• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biotechnology and Bioengineering The Effect of pH Controlon Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum ATCC 824 with Xylose and D-Glucose and D-Xylose Mixture☆

    2014-07-12 08:33:16WeiJiangZhiqiangWenMianbinWu2HongLiJunYangJianpingLinYijunLinLirongYangPeilinCen

    WeiJiang**,Zhiqiang Wen**,Mianbin Wu2,*,Hong Li,Jun YangJianping Lin*,Yijun Lin Lirong YangPeilin Cen

    1Key Laboratory of Biomass chemical engineering of Ministry of Education,Department of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    2Zhejiang Key Laboratory of Antifungal Drugs,Zhejiang,Taizhou 318000,China

    3Lancaster Environment Centre,Lancaster University,Lancaster LA1 4YQ,UK

    Biotechnology and Bioengineering The Effect of pH Controlon Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum ATCC 824 with Xylose and D-Glucose and D-Xylose Mixture☆

    WeiJiang1,**,Zhiqiang Wen1,**,Mianbin Wu1,2,*,Hong Li3,Jun Yang1,Jianping Lin1,*,Yijun Lin1, Lirong Yang1,Peilin Cen1

    1Key Laboratory of Biomass chemical engineering of Ministry of Education,Department of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    2Zhejiang Key Laboratory of Antifungal Drugs,Zhejiang,Taizhou 318000,China

    3Lancaster Environment Centre,Lancaster University,Lancaster LA1 4YQ,UK

    A R T I C L E I N F o

    Article history:

    Received 11 April2013

    Received in revised form 5 December 2013

    Accepted 2 January 2014

    Available online 17 June 2014

    Clostridium acetobutylicum ATCC 824

    Xylose

    Mixed sugar

    pH control

    D-Glucose,L-arabinose,D-mannose,D-xylose,and cellobiose are saccharification products of lignocellulose and important carbon sources for industrial fermentation.The fermentation efficiency with each of the five sugars and the mixture of the two most dominant sugars,D-glucose and D-xylose,was evaluated for acetonebutanol-ethanol(ABE)fermentation by Clostridium acetobutylicum ATCC 824.The utilization efficacy of the five reducing sugars was in the order of D-glucose,L-arabinose,D-mannose,D-xylose and cellobiose.D-Xylose, the second most abundant component in lignocellulosic hydrolysate,was used in the fermentation either as sole carbon source or mixed with glucose.The results indicated that maintaining pH at 4.8,the optimalpH value for solventogenesis,could increase D-xylose consumption when it was the sole carbon source.Different media containing D-glucose and D-xylose at different ratios(1:2,1:5,1.5:1,2:1)were then attempted for the ABE fermentation.When pH was at 4.8 and xylose concentration was five times that of glucose,a 256.9%increase in xylose utilization and 263.7%increase in solvent production were obtained compared to those without pH control. These results demonstrate a possible approach combining optimized pH control and D-glucose and D-xylose ratio to increase the fermentation efficiency of lignocellulosic hydrolysate.

    ?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.Allrights reserved.

    1.Introduction

    Due to energy shortage and climate change in the past decades, more intensive researches have been carried out on the conversion of abundant lignocellulosic biomass to sustainable biofuels and chemicals such as ethanol and butanol.Butanol has many promising characteristics as a renewable liquid fuel compared with other fermentation derived fuels[1],such as low vapor pressure,low water solubility,low volatility and high energy density[2].These beneficial properties allow its blending with conventional fuels at any ratio[3].

    Butanol can be produced by acetone-butanol-ethanol(ABE) fermentation with a number of substrates,such as cane molasses [4],corn starch[5],potatoes,soy molasses,and cassava[6],using Clostridium acetobutylicum or Clostridium beijerinckii.However, with the rising price of these substrate materials,the cost becomes a major factor that limits mass production of butanol[7].Moreover, ethical concerns contradict the use of food and feed products as a biofuelsource[3].

