illustrated in Fig.11.The mechanism of iron compounds on NO reduction is rare and not clear.The Fe(CO)5reaction sub-mechanism that came from the Rumminger model[23]was added to predict the FeCl3on NO reduction instead. The same characteristics like Na2CO3are presented by FeCl3as thetemperature window is widened for the efficiency increases significantly below 900°C.The NO reduction efficiency is increased from 30.5%to 67.4%at 800°C.The modeling study on the effect of Fe(CO)5on NO reduction exhibits a consistent trend as the experimental results of FeCl3addition.Except for the under-prediction of NO reduction at 800°C, the Fe(CO)5reaction sub-mechanism is adaptive to simulate the effect of FeCl3addition.The main reactions of Fe(CO)5which contribute to NO reduction are listed in Table 5.Fe(CO)5can decompose into CO and a series of iron compounds such as FeO2,FeO and FeOOH.Iron compounds don't react directly with NO but can produce more OH radicals through the reaction with other radicals,for example the net action of (535)and(552)is equivalent to H2O?H+OH.It is reasonable to indicate that FeCl3can also produce more radicals which are positive to NO reduction through a series of interactions between the iron compounds and other radicals.The accurate mechanism of NO reduction with the addition of FeCl3needs to be found out by further analyzing the reaction residuum.

    Table 3 The main reactions of Na2CO3responsible for NO reduction at 850°C

    Fig.10.C2H5OH on NO reduction(closed symbols and solid lines:experimental results; open symbols and dashed lines:modeling results.Initial conditions:O2/CO2/NH3/NO, gas inlet temperature=20°C,gas flow rate in the reaction zone=2 m3·h-1,additive fl ow=10 ml·min-1,φNO=600μl·L-1,φO2=3%,CO2balanced,residence time= 1.2 s,R=1.5,φC2H5OH=200μl·L-1).

    Fig.11.FeCl3on NO reduction(closed symbols and solid lines:experimental results;open symbols and dashed lines:modeling results.Initial conditions:O2/CO2/NH3/NO,gas inlet temperature=20°C,gas flow rate in the reaction zone=2 m3·h-1,additive fl ow= 10 ml·min-1,φNO=600μl·L-1,φO2=3%,CO2balanced,residence time=1.2 s,R= 1.5,φFeCl3=200μl·L-1).

    5.Conclusions

    New experimental results on de-NOxcharacteristics of ammonia based SNCR process were investigated in a drop tube reactor.Based on the experimental results,the conclusions can be summarized as follows. The optimum reaction temperature is 900°C with a reduction efficiency of95.4%.The temperature windows are all around 850-1200°C:841-1184°C in O2/CO2,832-1200°C in O2/Ar and 843-1200°C in O2/N2.In the temperature windows of the three atmospheres,the NO reduction efficiencies indicate little difference among each other.A certain amount of SO2has an inhibiting effect on NO reduction.The addition of Na2CO3and FeCl3is useful to widen the temperature window and shift the reaction temperature to lower one and the efficiency at 800°C is increased from 30.5%to 74.0%and 67.4%respectively.

    The kinetic model using a detailed chemical kinetic mechanism was built starting from the MG99 model complemented with the submechanism taken from the Leeds model,Rota model,Zamansky model and Rumminger model.The modeling simulations reproduce well most of the process features.The Na2CO3,C2H5OH and Fe(CO)5sub-mechanism are adaptive to simulate the effect of Na2CO3,C2H5OH and FeCl3addition respectively.However,departure from the ideal mixing,heat and flow conditions leads to a lower efficiency in experiments compared to the modeling results.The main reactions responsible for NO reduction with and without additives are investigated by sensitivity analyses.The analysis on reaction mechanism shows that the reason for increasing the efficiency at lower temperature is similar for these additives.It can be attributed to the branching reactions caused by the additives,which enhance the production of OH radicals. Consequently the conversion of NH3and the reduction of NO are enhanced.

