• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Separation Science and Engineering Performance Prediction of Structured Packing Column for Cryogenic Air Separation with Hybrid Model☆

    2014-07-12 08:33:14XiaobinZhangJiakaiZhuZhaoWuWeiXiongXuejunZhangLiminQiu

    Xiaobin Zhang,JiakaiZhu,Zhao Wu,Wei Xiong,Xuejun Zhang,Limin Qiu*

    Institute of Refrigeration and Cryogenics,Zhejiang University,Hangzhou 310027,China

    Separation Science and Engineering Performance Prediction of Structured Packing Column for Cryogenic Air Separation with Hybrid Model☆

    Xiaobin Zhang,JiakaiZhu,Zhao Wu,Wei Xiong,Xuejun Zhang,Limin Qiu*

    Institute of Refrigeration and Cryogenics,Zhejiang University,Hangzhou 310027,China

    A R T I C L E I N F o

    Article history:

    Received 29 May 2013

    Received in revised form 24 July 2013

    Accepted 10 December 2013

    Available online 17 June 2014

    Distillation

    Cryogenic air separation

    Structured packings

    Hybrid model

    Aspen

    A detailed investigation of a thermodynamic process in a structured packing distillation column is of great importance in prediction of process efficiency.In order to keep the simplicity of an equilibrium stage model and the accuracy of a non-equilibrium stage model,a hybrid model is developed to predict the structured packing column in cryogenic air separation.A general solution process for the equilibrium stage model is developed to solve the set of equations of the hybrid model,in which a separation efficiency function is introduced to obtain the resulting tri-diagonal matrix and its solution by the Thomas algorithm.As an example,the algorithm is applied to analyze an upper column of a cryogenic air separation plant with the capacity of17000 m3·h-1.Rigorous simulations are conducted using Aspen RATEFRAC module to validate the approach.The temperature and composition distributions are in a good agreement with the two methods.The effects of inlet/outlet position and flow rate on the temperature and composition distributions in the column are analyzed.The results demonstrate that the hybrid model and the solution algorithms are effective in analyzing the distillation process for a cryogenic structured packing column.

    ?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    Cryogenic air separation is now the most economical approach to separate oxygen(O2)and nitrogen(N2)from the air on a large scale,which can provide customized products of different purity by changing the process[1].Column is a key unit for the cryogenic air separation with high power consumption.Compared with traditional random-packing columns,structured-packing column(SPC)has the merits of greater capacity,smaller pressure drop and higher separation efficiency[2,3].In or derto improve the efficiency of structured packings and reduce the initial investment,the design of the distillation process needs to be optimized.

    Two strategies are usually used to model the distillation in a column, equilibrium-stage(EQ)model and non-equilibrium stage(NEQ)model [4,5].The EQ model is widely used,which assumes thermodynamic equilibrium between bulk phases,with an empirical efficiency correlation,such as the Murphree efficiency,to offset the difference between calculations and practical conditions.The accuracy of the correlations for different stages under different thermodynamic conditions is questionable[6].Comparably,the NEQ modelis more accurate since it treats the separation process as a mass-transfer-rate-governed one that it really is[7].Instead of the assumption of thermodynamic equilibrium between bulk phases,the thermodynamic equilibrium is only assumed in a thin interfacial zone.The heat and mass transfer between a bulk phase and interfacial zone is determined by empirical correlations[8,9].Seader and Henley have pointed out that the NEQ model and its solution lead to a new era in separation equipment design and simulation[10].However,since the NEQmodel has much more non-linear equations,it is difficult to obtain converged solutions.As a result,its application to large-scale industrial distillation processes is limited.Additionally,calculations of empirical heat and mass transfer coefficients significantly increase the uncertainty of the solution.Good initialization is necessary to obtain final converged solutions[11,12].In fact,the turbulence-intensified heat exchange between phases is much faster than the mass transfer,so it is reasonable to neglect the thermalnon-equilibrium in the NEQ model. The reduced NEQ modelis called hybrid model[12,13].Tang and Wu [12]have evaluated the hybrid model by modeling a separation process for methanol/ethanol/n-propanolternary mixture in SPC.The application of the modelto cryogenic SPC for air separation has not been reported.

    This study develops a hybrid model to obtain the solution of the distillation process in SPC for cryogenic air separation.We consider the pressure drop and mass transfer resistance in the liquid phase.The model equations are turned into a tri-diagonal matrix by introducing a separation efficiency function and solved by the Thomas algorithm,instead of the complex Newton iteration method used in[12],so that the calculations of partial derivatives of thermodynamic functions are not needed.A cryogenic upper column of an air separation plant with the capacity of17000 m3.h-1is considered,with O2and N2components only in the air mixture.The model is validated by the temperature and component distributions with the rigorous simulations using the Aspen RATEFRAC module.Finally,the effects of inlet/outlet positions and flow rates on the distillation process are analyzed.