    In order to produce butanolcost-competitively,identifying and evaluating low cost substrates may be a way to achieve the goal[8].Lignocellulose,the most abundant sustainable raw material worldwide,is a natural candidate,which composes of three major polymers:cellulose, hemicellulose and lignin.However,plant cell walls are recalcitrant to degradation.Many pretreatment technologies have been developed to remove lignin and crack recalcitrant characteristics of lignocellulose[9]. The sequentialenzymatic hydrolysis can convert cellulose and hemicellulose into soluble oligomeric and mono-meric sugars[10].Hydrolyzation of cellulose produces hexoses,such as D-glucose,D-mannose,and D-galactose, while forhemicellulose,hydrolysis products are pentoses,such as D-xylose and L-arabinose[11].Itis known that C.acetobutylicum is one of the few strictanaerobic microorganisms thatare able to utilize a wide variety of carbohydrates to produce desirable products(ethanol,butanol and acetone).

    Since D-glucose and D-xylose are the major hydrolysates oflignocellulose,it is important to convert them into solvents as efficient as possible.However,microorganisms tend to selectively utilize a preferred sugar first and consume other sugars sequentially[12],termed carbon catabolite repression.This phenomenon makes the fermentation process complex and often reduces the productivity and yield on the target biomass.In order to improve xylose utilization of mixed sugar and achieve a high yield of solvent,some experiments have been conducted with different D-glucose/D-xylose ratios(1.5:1,2:1).Although previous work has identified that higher ratio of xylose to glucose is in favor of using xylose[13],very little information is available on the effect of pH control on ABE fermentation with different ratios of xylose to glucose.

    It has long been observed that C.acetobutylicum utilizes sugars by undergoing biphasic fermentation,termed acidogenesis and solventogenesis.During acidogenic phase,acetic acid and butyric acid are produced simultaneously,reducing pH in culture media. When the acid accumulates to a certain level,re-assimilation of these organic acids leads to the formation of ABE[8],and then the pH value increases gradually.6-13 mmol·L-1of undissociated butyric acid is required for the initiation of butanolproduction[14].The optimum solventproduction occurs atpH 5.0 in a study to compare fermentation performance by C.acetobutylicum ATCC 824 at pH 4.5,5.0, and 5.5[15].

    Since acid formation and reassimilation are closely dependenton pH of culture and acid accumulation is essential for the solventproduction, pH should be controlled appropriately after the acidogenic phase. However,no attention has been paid on the timing of pH control. Calcium carbonate or Na OH is usually added at the beginning of the fermentation.

    The objectives of this work are to identify the utilization efficiency of 5 major sugars in lignocelluloses hydrolysate and effects of pH on both xylose utilization efficiency and solvent production using either xylose alone or glucose and xylose mixture with different ratios.

    2.Materials and Methods

    2.1.Microorganism and medium

    C.acetobutylicum ATCC 824 was bought from CGMCC.

    Spores of C.acetobutylicum ATCC 824 were maintained in distilled water at 4°C.The spores were heat shocked at 80°C for 10 min and transferred to TGY medium(tryptone 0.5%,glucose or other carbon source 0.1%,yeast extract 0.3%,pH 7.8)with 5%quantity.The culture was allowed to grow for approximately 16-18 h at 37°C when it was ready to be inoculated into the P2 medium.The P2 medium contained carbon source(monosaccharide such as D-glucose,D-mannose,D-xylose,L-arabinose,or the mixed sugar),yeast extract(5.0 g·L-1),L-cysteine hydrochloride(0.5 g·L-1,for keeping the reducing condition),and resazurin(3 ml·L-1,0.1 g·L-1to reveal the reducing state),including minerals,buffer and vitamins. The medium without stock solutions was sterilized at 115°C for 30 min followed by cooling to room temperature.After that,1 ml of concentrated mineralsolution(100 mldistilled water containing 3.48 g MgSO4,0.1 g MnSO4·H2O,0.1 g FeSO4·7H2O),10 ml of concentrated buffer(adding 0.75 g KH2PO4,0.75 g K2HPO4,2.0 g (NH4)2SO4,1.0 g NaClinto 100 mldistilled water),and 10 mlofvitamin solution(2.0 g asparagines dissolved into 100 ml distilled water),which were filter sterilized,were added to the original solution and made the total volume to 100 ml.Samples were taken for analysis at regular intervals.