    Table 4 The main reactions of C2H5OH responsible for NO reduction at 850°C

    Table 5 The main reactions of Fe(CO)5responsible for NO reduction at 850°C

    Nomenclature

    k rate constant

    R[NH3]/[NO]molar ratio in feed

    S sensitivity coefficient

    t time,s

    αNH3consumption efficiency,%

    ηNO reduction efficiency,%

    φconcentration,μl·L-1

    [1]C.M.Nam,B.M.Gibbs,Application of the thermal deNOxprocess to diesel engine deNOx:an experimental and kinetic modeling study,Fuel 81(2002) 1359-1367.

    [2]K.H.Han,C.M.Lu,Y.Z.Wang,N.S.Niu,Z.C.Liu,W.D.Hao,Experimental study on de-NOxcharacteristics of selective non-catalytic reduction,Proc.Chin.Soc.Electron.Eng. 28(14)(2008)80-85(in Chinese).

    [3]R.Rota,D.Antos,E.F.Zanoelo,M.Morbidelli,Experimental and modeling analysis of the NOxOUT process,Chem.Eng.Sci.57(2002)27-38.

    [4]M.T.Javed,N.Irfan,B.M.Gibbs,Control of combustion-generated nitrogen oxides by selective non-catalytic reduction,J.Environ.Manag.83(2007)251-289.

    [5]D.L.Siebers,J.A.Caton,Removal of nitric oxide from exhaust gas with cyanuric acid, Combust.Flame 79(1990)31-46.

    [6]P.Glarborg,P.G.Kristensen,S.H.Jensen,K.D.Johansen,A flow reactor study of HNCO oxidation chemistry,Combust.Flame 98(1994)241-258.

    [7]G.W.Lee,B.H.Shon,J.G.Yoo,J.H.Jung,K.J.Oh,The influence of mixing between NH3and NO for a de-NOxreaction in the SNCR process,J.Ind.Eng.Chem.14(2008) 457-467.

    [8]W.H.J.Graus,E.Worrel,Effect of SO2and NOxcontrol on energy-efficiency power generation,Energ Policy 35(7)(2007)3898-3908.

    [9]W.J.Yang,Z.J.Zhou,J.H.Zhou,H.K.Lv,J.Z.Liu,K.F.Cen,Application of hybrid coal reburning/SNCR processes for NOxreduction in a coal-fi red boiler,Environ.Eng. Sci.26(2)(2009)311-317.

    [10]H.Y.Kim,S.W.Baek,C.Y.Lee,Effects of hybrid reburning system with SNCR and air staging on NOxreduction and thermal characteristics in oxygen enhanced combustion,Combust.Sci.Technol.181(10)(2009)1289-1309.

    [11]W.J.Yang,Z.C.Chen,Z.J.Zhou,Z.H.Wang,J.H.Zhou,Z.Y.Huang,K.F.Cen,Costefficient nitrogen oxides controlby a hybrid selective noncatalytic reduction and selective catalytic reduction system on a utility boiler,Environ.Eng.Sci.28(5)(2011) 341-348.

    [12]K.My?h?nen,T.Hypp?nen,T.Pikkarainen,T.Eriksson,A.Hotta,Near zero CO2emissions in coal fi ring with oxy-fuelcirculating fluidized bed boiler,Chem.Eng.Technol. 32(3)(2009)355-363.

    [13]Q.Z.Li,C.S.Zhao,W.F.Wu,X.P.Chen,W.Dong,Experimental investigation on NO emission characteristic during pulverized coalcombustion in O2/CO2environment, Proc.Chin.Soc.Electron.Eng.29(23)(2009)33-39(in Chinese).

    [14]L.B.Duan,C.S.Zhao,J.Y.Lu,W.Zhou,Y.J.Li,X.P.Chen,SO2/NO emission characteristics during O2/CO2coal combustion process,J.Chem.Ind.Eng.Soc.China 60(5) (2009)1270-1274(in Chinese).