    2.Model and Algorithm

    Commercially available SPCs are comprised of identical n layers of structured packing.Each packing layer is rotated 90°with respect to the previous one.Each layer is an ensemble of a large number of corrugated sheets as shown in Fig.1,forming a triangular flow channel with dimensions of height(h),side(s),and base(b),as well as the corrugation angleαwith respect to the horizontal.Two adjacent corrugated sheets are superimposed so that the opposite corrugations form a cross-type pattern with the crests of the corrugations nearly in contact.

    Each layer can be considered as one stage as in traditional plate columns,where the bulk phases are homogeneous.The column has n stages.On each stage,it is assumed that TjL=TjI=TjV,where T is the temperature,superscripts L,I,and V represent the liquid phase,interface and vapor phase,respectively,and subscript j stands for the j th stage of total n.The following assumptions are also made for the calculations:(a)pressure in equilibrium,PjL=PjI=PjV;(b)no component and temperature gradient in the radial direction;and(c)phase equilibrium only in the gas/liquid interfacial zone.Fig.2 shows the model on the j th stage,which involves gas-phase feed rate FjV,liquid-phase feed rate FjL,molar flow rate L,molar fractions of component i in the liquid phase xiand in the gas phase yi,specific enthalpy h per mole,temperature T,exhausting gas SjVand liquid SjL,mass flux Ni,jand heat flux ei,jbetween phases,here ei,j=0 for our calculations.

    Based on the above assumptions,the set of control equations is exactly the same as that of the convention a lNEQ model[10]without the heat transfer equations.

    Material balance equations for the component:

    Material balance equation at the phase interface:

    Energy balance equations without the heat lost:

    The equations for the molar-fraction summation for each phase are applied at the vapor-liquid interphase:

    Fig.1.Basic geometry of the packing.

    Fig.2.Schematic diagram of stage j.

    The hydraulic equation for stage pressure drop is given by

    whereΔPjis the pressure drop atstage j.

    Phase equilibrium for each component is assumed to exist only at the interphase:

    where Ki,jis the phase equilibrium constant.The general forms for mass transfer rates of component i across vapor and liquid films on a stage are as follows

    where kVi,jand kLi,jare the mass transfer coefficients(mol?m-2?s-1),ajis the effective mass transfer area atstage j(m2.m-3),and vjis the volume of stage j(m3).

    Combining Eqs.(8)and(3)with Eqs.(9)and(10),we have

    Substituting Eq.(11)into Eqs.(8)and(9),and relating it with Eq.(1),the‘separation efficiency function’,which shows the relationship between vapor and liquid compositions,we have

    Fig.3.Schematic diagram of the upper column of capacity of 17000 m3.h-1.

    Substituting Eqs.(12)-(14)into Eqs.(1)and(2)leads to

    where

    Eq.(16)is a tri-diagonal matrix of vapor composition and can be solved with the Thomas algorithm.

    3.Comparison and Validation

    To validate the proposed algorithms for the distillation process,a practicalupper column for cryogenic air separation with the capacity of17000 m3.h-1is taken as an example.The upper column has seven imports and four exports,with different flow rates of gas and liquid phases in different segments.The column is divided into six segments with different inner diameters,as shown in Fig.3.The upper column is coupled to the lower column through the evaporator-condenser between them.Table 1 gives the parameters of these exports and imports.For simplicity,the air is considered as a binary mixture of O2and N2,and the argon(Ar)fraction is added to the oxygen fraction,so the molar fractions of oxygen and nitrogen are 21.9%and 78.1%,respectively.The column uses Mellapak 750 structured packing,whose geometrical parameters are shown in Table 2.

    The set of equations is solved numerically using the FORTRAN compiler.The software Refprop8.0[14]is called as subroutines to calculate the physical properties as well as the phase equilibrium,which is based on the Helmholtz free energy concept.The values of kVi,j, kLi,j,aj, and pressure dropΔP for the structured packing are calculated through the empirical correlations in literature[15-17].

    The numerical method is validated by comparing the results with the rigorous calculations of the software Aspen plus.Both the equilibrium and non-equilibrium models are used with the RATEFRAC module. The Peng-Robinson equation of state is chosen for the calculation of thermodynamic quantities,and the pressure drop is determined by the expression developed by Sultz Corp.For calculations of kVi,j,kLi,j and aj,the model developed by Hanley is adopted,which correlates experiments especially for the application of Mellapak serial SPC[18].The heat transfer coefficient is determined by the model from the Chilton-Colburn analogy by Taylor and Krishna[19].

    Fig.4 shows that the distributions of N2and O2calculated with the two methods are in good agreement.The results from the hybrid model are between the values from Aspen EQ and NEQ models,implying that the proposed algorithm is effective in solving the equations. The temperature profiles of the hybrid model and that by the Aspen also match well,as shown in Fig.5.The Aspen simulation shows little difference between the temperatures of vapor and interface,because of the large heat exchange coefficient,validating the assumption of thermal equilibrium.The temperature distribution with Aspen NEQ is smoother than that with the hybrid method,which is similar in the composition distribution as shown in Fig.4.

    Table 1 Boundary conditions of the upper distillation column

    Table 2 Dimensions of Mellapak 750

    Fig.4.Composition pro fi les in vapor and liquid phases using Aspen NEQ,EQ and hybrid models.Aspen NEQ model;Aspen EQ model;hybrid model.