    2.2.Fermentation

    Batch fermentations were performed anaerobically in 500 ml shake fl asks with 300 mlworking volume at 37°C,using D-glucose, D-mannose,L-arabinose,D-xylose,and cellobiose as sole carbon resource of P2 medium separately,with the initial concentration of 42 g·L-1,by C.acetobutylicum ATCC 824.

    Then 70.0 g·L-1of D-xylose was used as the carbon source with accurate pH-controland fermented under the same culture condition.The pH-controlwas carried out after the acidogenic phase and achieved by feeding 0.8 mol·L-1NaOH.

    After that,experiments were conducted with varied D-glucose/D-xylose ratios(1:2,1:5,1.5:1,2:1,g·g-1),using xylose-pregrown cells as inoculum according to earlier study[13]and controlling pH after 24 h.Meantime,control experiments were conducted at unregulated culture pH.

    2.3.Analysis

    Cell concentration was measured by optical density method at 600 nm.Glucose was determined by glucometer,other reducing sugars were tested by colorimetric analysis of DNS(3,5-dinitrosalicylic acid).Xylose in the mixed sugar was calculated from the difference between total sugarconcentration and glucose concentration.Gas chromatography(GC 6820),HP-INNOWAX(19091N-113)capillary chromatographic column, temperature programming,and Agilenttechnology were used to analyze the fermentation products(acetone,butanol,ethanol,acetic acid and butyric acid).Reactor productivity was estimated as the total ABE produced (g·L-1)divided by the fermentation time(g·L-1·h-1).ABE yield was calculated as grams of ABE produced per gram of sugar used.

    3.Results and Discussion

    3.1.Utilization of individual reducing sugar by C.acetobutylicum ATCC 824

    Fig.1.Production of ABE from different reducing sugars using Clostridium acetobutylicum ATCC 824.(a)Utilization of different sugars and ABE production;(b)productivity and yield.

    Fig.1 compares the utilization,ABE production,reactor productivity and yield of different reducing sugars.Results indicate that it is easier forC.acetobutylicum ATCC 824 to use glucose than other reducing sugars, and the rate of sugar consumption,ABE production,and yield using different sugars are in the order of D-glucose,L-arabinose,D-mannose, D-xylose and cellobiose(Fig.1a).This agrees with previous study, using 60 g·L-1of individualsugar(glucose,xylose,arabinose,galactose)by C.acetobutylicum P260[7].This may be attributed to sugar specific mechanisms for the transcriptional regulation of transport and metabolism genes.The efficiency of transport and metabolism of glucose is far higher than that of other carbon sources,which is consistent with ABE production from glucose comparing with other sugars[16,17]. During the glucose-based fermentation,13.83 g·L-1ABE was produced with a productivity of0.13 g·L-1·h-1and a yield of0.34,far ahead of other sugars.

    Although L-arabinose and xylose are two common pentoses,the induction of key genes involved in the transport and metabolism of pentose by L-arabinose is stronger than that of xylose[17],leading to a higher ABE productivity and yield.The utilization of L-arabinose was the nexthighest, the production of ABE was 6.9 g·L-1and organic acid was 3.67 g·L-1(acetate 2.14 g·L-1,butyrate 1.53 g·L-1),resulting in a yield of0.3 g·g-1and a productivity of0.06 g·L-1·h-1(Fig.1).However,with D-xylose as carbon source,the fi nal concentration of solvent was 1.33.The ability of C.acetobutylicum ATCC 824 to uptake D-mannose was similarly poor to D-xylose.The consumption of D-mannose produced only 1.09 g·L-1butanol and 1.50 g·L-1ABE.Additionally,in cellobiose fermentation,only 0.04 g·L-1butanol was measured,indicating that the strain can barely use cellobiose to produce butanol.