    [15]H.Liu,R.Zailani,B.Gibbs,Comparisons of pulverized coalcombustion in air and in mixtures of O2/CO2,Fuel84(2005)833-840.

    [16]R.Zhao,H.Liu,H.Hu,X.J.Zhong,Z.J.Wang,Z.Y.Xu,J.R.Qiu,Experimental and modeling study of NO emission under high CO2concentration,Sci.Chin.Technol. Sci.53(12)(2010)3275-3283.

    [17]Z.M.Lu,J.D.Lu,Influence of O2concentration on NO reduction and N2O formation in thermal deNOxprocess,Combust.Flame 156(2009)1303-1315.

    [18]B.C.Moo,F.C.Chin,Low temperature SNCR process for NOxcontrol,Sci.Total Environ. 198(1997)73-78.

    [19]J.A.Miller,P.Glarborg,Modeling the formation of N2O and NO2in the thermal de-NOxprocess,in:M.Bodenstein,J.Wolfrum,H.R.Volppp,R.Rannacher,J.Warnatz (Eds.),Gas Phase Chemical Reaction Systems:Experiments and Models 100 Years After,Springer Series in Chemical Physics,1996,pp.318-333.

    [20]M.J.Pill,T.Turanyi,K.J.Hughes,“Irreversible mechanism mole Kelvin units”,The University of Leeds,http://gar field.chen.elte.hu/Combustion/mechanisms 2004.

    [21]R.Rota,E.F.Zanoelo,Influence of oxygenated additives on the NOxOUT process ef ficiency,Fuel82(2003)765-770.

    [22]V.M.Zamansky,V.V.Lissianski,P.M.Maly,L.Ho,D.Rusli,W.C.Gardiner,Reaction of sodium species in the promoted SNCR process,Combust.Flame 117(1999)821-831.

    [23]M.D.Rumminger,D.Reinelt,V.Babushok,G.T.Linteris,Numerical study of the inhibition of premixed and diffusion fl ames by iron pentacarbonyl,Combust.Flame 116 (1999)207-219.

    [24]A.E.Lutz,R.J.Kee,J.A.Miller,SENKIN:a FORTRAN program for predicting homogeneous gas phase chemicalkinetics with sensitivity analysis,Sandia National Laboratories Report,SAND87-8248,1988.

    [25]D.M.Hamby,A review of techniques for parameter sensitivity analysis of environmental models,Environ.Monit.Assess.32(2)(1994)135-154.

    [26]T.Turányi,Sensitivity analysis of complex kinetic systems.Tools and applications,J. Math.Chem.5(3)(1990)203-248.

    [27]S.H.Wu,Q.X.Cao,H.Liu,Q.An,X.Huang,Experimental and modeling study of the effects of gas additives on the thermal deNOxprocess,Chin.J.Chem.Eng.18(1) (2010)143-148.

    [28]L.Gasnot,D.Q.Dao,J.F.Pauwels,Experimental and kinetic study of the effect of additives on the ammonia based SNCR process in low temperature conditions,Energy Fuel26(5)(2012)2837-2849.

    [29]S.L.Niu,K.H.Han,C.M.Lu,Experimental study on the effect of urea and additive injection for controlling nitrogen oxides emissions,Environ.Eng.Sci.27(1)(2010) 47-53.

    [30]J.A.Silver,The effect of sulfur on the thermal deNOxprocess,Combust.Flame 53 (1-3)(1983)17-21.

    [31]W.J.Yang,J.H.Zhou,J.J.Zhou,Z.C.Chen,J.Z.Liu,K.F.Cen,Action of oxygen and sodium carbonate in the urea-SNCR process,Combust.Flame 156(2009)1785-1790.

    [32]K.H.Han,C.M.Lu,Kinetic modeland simulation of promoted selective non-catalytic reduction by sodium carbonate,Chin.J.Chem.Eng.15(4)(2009)512-519.

    [33]S.L.Niu,K.H.Han,C.M.Lu,An experimental study on the effect of operating parameters and sodium additive on the NOxOUT process,Process Saf.Environ.89(2011)121-126.