    Fig.5.Temperature distributions using Aspen NEQ and hybrid models.?????Aspen NEQ model;—hybrid model.

    The calculated distributions of components and temperature are almost unchanged when the stage number is larger than about 40,which means that the distillation process is very weak in these stages.The reason is attributed to the binary assumption,where O2and Ar are considered as one component,while their separation occurs on these stages.It is con firmed by the calculation of Aspen NEQ for the O2-N2-Ar ternary mixture,while keeping other boundary conditions unchanged,as shown in Fig.6.For n<55,the component distributions are almost the same as that with binary mixture calculations.For n>55,N2fraction is almost unchanged and O2fraction increases,while Ar fraction increases first and then decreases.

    Fig.6.Calculated composition pro files in vapor and liquid phases with O2-N2-Ar ternary mixture using Aspen NEQ.

    4.Analysis and Discussion

    Figs.5 and 6 show that the curves of component and temperature present three“steps”at corresponding feed locations.Table 3 compares the given values of N2fraction at the inlets/outlets with those calculated on the corresponding stages,and obvious deviations are observed.The mismatches will induce large exergy loss and energy consumption because of the large difference in concentration and temperature.Therefore,it is significant to validate the effects of inlet/outlet flow rates and positions on the composition and temperature distributions.

    4.1.Effects of inlet/outlet flow rates

    Figs.7 and 8 give the typical distributions of temperature and gas molar fraction with±5%variations in flow rates of LN2,waste GN2withdrawn,rich O2liquid air in,and expanded air in.The curves of the base flow rates are always between those with higher and lower flow rates,implying that the solutions of the present model are robust and reasonable.The effects of variations in Ar fraction withdrawn and re fl ux flow rates are not investigated due to the assumption of binary mixture.The temperature distribution has different sensibility to the rate change of inlets/outlets.LN2re fl ux rate, waste LN2in,waste LN2withdrawn,and liquid air re fl ux rate bring about large temperature changes,especially for the stages they are connected.The reasons are as follows.Firstly,the base flow rates of these inlets/outlets are large,so the absolute values of±5%are also large.Secondly,N2fraction is relatively large at these inlets/outlets, whose boiling point is the lowest compared with O2component,so it is more sensitive to temperature.It is also found that the N2fraction

    of GN2products withdrawn at the top of the column will increase with the increases of flow rate of LN2,waste LN2in and reflux rate of liquid air,while it decreases with the increases of flow rate of the withdrawn waste GN2.

    Table 3 N2concentration at inlet/outlet conditions and at the same stages

    Fig.7.Effects of variances in inlet/outlet flow rates on temperature distributions.—base fl ow;??????????+5%;----5%.

    Fig.8.Effects of variances in inlet/outlet flow rates on the component distributions in gas phase.—base fl ow;??????????+5%;----5%.

    Fig.9.Effects of variances in inlet/outlet positions on the temperature distribution.

    4.2.Effects of inlet/outlet positions

    Fig.9 shows the effects of positions of waste GN2withdrawn,waste LN2in,rich O2liquid air in and expanded air in on the temperature distribution,in which the symbol*means the original inlet/outlet position listed in Table 1.The curves of the base position are always between those with more and less stages.The effect is more significant near the position and is negligible far away from it.The horizontal segments of the curves indicate no energy exchanges on these stages.Therefore, the mass transfer is also restricted,which is not suitable for practical operations of SPC because these stages do nothing for air separation.From this viewpoint,the originalinlet/outlet positions listed in Table 1 seem to be acceptable since the length of the horizontal segments of temperature curves is shorter compared with other cases.

    For the effects of positions on the component distribution,a typical relation is given in Fig.10.As the stage number of rich O2liquid air in increases(moves downward),N2fraction in both phases at the same stage decreases and then changes slowly.The inlet/outlet position is adjustable in a range in which N2fraction changes little.The effects of positions of waste GN2withdrawn and waste LN2in on the N2fraction are also investigated,and the curves are similar to that in Fig.10.The inlet/ outlet positions listed in Table 1 are near the appropriate range,so they are acceptable.

    5.Conclusions

    Based on the operating characteristics of structured packing,a hybrid model was developed and solved by the Thomas algorithm to analyze a column of a cryogenic air separation plant with the capacity of 17000 m3./h-1.Rigorous simulations with the software Aspen plus RATEFRAC module were also performed to validate the solution. The small temperature difference between liquid and vapor phases calculated with the Aspen proves the thermal equilibrium assumption on the stage.The composition and temperature profiles with these two methods are in good agreement.

    The effects of inlet/outlet positions and flow rates on the temperature and composition distributions in the SPC were analyzed.The results

    Fig.10.Molar fraction of nitrogen component at the stage of rich O2liquid air in.

    show that the inlet/outlet position with large nitrogen fraction has significant effects on the temperature and composition distributions.The effect of inlet/outlet position on the temperature distribution is limited to a small range near the position.There is a lower limit of stage to affect the distillation process for waste GN2withdrawn,rich O2liquid air in and waste LN2in.