    3.2.Effects upon xylose utilization with pH control

    The intracellular trans membrane pH gradient kept constant in C.acetobutylicum is unable to maintain a constant intracellular pH automatically,so that any severe changes of external pH level will have strong effect on the growth and metabolism of cells[18].Therefore,it is important to control pH for ABE fermentation.

    As seen in Fig.2,obvious differences appear between the experimental and the control group since 20 h.The pH value of control group decreases with the accumulation of organic acids and falls below 4.0 after 68 h.Since the undissociated forms of these acids are able to freely permeate through the cytoplasmic membrane,which will accumulate in the cellinterior at largeΔpH values and decrease the internal pH[19,20].Low internal pH negatively affects the cell of control group.A constantΔpH between external and internal cells can be kept by controlling external pH level.

    With external pH control,the improvements in growth,xylose utilization,and total solvent production are significant.Xylose utilization increased from 37.4%to 56.0%.The final ABE concentration increased to 3-folds.The productivity and yield also increased to 3.2-folds and 2.1-folds,respectively(Fig.2e).The increase of substrate utilization and solvent production through pHcontrol with xylose as the sole carbon source is in agreement with previous study[13],in which using 10 g·L-1calcium carbonate to buffer pH,a more efficient D-xylose utilization,improved cell growth and increased ABE production were achieved.

    Fig.2.Batch fermentation of strain C.acetobutylicum ATCC 824 with D-xylose atcontrolled(◆)and uncontrolled(■)pH.(a)pH;(b)growth;(c)xylose consumption;(d)ABE production; (e)productivity and yield.

    Table 1 Effect of pH controlon the fermentation by C.acetobutylicum ATCC 824 with glucose concentration higher than that of xylose

    3.3.Utilization of D-glucose and D-xylose mixture

    Since the hemicellulose hydrolysis may result in a mixture of D-glucose and D-xylose as the major carbohydrates,it is important to convert allresulting sugars into solvents to lower the cost of fermentation process.However,the transport and metabolism of different sugars vary considerably.C.acetobutylicum utilizes symporters and ATP-binding cassette transporters for the uptake of xylose, while glucose is primarily taken up by phosphotransferase system transporters[17].The efficiency of transport and metabolism of glucose is far higher than that of xylose,so there is severe carbon catabolite repression with glucose and xylose as carbon sources simultaneously.It has been demonstrated that the utilization of xylose is closely related with the proportion of xylose and glucose[13],so the effect ofpH control on the fermentation with different ratios of xylose and glucose should be investigated.

    3.3.1.Effect of pH controlon the fermentation with higher ratio of glucose to xylose

    Normally,glucose concentration is higher than that of xylose in most lignocellulosic hydrolysates.In this study,fermentation was initially conducted with two ratios of sugars:35 g·L-1of glucose and 23 g·L-1of xylose(1.5:1)and 40 g·L-1of glucose and 20 g·L-1of xylose (2:1).

    As for glucose/xylose ratio of 1.5:1,pH regulation markedly raised the xylose utilization rate from 11.6%to 66.1%(Fig.3).However,the increased consumption of xylose did not account for the ABE production and yield.When pH was regulated,ABE production,productivity,and yield were 11.18 g·L-1,0.12 g·L-1·h-1and 0.22 g·g-1,respectively (Table 1).These were lower than those with no pH regulation,which were 11.68 g·L-1,0.13 g·L-1·h-1and 0.31 g·g-1(Table 1).On the contrary,with pH regulation for the same ratio of sugars,acetate and butyrate production always increased(Table 1).

    Fig.3.Effect of pH controlon sugar utilization by C.acetobutylicum ATCC 824 xylosepregrown cells on complex medium(glucose 35 g·L-1,xylose 23 g·L-1,or glucose 40 g·L-1,xylose 20 g·L-1).