    [34]M.T.Javed,W.Nimmo,A.Mahmood,N.Irfan,Effect of oxygenated liquid additives on the urea based SNCR process,J.Environ.Manag.90(2009)3429-3435.

    ☆Supported by the National Natural Science Foundation of China(51206096).

    *Corresponding author.

    E-mailaddress:hankh@163.com(K.Han).

    亚洲欧美成人精品一区二区| 欧美精品一区二区大全| 国产熟女欧美一区二区| 成年美女黄网站色视频大全免费 | 各种免费的搞黄视频| 亚洲av.av天堂| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久国产蜜桃| 欧美性感艳星| 国精品久久久久久国模美| av卡一久久| 久久国内精品自在自线图片| a级毛片黄视频| 日韩一区二区三区影片| 久久精品久久久久久久性| 久久久久久久国产电影| av在线app专区| 在线观看一区二区三区激情| av专区在线播放| 欧美人与善性xxx| 波野结衣二区三区在线| 人妻夜夜爽99麻豆av| 国产极品天堂在线| 国产午夜精品久久久久久一区二区三区| 国产精品不卡视频一区二区| 国产在线免费精品| 免费观看av网站的网址| 亚洲精品aⅴ在线观看| a级毛片在线看网站| 久久精品国产自在天天线| 久久久久精品久久久久真实原创| 亚洲精品日韩av片在线观看| 国产伦精品一区二区三区视频9| 99久久中文字幕三级久久日本| 免费久久久久久久精品成人欧美视频 | 91精品一卡2卡3卡4卡| 国产精品一区二区三区四区免费观看| 九九在线视频观看精品| 久久99一区二区三区| 汤姆久久久久久久影院中文字幕| 日本午夜av视频| 七月丁香在线播放| 欧美少妇被猛烈插入视频| 天美传媒精品一区二区| 在线观看免费高清a一片| 午夜福利影视在线免费观看| 老司机亚洲免费影院| 一级黄片播放器| 久久久久久久国产电影| 精品久久久噜噜| 亚洲性久久影院| 成人免费观看视频高清| 大话2 男鬼变身卡| 亚洲精品自拍成人| 26uuu在线亚洲综合色| 五月玫瑰六月丁香| 成人漫画全彩无遮挡| av卡一久久| 丝袜脚勾引网站| 亚洲精品456在线播放app| 涩涩av久久男人的天堂| 80岁老熟妇乱子伦牲交| 人妻制服诱惑在线中文字幕| 免费观看在线日韩| av播播在线观看一区| 一级毛片 在线播放| 欧美另类一区| 一二三四中文在线观看免费高清| 国产精品嫩草影院av在线观看| 久久99热6这里只有精品| 乱人伦中国视频| 日韩一区二区视频免费看| 久久精品国产亚洲av涩爱| 免费高清在线观看日韩| 久久热精品热| 欧美人与性动交α欧美精品济南到 | 亚洲婷婷狠狠爱综合网| 狂野欧美激情性bbbbbb| 内地一区二区视频在线| 人妻 亚洲 视频| 亚洲精品一二三| 美女脱内裤让男人舔精品视频| 日产精品乱码卡一卡2卡三| 亚洲欧洲国产日韩| 国产男女内射视频| 久久久久国产网址| 色94色欧美一区二区| 交换朋友夫妻互换小说| 日本午夜av视频| 国产国拍精品亚洲av在线观看| 青青草视频在线视频观看| 免费观看的影片在线观看| 熟女人妻精品中文字幕| 亚洲精品日本国产第一区| 国产成人aa在线观看| 97精品久久久久久久久久精品| 国产高清三级在线| 久久久亚洲精品成人影院| 欧美精品国产亚洲| 国产精品国产三级国产专区5o| 日韩成人伦理影院| 欧美日韩在线观看h| 国产精品女同一区二区软件| 国产精品一二三区在线看| 欧美激情 高清一区二区三区| 国产精品无大码| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 中文天堂在线官网| 亚洲欧洲日产国产| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 日韩熟女老妇一区二区性免费视频| 在线天堂最新版资源| 国产精品 国内视频| 精品一区在线观看国产| 欧美日韩亚洲高清精品| 男女免费视频国产| 一级a做视频免费观看| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片| www.