    Nomenclature

    a effective mass transfer area per unit volume,m3

    e heat flux,J·m-2·s-1

    F feed rate,mol·s-1

    H enthalpy,J

    h specific enthalpy,J·mol-1

    K phase equilibrium constant

    K mass transfer coefficient,mol·m-2·s-1

    L flow rate of liquid phase,mol·s-1

    N mass flux,mol·m-2·s-1

    P pressure,Pa

    V flow rate of gas phase,mol·s-1

    v volume of the stage,m3

    x molar fraction in liquid phase

    y molar fraction in gas phase

    z molar fraction in the feed or exhausting fl ow

    Superscripts

    I interface

    L liquid phase

    V gas phase

    Subscripts

    i component

    j stage numberReferences

    [1]J.Rizk,M.Nemer,D.Clodic,A realcolumn design exergy optimization of a cryogenic air separation unit,Energy 37(1)(2012)417-429.

    [2]L.Spieel,W.Meier,Distillation columns with structured packings in the next decade,Trans.IChemE.81(2003)39-47(Part A).

    [3]C.F.Petre,F.Larachi,I.Iliuta,B.P.A.Grandjean,Pressure drop through structured packings:breakdown into the contributing mechanisms by CFD modeling,Chem. Eng.Sci.58(2003)163-177.

    [4]S.Bian,M.A.Henson,P.Belanger,L.Megan,Nonlinear state estimation and model predictive control of nitrogen purification columns,Ind.Eng.Chem.Res.44(1) (2005)153-167.

    [5]J.Miller,W.L.Luyben,P.Belanger,S.Blouin,L.Megan,Improving agility of cryogenic air separation plants,Ind.Eng.Chem.Res.47(2)(2008)394-404.

    [6]H.H.Song,Simulation of practical column,Distillation Simulation,Tianjin University Press,Tianjin,2005,pp.156-171,(in Chinese).

    [7]R.Krishnamurthy,R.Taylor,A non-equilibrium stage model of multicomponent separation processes,Part III:the influence of unequal component-efficiencies in process design problems,AIChE J.31(12)(1985)1973-1985.

    [8]R.Krishnamurthy,R.Taylor,A non-equilibrium stage model of multicomponent separation processes.Part I:model description and method of solution,AIChE J.31 (3)(1985)449-456.

    [9]L.Chen,J.U.Repke,G.Wozny,S.Q.Wang,Extension of the mass transfer calculation for three-phase distillation in a packed column:non-equilibrium model based parameter estimation,Ind.Eng.Chem.Res.48(15)(2009)7289-7300.

    [10]J.D.Seader,E.J.Henley,Theoretical model for an equilibrium stage,Separation Process Principles,John Wiley&Sons,Inc.,Hoboken,2006,pp.365-400.

    [11]H.H.Song,W.J.Zhang,Direct simulations of the column used in air separation,Cryo. Technol.5(1996)19-24(in Chinese).

    [12]S.H.Tang,Z.H.Wu,A hybrid simulation model for multicomponent distillation in structured packing column,Chem.Eng.(China)35(4)(2007)1-4(in Chinese).

    [13]F.Shen,J.H.Zhu,Preliminary study on the non-equilibrium model for the reactive distillation process,Comput.Appl.Chem.3(1994)167-173(in Chinese).

    [14]E.W.Lemmon,M.L.Huber,M.O.McLinden,NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP,National Institute of Standards and Technology,Standard Reference Data Program, Gaithersburg,2010.

    [15]Z.Olujic,Development of a complete simulation model for predicting the hydraulic and separation performance of distillation columns equipped with structured packings,Chem.Biochem.Eng.Q.11(1)(1997)31-46.

    [16]S.Ratheesh,A.Kannan,Holdup and pressure drop studies in structured packings with catalysts,Chem.Eng.J.104(1-3)(2004)45-54.

    [17]J.A.Rocha,J.L.Bravo,J.R.Fair,Distillation columns containing structured packings:a comprehensive model for their performance.2.Mass-transfer model,Ind.Eng.Chem. Res.35(5)(1996)1660-1667.

    [18]B.Hanley,C.C.Chen,New mass-transfer correlations for packed towers,AIChE J.58 (1)(2012)132-152.

    [19]R.Taylor,R.Krishna,Simultaneous mass and energy transfer,Multicomponent Mass Transfer,Wiley,New York,USA,1993,pp.266-303.

    ☆Supported by the Major State Basic Research Development Program of China (2011CB706501)and the National Natural Science Foundation of China(51276157).

    *Corresponding author.

    E-mail address:limin.qiu@zju.edu.cn(L.Qiu).

    http://dx.doi.org/10.1016/j.cjche.2014.06.004

    1004-9541/?2014 The ChemicalIndustry and Engineering Society of China,and Chemical Industry Press.Allrights reserved.