    With glucose concentration higher than that of xylose,the pH controlstrategy increased the utilization ofxylose in sugar mixture,while the pH regulation effect on xylose utilization was less pronounced with a higher ratio of glucose to xylose(40 g·L-1:20 g·L-1).At this ratio and with pH control,xylose utilization rate increased from 11.5% to 31.5%in comparison with that no pH control(Fig.3).As a result of pHcontrol,fermentation produced 11.15 g·L-1ABE,which was slightly less than 12.06 g·L-1ABE obtained at uncontrolled pH(Table 1).With uncontrolled pH,the representative productivity of0.10 g·L-1·h-1and yield of0.25 g·g-1were obtained,and a productivity of0.11 g·L-1·h-1and a yield of0.29 g·g-1were measured(Table 1).

    The results above may be attributed to the substantial accumulation of butanol from utilized glucose,which decreases the membrane pH gradient due to the increase of membrane fluidity.This may result in a modification of the lipid protein interactions,breaking ATPase and permease activities during xylose fermentation by C.acetobutylicum[21]. These modifications are pronounced and cause a drastic inhibition of xylose uptake especially in the presence of high concentrations of butanol.Cells in experimental group are better in xylose uptake because of higher internalpH than those in control group.However,ABE production is weakened by accumulation of acetate and butyrate,which may crash the transformation of acids to solvent[22].

    3.3.2.Effectof pH controlon the fermentation with lower ratio of glucose to xylose

    Because of the negative effects of pH controlon ABE production at higher ratios of glucose to xylose,further experiments were tested with the mixture of two sugars at lower ratios of glucose to xylose: 20 g·L-1of glucose and 40 g·L-1of xylose(1:2),10 g·L-1of glucose and 50 g·L-1of xylose(1:5).

    Fig.4.Effect of pH controlupon sugar utilization by C.acetobutylicum ATCC 824 xylosepregrown cells on complex medium(glucose 20 g·L-1,xylose 40 g·L-1,or glucose 10 g·L-1,xylose 50 g·L-1).

    As seen in Fig.4,pH controldid not affect glucose utilization in the two sugar ratios,while the xylose utilization was clearly higher withthe controlled pH.At glucose/xylose ratio of1:2,pH controlincreased ABE production by 48.0%.However,the final concentrations of acetate and butyrate also increased by 81.9%and 103.3%,respectively,compared to those with uncontrolled pH(Table 2).The productivity and yield were 0.10 g·L-1·h-1and 0.23 g·L-1·h-1,respectively,in controlled pH treatment,while a lower productivity(0.07 g·L-1·h-1) and a higher yield(0.34 g·g-1)were measured in uncontrolled pH treatment(Table 2).When glucose was one-fifth of xylose with pHcontrol,the production of ABE was 6.11 g·L-1,3.6-folds of that without pH control(Table 2).Furthermore,as a result of pH control,the productivity shows the same trends of increase.

    Table 2 Effect of pH controlon the fermentation with different proportions of glucose/xylose mixture(1:2,1:5)by C.acetobutylicum ATCC 824

    Utilization of xylose and ABE production are promoted notably with sugar mixture by pHcontrolstrategy.Only a small amount of but anolis produced when glucose is exhausted,which will not remarkably inhibit the xylose absorption.Additionally,metabolism of glucose provides convenience(for example,induce transport and glycolytic enzymes) for uptake and metabolism of xylose[23,24].The pH control also plays a key role in maintaining a constant intracellular pH andΔpH,which could improve xylose utilization and ABE production.However,owing to the poor utilization efficacy of xylose,the concentrations of solvent are stillrather low.

    Allin all,xylose is the limiting factor for the fermentation of lignocellulosic hydrolysates by C.acetobutylicum ATCC 824 due to its poor utilization efficacy and less preferred to be used when mixed with glucose.This study demonstrates that pH control could increase xylose utilization efficiency with mixed glucose and xylose regardless of their proportions.Interestingly,when xylose concentration is higher than that of glucose,pHcontroleven increases the solvent production.It is inferred that glucose could enhance xylose utilization at low but nonzero concentrations[23,25].Our data confirm it as the extent of improved xylose utilization by pH controlis more pronounced when glucose concentration is lower.The mechanisms for the improved xylose utilization can be attributed to the inductions of transport systems [23,26],glycolytic enzymes[24]and improved co-factor generation. These mechanisms may provide optimized conditions for further increasing the efficiency of lignocellulosic hydrolysate fermentation.