色视频.com| 插阴视频在线观看视频| 中文字幕久久专区| av播播在线观看一区| 中文字幕av电影在线播放| 自线自在国产av| 精品国产一区二区三区久久久樱花| 国产精品秋霞免费鲁丝片| 在线观看国产h片| 天美传媒精品一区二区| 午夜福利视频精品| 久久国内精品自在自线图片| 成人无遮挡网站| 成年人午夜在线观看视频| 久久精品国产a三级三级三级| 全区人妻精品视频| 狂野欧美激情性xxxx在线观看| 蜜桃国产av成人99| 一级毛片aaaaaa免费看小| 少妇高潮的动态图| 在线天堂最新版资源| 街头女战士在线观看网站| 黑人高潮一二区| 亚洲色图 男人天堂 中文字幕 | 免费高清在线观看日韩| 亚洲熟女精品中文字幕| 一级a做视频免费观看| 午夜福利影视在线免费观看| 三上悠亚av全集在线观看| 久久久欧美国产精品| 欧美三级亚洲精品| 久久久久精品久久久久真实原创| 一级二级三级毛片免费看| 亚洲精品日本国产第一区| 久久精品国产a三级三级三级| 久久久久久久久久成人| 日韩av在线免费看完整版不卡| 亚洲综合色惰| 日日摸夜夜添夜夜爱| 国产69精品久久久久777片| 亚洲精华国产精华液的使用体验| 夜夜看夜夜爽夜夜摸| 日韩伦理黄色片| 丰满迷人的少妇在线观看| 中文乱码字字幕精品一区二区三区| 亚洲美女搞黄在线观看| 一个人看视频在线观看www免费| av网站免费在线观看视频| 中国三级夫妇交换| 国产免费视频播放在线视频| 国产精品久久久久久精品古装| 99久久精品一区二区三区| 99视频精品全部免费 在线| 成人黄色视频免费在线看| 精品一区在线观看国产| 日韩亚洲欧美综合| 国产亚洲精品第一综合不卡 | 99精国产麻豆久久婷婷| 观看av在线不卡| 久久影院123| 美女国产高潮福利片在线看| 在线观看人妻少妇| 亚洲成色77777| 成人黄色视频免费在线看| 久久影院123| 国产精品一区www在线观看| 久久国产精品男人的天堂亚洲 | 男女啪啪激烈高潮av片| 五月玫瑰六月丁香| 春色校园在线视频观看| 精品人妻一区二区三区麻豆| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到 | 久久精品国产亚洲网站| 久久久精品免费免费高清| 亚洲第一区二区三区不卡| 成人国产av品久久久| 国产精品女同一区二区软件| 免费黄色在线免费观看| 国产免费又黄又爽又色| 丝袜喷水一区| 99国产综合亚洲精品| 精品国产一区二区久久| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 国产一区二区三区综合在线观看 | 亚洲国产精品专区欧美| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线 | 综合色丁香网| 亚洲精品中文字幕在线视频| 在线播放无遮挡| 久久久亚洲精品成人影院| 多毛熟女@视频| 国产精品99久久99久久久不卡 | 久久久午夜欧美精品| 夫妻午夜视频| 水蜜桃什么品种好| 一级毛片aaaaaa免费看小| 伊人亚洲综合成人网| 日韩av免费高清视频| 春色校园在线视频观看| videos熟女内射| 九九在线视频观看精品| 18禁裸乳无遮挡动漫免费视频| 插阴视频在线观看视频| 国产亚洲av片在线观看秒播厂| 夜夜看夜夜爽夜夜摸| 我的女老师完整版在线观看| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 亚洲中文av在线| 亚洲怡红院男人天堂| av在线播放精品| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| 