    看免费av毛片| 大型av网站在线播放| 在线观看一区二区三区激情| 亚洲自偷自拍图片 自拍| 成人亚洲精品av一区二区 | 日日摸夜夜添夜夜添小说| 国产熟女午夜一区二区三区| 叶爱在线成人免费视频播放| 久久国产精品男人的天堂亚洲| 搡老岳熟女国产| 91麻豆精品激情在线观看国产 | 精品国产一区二区久久| 丝袜美腿诱惑在线| 婷婷六月久久综合丁香| 老汉色∧v一级毛片| 中文字幕高清在线视频| 精品日产1卡2卡| 成人手机av| 99国产综合亚洲精品| 日韩精品免费视频一区二区三区| 999久久久精品免费观看国产| 中文字幕高清在线视频| √禁漫天堂资源中文www| 男人操女人黄网站| 日本免费a在线| 久久精品国产清高在天天线| 新久久久久国产一级毛片| 亚洲成人免费电影在线观看| 91在线观看av| 国产高清videossex| x7x7x7水蜜桃| 亚洲五月婷婷丁香| 国产亚洲精品久久久久5区| 十八禁网站免费在线| 一区二区日韩欧美中文字幕| 国产深夜福利视频在线观看| 少妇 在线观看| 韩国av一区二区三区四区| 国产av一区在线观看免费| 99久久精品国产亚洲精品| 99riav亚洲国产免费| 久久人妻福利社区极品人妻图片| 在线免费观看的www视频| 久久久国产欧美日韩av| 免费在线观看影片大全网站| 国产精品98久久久久久宅男小说| 咕卡用的链子| 黑人欧美特级aaaaaa片| 国产成人欧美在线观看| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线观看吧| 免费观看人在逋| 国产午夜精品久久久久久| 日韩欧美一区二区三区在线观看| 午夜免费成人在线视频| 999精品在线视频| 国产精品99久久99久久久不卡| 欧美日韩国产mv在线观看视频| xxx96com| 美女扒开内裤让男人捅视频| 精品无人区乱码1区二区| 色精品久久人妻99蜜桃| 欧美日韩亚洲综合一区二区三区_| 88av欧美| av欧美777| 免费看a级黄色片| 999精品在线视频| 国产精品免费视频内射| 一级a爱视频在线免费观看| 亚洲伊人色综图| 午夜a级毛片| 精品一品国产午夜福利视频| 精品乱码久久久久久99久播| 国产高清激情床上av| 精品一区二区三卡| 久热爱精品视频在线9| 黑人操中国人逼视频| 久久影院123| 国产精品亚洲av一区麻豆| 男人操女人黄网站| 国产精品久久久久久人妻精品电影| 亚洲熟妇熟女久久| 精品一品国产午夜福利视频| 国产男靠女视频免费网站| 国产精品99久久99久久久不卡| 色综合婷婷激情| 欧美av亚洲av综合av国产av| 亚洲国产欧美日韩在线播放| 9热在线视频观看99| 一级毛片高清免费大全| 国产av一区在线观看免费| 国产亚洲欧美98| 亚洲色图 男人天堂 中文字幕| cao死你这个sao货| 天天添夜夜摸| 久久精品影院6| 久久天堂一区二区三区四区| 亚洲成人免费av在线播放| 动漫黄色视频在线观看| 757午夜福利合集在线观看| 久久久久久久久中文| 久久午夜综合久久蜜桃| 精品久久蜜臀av无| 国产成人一区二区三区免费视频网站| 18禁裸乳无遮挡免费网站照片 | 很黄的视频免费| 欧美精品一区二区免费开放| 99国产精品一区二区蜜桃av| 成人亚洲精品一区在线观看| 亚洲男人天堂网一区| 一区福利在线观看| 婷婷精品国产亚洲av在线| 国产无遮挡羞羞视频在线观看| av免费在线观看网站| 免费在线观看视频国产中文字幕亚洲| 黄色毛片三级朝国网站| 天堂影院成人在线观看| 欧美一级毛片孕妇| 99久久精品国产亚洲精品| 在线观看日韩欧美| 在线观看免费日韩欧美大片| 亚洲一码二码三码区别大吗| 精品国产乱码久久久久久男人| 国产一区二区激情短视频| 亚洲激情在线av| 一a级毛片在线观看| 色在线成人网| 成人国产一区最新在线观看| 在线观看www视频免费| 欧美日韩av久久| 成人永久免费在线观看视频| 99国产精品99久久久久| 精品一区二区三区av网在线观看| 正在播放国产对白刺激| 欧洲精品卡2卡3卡4卡5卡区| 精品久久蜜臀av无| 欧美中文日本在线观看视频| 免费不卡黄色视频| 热99re8久久精品国产| 99在线视频只有这里精品首页| www.www免费av| 亚洲一区二区三区欧美精品| 亚洲国产精品一区二区三区在线| 午夜福利免费观看在线| 日韩三级视频一区二区三区| 99国产精品免费福利视频| 久久中文看片网| 午夜福利在线免费观看网站| 欧美精品一区二区免费开放| 夜夜躁狠狠躁天天躁| 国内久久婷婷六月综合欲色啪| 国产亚洲欧美精品永久| xxx96com| 老司机午夜福利在线观看视频| 99久久精品国产亚洲精品| 午夜老司机福利片| 国产极品粉嫩免费观看在线| 