    However,when xylose concentration is lower than that of glucose,the increased xylose consumption through pH controlleads to greater acid accumulation instead of solvent production.This suggests that pH control will make little difference in the improvement of solvent production,or increase ABE yield and productivity,as normallignocellulosic hydrolysates contain more glucose than xylose.Therefore,the efficientxylose uptake could be only achieved when glucose concentration is lower than that of xylose[27].Inspired by Bertilsson et al.'s result[27]and the findings in this study,it is possible to find a way of using lignocellulose more economically and efficiently in solvent fermentation.Firstly,lignocellulose could be pretreated by either acid or alkaline.This stage will mainly act on hemicellulose,releasing pentoses and hexoses included in hemicellulose as monomers,while most of glucose is present as glucan fiber in cellulose[27].Therefore,the glucose concentration remains low. Then fermentation is undertaken by C.acetobutylicum ATCC 824 using these mixed fermentable monosaccharides as carbon sources.Secondly, after the decomposition of lignin,enzymes(β-glucosidase,cellulase)are used to hydrolyze cellulose into glucose,which can also be used as the carbon source for C.acetobutylicum ATCC 824 without producing excessive inhibition effects(Fig.5).It is hoped that by combining successive hydrolysis and timely pH control,an increased solvent production with efficient xylose utilization and improved productivity can be achieved.

    Biobutanol production from lignocellulosic biomass involves physical/chemical pretreatment,enzymatic hydrolysis,fermentation (or simultaneous saccharification and fermentation or co-fermentation) and some other unit operations[28].At present,the unsolved problems such as inefficient co-fermentation of C6 and C5 sugars associated with the utilization of lignocelluloses hinder the establishment of large scale lignocellulose-based biobutanol plants.However,this may change in the near future because of the worldwide research and development efforts aimed at applying lignocellulose as a fermentation feedstock. Furthermore,separation and hydrolysis of various components of biomass will allow complete use of crop,which confers economic as well as environmental benefits[29].

    Fig.5.Schematic main steps of lignocellulose conversion.

    4.Conclusions

    The utilization rate of major sugars in lignocellulose by C.acetobutylicum ATCC 824 is in the order of D-glucose,L-arabinose,D-mannose,D-xylose and cellobiose.With D-xylose as the only carbon source or at higher concentration than that of glucose,pH control could improve cell growth,increase D-xylose consumption, and enhance ABE production.However,when xylose is less than that of glucose,the increased xylose consumption by pH controlleads to acid accumulation instead of solvent production.

    Acknowledgments

    The authors would like to give their sincere gratitude to Professor Nathan Yang(Shanghai Long March Hospital,Second Military Medical University)for the revision of the manuscript.

    [1]T.C.Ezeji,H.P.Blaschek,Biofuelfrom butanol:advances in genetic and physiological manipulation of clostridia,BioWorld Eur.2(2007)12-15.

    [2]Nexant Of fices,Biobutanol:the next big biofuel,Chemical Systems with Chemical Strategies,Nexant,2009.

    [3]C.Weber,A.Farwick,F.Benisch,D.Brat,H.Dietz,T.Subtil,E.Boles,Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels,Appl. Microbiol.Biotechnol.87(4)(2010)1303-1315.

    [4]D.T.Jones,D.R.Woods,Acetone-butanol fermentation revisited,Microbiol.Rev.50 (4)(1986)484-534.

    [5]T.C.Ezeji,N.Qureshi,H.P.Blaschek,Production of acetone butanol(AB)from liquefi ed corn starch,a commercial substrate,using Clostridium beijerinckii coupled with product recovery by gas stripping,J.Ind.Microbiol.Biotechnol.34(12)(2007) 771-777.