亚洲色图 男人天堂 中文字幕 | 亚洲综合色网址| 99久国产av精品国产电影| 国产一区有黄有色的免费视频| 国产精品久久久久久久电影| 亚洲av.av天堂| 中文字幕精品免费在线观看视频 | 午夜免费男女啪啪视频观看| 久久久亚洲精品成人影院| 一级毛片电影观看| 少妇熟女欧美另类| 久久亚洲国产成人精品v| 欧美日韩成人在线一区二区| 人人澡人人妻人| 国产无遮挡羞羞视频在线观看| 国产精品不卡视频一区二区| 国产黄频视频在线观看| 人人澡人人妻人| 欧美成人精品欧美一级黄| 国产午夜精品一二区理论片| 国产熟女欧美一区二区| 日日撸夜夜添| 国产亚洲精品久久久com| 男人添女人高潮全过程视频| 三级国产精品欧美在线观看| 啦啦啦在线观看免费高清www| 免费日韩欧美在线观看| 中文字幕久久专区| 日韩人妻高清精品专区| 久久ye,这里只有精品| 一边摸一边做爽爽视频免费| 久久亚洲国产成人精品v| 欧美日韩在线观看h| 日日爽夜夜爽网站| 亚洲精品乱码久久久v下载方式| 亚洲av二区三区四区| 日本vs欧美在线观看视频| 高清欧美精品videossex| 男人添女人高潮全过程视频| 天天躁夜夜躁狠狠久久av| 国产视频首页在线观看| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看 | 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 少妇被粗大的猛进出69影院 | 欧美三级亚洲精品| 日韩av免费高清视频| 一级黄片播放器| 免费看光身美女| 亚洲美女视频黄频| 午夜91福利影院| 久久久久久久亚洲中文字幕| 高清黄色对白视频在线免费看| 精品一区在线观看国产| 欧美3d第一页| 国产成人精品在线电影| 我的女老师完整版在线观看| 男人爽女人下面视频在线观看| 国产不卡av网站在线观看| av播播在线观看一区| 91精品伊人久久大香线蕉| tube8黄色片| 伊人亚洲综合成人网| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 美女脱内裤让男人舔精品视频| 国产男人的电影天堂91| 曰老女人黄片| 免费看不卡的av| 日韩一本色道免费dvd| 中国国产av一级| 欧美日韩亚洲高清精品| 久久国产精品大桥未久av| 99热网站在线观看| 高清毛片免费看| 国产精品无大码| 最近的中文字幕免费完整| 亚洲第一区二区三区不卡| 国产综合精华液| 丝袜在线中文字幕| 街头女战士在线观看网站| 99久久精品国产国产毛片| 精品人妻在线不人妻| 欧美日韩在线观看h| 国产视频首页在线观看| 少妇丰满av| 亚洲精品av麻豆狂野| 飞空精品影院首页| 最近中文字幕2019免费版| 国产精品国产三级国产av玫瑰| 女人精品久久久久毛片| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 寂寞人妻少妇视频99o| 夫妻午夜视频| 18禁动态无遮挡网站| 永久网站在线| 亚洲国产精品一区三区| 乱人伦中国视频| 亚洲精品自拍成人| 日日爽夜夜爽网站| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 最后的刺客免费高清国语| 国产精品国产av在线观看| 久久久久精品久久久久真实原创| 老司机亚洲免费影院| 高清视频免费观看一区二区| 色婷婷av一区二区三区视频| 欧美xxxx性猛交bbbb| www.av在线官网国产| 日日撸夜夜添| 三级国产精品片| 欧美日本中文国产一区发布| 亚洲av.av天堂| 久久精品夜色国产| 91精品三级在线观看| 最近最新中文字幕免费大全7| 99热6这里只有精品| 国产高清不卡午夜福利| 丰满乱子伦码专区| 黑人巨大精品欧美一区二区蜜桃 | 成年美女黄网站色视频大全免费 | 十八禁网站网址无遮挡| 日韩三级伦理在线观看| 韩国高清视频一区二区三区| 你懂的网址亚洲精品在线观看| 天堂8中文在线网| 