欧美日韩视频精品一区| 亚洲五月婷婷丁香| 男人的好看免费观看在线视频 | 久久人妻熟女aⅴ| 90打野战视频偷拍视频| 亚洲av日韩精品久久久久久密| 国产一区二区激情短视频| 欧美激情极品国产一区二区三区| 一二三四社区在线视频社区8| 国产又爽黄色视频| 国产又色又爽无遮挡免费看| 久久国产精品男人的天堂亚洲| 乱人伦中国视频| 午夜视频精品福利| 青草久久国产| 中国美女看黄片| 十八禁人妻一区二区| 最近最新免费中文字幕在线| 免费搜索国产男女视频| 国产成人精品久久二区二区91| 男女之事视频高清在线观看| 久久天躁狠狠躁夜夜2o2o| 69av精品久久久久久| 国产精品久久久久久人妻精品电影| cao死你这个sao货| 夜夜爽天天搞| 午夜福利在线观看吧| 日韩大码丰满熟妇| 久久久久久人人人人人| 在线观看66精品国产| 日韩中文字幕欧美一区二区| 国产一区二区三区视频了| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲高清精品| 91字幕亚洲| 婷婷精品国产亚洲av在线| 久久久国产欧美日韩av| 久久国产精品男人的天堂亚洲| 男人舔女人下体高潮全视频| 黄色女人牲交| 人人妻人人爽人人添夜夜欢视频| 亚洲熟妇中文字幕五十中出 | 亚洲avbb在线观看| √禁漫天堂资源中文www| 国产aⅴ精品一区二区三区波| 欧美久久黑人一区二区| 脱女人内裤的视频| 男男h啪啪无遮挡| av免费在线观看网站| 在线十欧美十亚洲十日本专区| 又黄又爽又免费观看的视频| 免费在线观看影片大全网站| 色在线成人网| 国产三级在线视频| 欧美在线黄色| 久久天堂一区二区三区四区| 国产精品二区激情视频| videosex国产| 亚洲欧美一区二区三区黑人| 午夜福利在线观看吧| 香蕉国产在线看| 精品一区二区三区四区五区乱码| 性欧美人与动物交配| 久久伊人香网站| 精品第一国产精品| 99国产精品99久久久久| 老司机深夜福利视频在线观看| 国产精品1区2区在线观看.| 国产精品影院久久| 亚洲国产看品久久| 久久久久久久午夜电影 | 黑人猛操日本美女一级片| 伦理电影免费视频| 怎么达到女性高潮| 热re99久久国产66热| 99久久久亚洲精品蜜臀av| 久久婷婷成人综合色麻豆| 国产深夜福利视频在线观看| 天天影视国产精品| 美女福利国产在线| 久久精品亚洲精品国产色婷小说| 曰老女人黄片| 身体一侧抽搐| 涩涩av久久男人的天堂| 精品一品国产午夜福利视频| 国产精品一区二区三区四区久久 | 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看亚洲国产| 老司机福利观看| 成人18禁高潮啪啪吃奶动态图| 国产激情欧美一区二区| 午夜福利影视在线免费观看| 欧美精品亚洲一区二区| 久久婷婷成人综合色麻豆| 村上凉子中文字幕在线| 久久亚洲精品不卡| 啦啦啦 在线观看视频| 久久人妻熟女aⅴ| 高清毛片免费观看视频网站 | 国产精品一区二区免费欧美| 久久精品国产综合久久久| 国产精品1区2区在线观看.| 欧美一区二区精品小视频在线| 国产在线观看jvid| 精品乱码久久久久久99久播| 99精国产麻豆久久婷婷| 亚洲五月天丁香| 国产精品美女特级片免费视频播放器 | 波多野结衣高清无吗| 伊人久久大香线蕉亚洲五| 亚洲片人在线观看| 亚洲精品国产精品久久久不卡| 国产亚洲精品久久久久5区| 男人的好看免费观看在线视频 | 久久香蕉激情| 性欧美人与动物交配| 一二三四在线观看免费中文在| 一区福利在线观看| 国产一区二区在线av高清观看| 男女下面插进去视频免费观看| 久久久国产成人免费| 亚洲欧美激情综合另类| 欧美大码av| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成网站在线播放欧美日韩| 精品人妻1区二区| 精品乱码久久久久久99久播| 午夜亚洲福利在线播放| www.www免费av| 中文字幕色久视频| 人妻丰满熟妇av一区二区三区| 无限看片的www在线观看| 国产无遮挡羞羞视频在线观看| 天天影视国产精品| 国产成人影院久久av| av福利片在线| 亚洲男人的天堂狠狠| 男男h啪啪无遮挡| 99国产极品粉嫩在线观看| 人人妻人人爽人人添夜夜欢视频| 大陆偷拍与自拍| 中文欧美无线码| 成人亚洲精品av一区二区 | 久久中文看片网| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| 国产成人免费无遮挡视频| 亚洲欧美日韩无卡精品| 色综合站精品国产| 亚洲五月天丁香| 欧美黄色淫秽网站| 亚洲精品久久午夜乱码| 亚洲色图av天堂| 国产三级在线视频| 99在线人妻在线中文字幕| 