    [6]K.Shetty,G.Paliyath,A.Pometto,R.E.Levin,Food Biotechnology,Second edition Taylor&Francis Group,Boca Raton,Florida,USA,2005.525-551.

    [7]N.Qureshi,X.L.Li,S.Hughes,B.C.Saha,M.A.Cotta,Butanolproduction from corn fiber xylan using Clostridium acetobutylicum,Biotechnol.Prog.22(3)(2006) 673-680.

    [8]N.Qureshi,T.C.Ezeji,Butanol,‘a(chǎn) superior biofuel’production from agriculturalresidues(renewable biomass):recent progress in technology,Biofuels,Bioprod.Biorefin. 2(4)(2008)319-330.

    [9]H.S.Lü,M.M.Ren,M.H.Zhang,Y.Chen,Pretreatment of corn stover using supercritical CO2with water-ethanol as co-solvent,Chin.J.Chem.Eng.21(5)(2013) 551-557.

    [10]M.J.Zhang,R.X.Su,W.Qi,R.Y.Du,Z.M.He,Enzymatic hydrolysis of cellulose with different crystallinities studied by means of SEC-MALLS,Chin.J.Chem.Eng.19(5) (2011)773-778.

    [11]J.Chen,Y.Wang,G.He,H.Zhang,Z.Zhou,Bioconversion of lignocellulose to ethanol, Sci.Silvae Sin.43(5)(2007)99-105.

    [12]J.Kim,D.E.Block,D.A.Mills,Simultaneous consumption of pentose and hexose sugars:an optimalmicrobialphenotype for efficient fermentation of lignocellulosic biomass,Appl.Microbiol.Biotechnol.88(5)(2010)1077-1085.

    [13]A.E.Kanouni,I.Zerdani,S.Zaafa,M.Znassni,M.Lout,M.Boudouma,The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate,World J.Microbiol.Biotechnol.14(3)(1998)431-435.

    [14]M.H.W.Husemann,E.T.Papoutsakis,So lventogenesis in Clostridium acetobutylicum fermentation related to carboxylic acid and proton concentrations,Biotechnol. Bioeng.32(7)(1988)843-852.

    [15]C.Ren,Y.Gu,S.Y.Hu,Y.Wu,P.Wang,Y.L.Yang,C.Yang,S.Yang,W.H.Jiang,Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum,Metab.Eng.12(5)(2010) 446-454.

    [16]C.Grimmler,C.Held,W.Liebl,A.Ehrenreich,Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of d-glucose and d-xylose,J.Biotechnol.150(3)(2010)315-323.

    [17]M.D.Servinsky,J.T.Kiel,N.F.Dupuy,C.J.Sund,Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum,Microbiology 156(11) (2010)3478-3491.

    [18]T.Millat,H.Janssen,G.J.Thorn,J.R.King,H.Bahl,R.J.Fischer,O.Wolkenhauer,A shift in the dominantphenotype governs the pH-induced metabolic switch of Clostridium acetobutylicum in phosphate-limited continuous cultures,Appl.Microbiol.Biotechnol. 97(14)(2013)6451-6466.

    [19]M.Gottwald,G.Gottschalk,The internalpH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation,Arch.Microbiol.143(1)(1985) 42-46.

    [20]D.B.Kell,M.W.Peck,G.Rodger,J.G.Morris,On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum,Biochem.Biophys. Res.Commun.99(1)(1981)81-88.

    [21]K.Ounine,H.Petitdemange,G.Raval,R.Gay,Regulation and butanolinhibition of D D-xylose and D D-glucose uptake in Clostridium acetobutylicum,Appl.Environ. Microbiol.49(4)(1985)874-878.

    [22]I.S.Maddox,E.Steiner,S.Hirsch,S.Wessner,N.A.Gutierrez,J.R.Gapes,K.C.Schuster, The cause of“acid crash”and“acidogenic fermentations”during the batch acetonebutanol-ethanol(ABE-)fermentation process,J.Mol.Microbiol.Biotechnol.2(1) (2000)95-100.