国产一区有黄有色的免费视频| 日本与韩国留学比较| 人妻人人澡人人爽人人| 午夜福利,免费看| 精品久久蜜臀av无| 中文字幕亚洲精品专区| 日韩人妻高清精品专区| 少妇猛男粗大的猛烈进出视频| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 下体分泌物呈黄色| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡 | 男女免费视频国产| 免费大片18禁| av在线老鸭窝| 国产熟女午夜一区二区三区 | 天天躁夜夜躁狠狠久久av| 国产免费一区二区三区四区乱码| 尾随美女入室| 日韩中文字幕视频在线看片| 午夜激情av网站| 人人妻人人澡人人爽人人夜夜| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 久久久亚洲精品成人影院| 18禁在线无遮挡免费观看视频| 青春草视频在线免费观看| 亚洲精品日韩av片在线观看| 日本欧美国产在线视频| 亚洲欧美成人精品一区二区| 又大又黄又爽视频免费| 国产免费视频播放在线视频| 十八禁高潮呻吟视频| 久久久午夜欧美精品| av电影中文网址| 十八禁网站网址无遮挡| 国产亚洲欧美精品永久| 免费黄网站久久成人精品| 亚洲第一区二区三区不卡| 一级二级三级毛片免费看| 欧美日韩亚洲高清精品| 国产成人一区二区在线| 欧美三级亚洲精品| 国产成人精品婷婷| 九九爱精品视频在线观看| 18在线观看网站| 青春草亚洲视频在线观看| 日日啪夜夜爽| 日本-黄色视频高清免费观看| 日本av手机在线免费观看| 久久久久久久久久久丰满| 欧美日韩成人在线一区二区| 日日摸夜夜添夜夜爱| 在线播放无遮挡| 亚洲综合色惰| 欧美成人精品欧美一级黄| 免费高清在线观看日韩| 久久青草综合色| 亚洲少妇的诱惑av| 亚洲精品日韩av片在线观看| av不卡在线播放| 国产免费现黄频在线看| xxx大片免费视频| 亚洲国产精品国产精品| 午夜福利在线观看免费完整高清在| 中文字幕av电影在线播放| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 亚洲综合精品二区| 国产在线视频一区二区| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 大话2 男鬼变身卡| 美女内射精品一级片tv| 99久久精品一区二区三区| 久久99精品国语久久久| 亚洲精品av麻豆狂野| 亚洲少妇的诱惑av| 中文欧美无线码| 91精品国产国语对白视频| 国产精品国产av在线观看| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 九九在线视频观看精品| 亚洲欧美日韩卡通动漫| 亚洲精品日韩av片在线观看| 精品国产一区二区久久| 成人无遮挡网站| 在线观看一区二区三区激情| 草草在线视频免费看| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 国产男女内射视频| av黄色大香蕉| 欧美精品人与动牲交sv欧美| 久久午夜福利片| 国产成人精品一,二区| 精品久久久久久久久亚洲| 日韩免费高清中文字幕av| 国产成人freesex在线| 我的女老师完整版在线观看| 成年av动漫网址| 男女免费视频国产| 插阴视频在线观看视频| 免费少妇av软件| a级毛片在线看网站| 亚洲色图综合在线观看| 亚洲人成网站在线观看播放| 国产极品天堂在线| 欧美精品亚洲一区二区| 日本-黄色视频高清免费观看| 黑人欧美特级aaaaaa片| 久久这里有精品视频免费| 欧美日韩精品成人综合77777| 久久 成人 亚洲| 黄色欧美视频在线观看| 久久99精品国语久久久| 一边摸一边做爽爽视频免费| 国产白丝娇喘喷水9色精品| av一本久久久久| 国产精品久久久久久久久免| 在线观看免费日韩欧美大片 | 免费人成在线观看视频色| 午夜av观看不卡| 建设人人有责人人尽责人人享有的| 