亚洲精华国产精华精| 97超级碰碰碰精品色视频在线观看| 人人澡人人妻人| 欧美精品亚洲一区二区| 欧美日本亚洲视频在线播放| 国产一区二区三区综合在线观看| 电影成人av| 桃色一区二区三区在线观看| 欧美最黄视频在线播放免费 | 免费少妇av软件| 成人亚洲精品一区在线观看| 成年人黄色毛片网站| 午夜成年电影在线免费观看| 国产亚洲精品一区二区www| 成人av一区二区三区在线看| 国产精品国产av在线观看| 国产有黄有色有爽视频| 操出白浆在线播放| 人人澡人人妻人| 亚洲欧美精品综合一区二区三区| 亚洲欧美日韩无卡精品| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 欧美另类亚洲清纯唯美| 一本综合久久免费| 亚洲av成人不卡在线观看播放网| 国产精品一区二区三区四区久久 | 高清av免费在线| 久久精品亚洲精品国产色婷小说| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 麻豆av在线久日| 美女扒开内裤让男人捅视频| 亚洲专区字幕在线| 久久久久亚洲av毛片大全| 国产午夜精品久久久久久| 香蕉国产在线看| 久久国产精品人妻蜜桃| 黄色成人免费大全| 国产精品香港三级国产av潘金莲| 少妇裸体淫交视频免费看高清 | 国产免费现黄频在线看| 成人黄色视频免费在线看| 91大片在线观看| 亚洲专区国产一区二区| 午夜a级毛片| 欧美成人性av电影在线观看| 亚洲一区高清亚洲精品| 午夜91福利影院| 好男人电影高清在线观看| 久久久水蜜桃国产精品网| 一区二区三区精品91| 搡老乐熟女国产| 精品少妇一区二区三区视频日本电影| avwww免费| 免费搜索国产男女视频| 色综合欧美亚洲国产小说| 超碰成人久久| 美女大奶头视频| 日本a在线网址| 欧美一级毛片孕妇| 国产精品99久久99久久久不卡| 久久久水蜜桃国产精品网| x7x7x7水蜜桃| 9191精品国产免费久久| 日本五十路高清| 俄罗斯特黄特色一大片| 桃色一区二区三区在线观看| 在线观看舔阴道视频| 91成人精品电影| 免费观看人在逋| 中出人妻视频一区二区| 又黄又粗又硬又大视频| 亚洲国产精品sss在线观看 | 久久久精品国产亚洲av高清涩受| 窝窝影院91人妻| 91字幕亚洲| 亚洲av电影在线进入| e午夜精品久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 午夜影院日韩av| 欧美激情高清一区二区三区| 夜夜夜夜夜久久久久| 一本综合久久免费| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| 亚洲国产中文字幕在线视频| 国产精品一区二区精品视频观看| www.999成人在线观看| 91麻豆av在线| 波多野结衣高清无吗| 久久香蕉激情| 91九色精品人成在线观看| 国产一区在线观看成人免费| 欧美日韩亚洲综合一区二区三区_| 最新在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 日本欧美视频一区| 亚洲五月天丁香| 久久国产精品人妻蜜桃| 12—13女人毛片做爰片一| 亚洲精品粉嫩美女一区| x7x7x7水蜜桃| 老司机亚洲免费影院| 一a级毛片在线观看| 一级,二级,三级黄色视频| 黄片播放在线免费| 精品电影一区二区在线| av在线天堂中文字幕 | 丝袜美足系列| 一级a爱片免费观看的视频| av超薄肉色丝袜交足视频| 国产aⅴ精品一区二区三区波| 免费在线观看影片大全网站| 精品久久久久久久毛片微露脸| 可以免费在线观看a视频的电影网站| 久久久久国产精品人妻aⅴ院| 午夜免费观看网址| 亚洲人成电影免费在线| 亚洲欧美一区二区三区久久| 在线视频色国产色| 中国美女看黄片| 一级毛片女人18水好多| 亚洲少妇的诱惑av| 人成视频在线观看免费观看| 国产人伦9x9x在线观看| 亚洲成人久久性| 国产精品av久久久久免费| 人妻久久中文字幕网| 国产视频一区二区在线看| 在线天堂中文资源库| 窝窝影院91人妻| 韩国精品一区二区三区| 最近最新中文字幕大全免费视频| 色播在线永久视频| av视频免费观看在线观看| 真人一进一出gif抽搐免费| 欧美日韩国产mv在线观看视频| 男女下面进入的视频免费午夜 | 成人影院久久| 91字幕亚洲| cao死你这个sao货| 午夜免费鲁丝| 久久久国产欧美日韩av| 中国美女看黄片| 一区二区三区国产精品乱码| 免费少妇av软件| 午夜精品在线福利| 亚洲一区二区三区不卡视频| 国产精品国产av在线观看| 国产精品美女特级片免费视频播放器 | 久久欧美精品欧美久久欧美| 