免费av不卡在线播放| 91久久精品国产一区二区成人| 黄色欧美视频在线观看| 亚洲美女视频黄频| 少妇人妻精品综合一区二区| 亚洲av欧美aⅴ国产| 久久97久久精品| 精品人妻熟女毛片av久久网站| 桃花免费在线播放| 久久精品国产鲁丝片午夜精品| 男女啪啪激烈高潮av片| 欧美日韩国产mv在线观看视频| 尾随美女入室| 99热网站在线观看| av在线app专区| 亚洲av国产av综合av卡| 丝袜脚勾引网站| 国产欧美亚洲国产| 久久精品久久精品一区二区三区| 99re6热这里在线精品视频| 在线观看三级黄色| 天天影视国产精品| 一区在线观看完整版| 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区黑人 | 精品一区二区三卡| 一级片'在线观看视频| 晚上一个人看的免费电影| 哪个播放器可以免费观看大片| 国产精品嫩草影院av在线观看| 欧美xxⅹ黑人| 亚洲欧美日韩卡通动漫| 大香蕉久久网| 成人影院久久| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 久久久a久久爽久久v久久| 91午夜精品亚洲一区二区三区| 丰满少妇做爰视频| 欧美人与善性xxx| 亚洲色图综合在线观看| 中文字幕久久专区| 又粗又硬又长又爽又黄的视频| 人妻系列 视频| 日本-黄色视频高清免费观看| 99久国产av精品国产电影| 波野结衣二区三区在线| 好男人视频免费观看在线| 久久精品国产亚洲av涩爱| 久久久久久久精品精品| h视频一区二区三区| 欧美另类一区| 亚洲第一av免费看| 国产国拍精品亚洲av在线观看| 国产深夜福利视频在线观看| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 欧美日韩视频精品一区| 美女内射精品一级片tv| 国产欧美亚洲国产| 亚洲欧美日韩卡通动漫| 精品人妻在线不人妻| av天堂久久9| 日韩视频在线欧美| 午夜久久久在线观看| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 亚洲人成网站在线播| 日本wwww免费看| 99热全是精品| 欧美精品一区二区免费开放| 成人二区视频| 18在线观看网站| 亚洲成人一二三区av| 久久久亚洲精品成人影院| 国产乱来视频区| 欧美精品一区二区大全| 亚洲欧美日韩另类电影网站| 狠狠婷婷综合久久久久久88av| 日日爽夜夜爽网站| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 新久久久久国产一级毛片| 精品午夜福利在线看| 乱人伦中国视频| 亚洲精品乱久久久久久| 亚洲美女搞黄在线观看| 中国三级夫妇交换| 蜜桃久久精品国产亚洲av| 日本vs欧美在线观看视频| 一级爰片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 91成人精品电影| 亚洲美女视频黄频| 又黄又爽又刺激的免费视频.| 久久久久精品久久久久真实原创| 极品少妇高潮喷水抽搐| 欧美日韩在线观看h| 亚洲av不卡在线观看| 少妇人妻久久综合中文| 亚洲精品乱码久久久v下载方式| 国产精品国产三级国产av玫瑰| 九九爱精品视频在线观看| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 亚洲伊人久久精品综合| 精品一区二区三卡| 国产高清国产精品国产三级| 久久国产精品男人的天堂亚洲 | 欧美国产精品一级二级三级| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女cb高潮喷水在线观看| 你懂的网址亚洲精品在线观看| 国产 精品1| 天堂中文最新版在线下载| 99热这里只有是精品在线观看| 国产一区二区在线观看日韩| 婷婷成人精品国产| 亚洲欧美成人综合另类久久久| 特大巨黑吊av在线直播| 亚洲av.av天堂| 极品少妇高潮喷水抽搐| 国产亚洲最大av|