国产成人精品久久二区二区91| 久久久久久久久免费视频了| 新久久久久国产一级毛片| 久久天躁狠狠躁夜夜2o2o| 91精品国产国语对白视频| 午夜福利欧美成人| 真人一进一出gif抽搐免费| 亚洲自偷自拍图片 自拍| 亚洲av美国av| 亚洲一区高清亚洲精品| 亚洲三区欧美一区| 日韩欧美免费精品| 人人澡人人妻人| 丁香欧美五月| 欧美人与性动交α欧美精品济南到| 不卡av一区二区三区| 国产成年人精品一区二区 | 亚洲 国产 在线| 中亚洲国语对白在线视频| 亚洲av片天天在线观看| 他把我摸到了高潮在线观看| 日本vs欧美在线观看视频| 国产视频一区二区在线看| 亚洲九九香蕉| 国产在线精品亚洲第一网站| 波多野结衣av一区二区av| 欧美成狂野欧美在线观看| 欧美国产精品va在线观看不卡| 亚洲av成人av| 午夜成年电影在线免费观看| 久久久久亚洲av毛片大全| 超色免费av| 国产精品乱码一区二三区的特点 | 色哟哟哟哟哟哟| 欧美成人性av电影在线观看| 99精品在免费线老司机午夜| av欧美777| 老司机午夜十八禁免费视频| 亚洲熟女毛片儿| 亚洲欧美一区二区三区黑人| 又黄又粗又硬又大视频| 狠狠狠狠99中文字幕| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 丰满迷人的少妇在线观看| 欧美在线黄色| 99久久国产精品久久久| 国产视频一区二区在线看| 久久人妻福利社区极品人妻图片| 精品一区二区三区av网在线观看| 国产在线观看jvid| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 叶爱在线成人免费视频播放| 怎么达到女性高潮| 午夜福利一区二区在线看| 最新在线观看一区二区三区| 欧美亚洲日本最大视频资源| 免费搜索国产男女视频| 咕卡用的链子| 日本黄色日本黄色录像| 在线播放国产精品三级| 欧美av亚洲av综合av国产av| 国产精品美女特级片免费视频播放器 | 久久国产精品男人的天堂亚洲| 人人妻人人澡人人看| 动漫黄色视频在线观看| 久久久久久久久久久久大奶| 搡老熟女国产l中国老女人| 欧美日本中文国产一区发布| 国产av一区在线观看免费| 成人三级黄色视频| 国产麻豆69| 亚洲成人久久性| 亚洲人成电影观看| 国产乱人伦免费视频| 精品国产乱码久久久久久男人| 99精品在免费线老司机午夜| 91麻豆精品激情在线观看国产 | 欧美日本亚洲视频在线播放| 精品熟女少妇八av免费久了| 成人特级黄色片久久久久久久| 免费搜索国产男女视频| 一本大道久久a久久精品| 色综合站精品国产| 免费在线观看日本一区| 亚洲精品一二三| 国产精品 欧美亚洲| 巨乳人妻的诱惑在线观看| 国产区一区二久久| 亚洲av成人不卡在线观看播放网| 亚洲色图 男人天堂 中文字幕| 又紧又爽又黄一区二区| 交换朋友夫妻互换小说| 免费在线观看视频国产中文字幕亚洲| 国产精品爽爽va在线观看网站 | 妹子高潮喷水视频| 亚洲精华国产精华精| 亚洲一区中文字幕在线| 久久人妻熟女aⅴ| 国产熟女xx| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添小说| 长腿黑丝高跟| 高潮久久久久久久久久久不卡| 18禁国产床啪视频网站| 国产精品永久免费网站| 男女下面进入的视频免费午夜 | 日韩免费高清中文字幕av| 久久久精品欧美日韩精品| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| 国产精品一区二区免费欧美| 宅男免费午夜| 国产精品一区二区在线不卡| 黄色女人牲交| 男女高潮啪啪啪动态图| 一区二区日韩欧美中文字幕| 亚洲精品国产一区二区精华液| 天天影视国产精品| 久久久久国产一级毛片高清牌| 精品久久久久久,| 久久久国产成人精品二区 | 国产欧美日韩综合在线一区二区| 亚洲成人久久性| 在线观看日韩欧美| 久久久久久人人人人人| 在线观看日韩欧美| 三上悠亚av全集在线观看| 亚洲人成电影免费在线| 日韩免费av在线播放| 视频区图区小说| 久久欧美精品欧美久久欧美| 老司机午夜十八禁免费视频| 午夜免费成人在线视频| 亚洲成a人片在线一区二区| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类 | 午夜福利欧美成人| 午夜久久久在线观看| 中文字幕人妻丝袜一区二区| 久久久久久久久中文| 久久久精品欧美日韩精品| 精品久久久精品久久久| 免费观看人在逋| 757午夜福利合集在线观看| 交换朋友夫妻互换小说| av免费在线观看网站| 十八禁人妻一区二区| 热re99久久精品国产66热6| 国产熟女午夜一区二区三区|