    [23]J.-P.Pitk?nen,A.Aristidou,L.Salusj?rvi,L.Ruohonen,M.Penttil?,Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture,Metab.Eng.5(1)(2003)16-31.

    [24]E.Boles,S.Müller,F.K.Zimmermann,A multi-layered sensory system controls yeast glycolytic gene expression,Mol.Microbiol.19(3)(1996)641-642.

    [25]N.Q.Meinander,I.Boels,B.Hahn-H?gerdal,Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without over expression of TAL1, Bioresour.Technol.68(1)(1999)79-87.

    [26]M.Bertilsson,J.Andersson,G.Lidén,Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters,Bioprocess Biosyst.Eng.31(4)(2008)369-377.

    [27]M.Bertilsson,K.Olofsson,G.Lidén,Prefermentation improves xylose utilization in simultaneous sacchari fi cation and co-fermentation of pretreated spruce,Biotechnol. Biofuels 2(2009)8.

    [28]M.-R.Ricardo,V.G.Krist,S.M.Anne,S.Gürkan,A mathematical model for simultaneous sacchari fi cation and co-fermentation(SSCF)of C6 and C5 sugars,Chin.J. Chem.Eng.19(2)(2011)185-191.

    [29]P.A.M.Claassen,J.B.van Lier,A.M.Lopez Contreras,E.W.J.van Niel,L.Sijtsma,A.J.M. Stams,S.S.de Vries,R.A.Weusthuis,Utilisation of biomass for the supply of energy carriers,Appl.Microbiol.Biotechnol.52(6)(1999)741-755.

    ☆Supported by the National Natural Science Foundation of China(20306026 and 21376215)and the National High Technology Research and Development Program of China(2012AA022302).

    *Corresponding authors.

    **Authors with equalcontribution to this work.

    E-mailaddresses:wumb@zju.edu.cn(M.Wu),linjp@zju.edu.cn(J.Lin).

    国产有黄有色有爽视频| 精品一区二区三卡| a级毛片黄视频| 日日爽夜夜爽网站| 久久久久视频综合| 国产黄频视频在线观看| 成年美女黄网站色视频大全免费| 夫妻性生交免费视频一级片| 国产伦理片在线播放av一区| 岛国毛片在线播放| 免费女性裸体啪啪无遮挡网站| 永久免费av网站大全| 亚洲av中文av极速乱| 亚洲一码二码三码区别大吗| 久久国产精品大桥未久av| 亚洲视频免费观看视频| 巨乳人妻的诱惑在线观看| 女的被弄到高潮叫床怎么办| 国产精品一区二区精品视频观看| 99久久综合免费| 两个人免费观看高清视频| 午夜福利影视在线免费观看| 成年女人毛片免费观看观看9 | 日韩一本色道免费dvd| 亚洲精品美女久久久久99蜜臀 | 老熟女久久久| 亚洲美女搞黄在线观看| 女性被躁到高潮视频| 午夜日韩欧美国产| 制服人妻中文乱码| 最近最新中文字幕免费大全7| 国产熟女午夜一区二区三区| 久久久久久久久久久久大奶| 国产伦人伦偷精品视频| av视频免费观看在线观看| www.自偷自拍.com| 丰满饥渴人妻一区二区三| 五月天丁香电影| 少妇猛男粗大的猛烈进出视频| 男女高潮啪啪啪动态图| 国产成人免费观看mmmm| 日本午夜av视频| 成人毛片60女人毛片免费| 美女高潮到喷水免费观看| 日韩精品免费视频一区二区三区| 人人妻,人人澡人人爽秒播 | √禁漫天堂资源中文www| 日韩不卡一区二区三区视频在线| 高清黄色对白视频在线免费看| 国产欧美亚洲国产| 国产精品久久久人人做人人爽| 高清在线视频一区二区三区| 丰满饥渴人妻一区二区三| 国产成人免费无遮挡视频| 男女高潮啪啪啪动态图| 免费观看a级毛片全部| 亚洲av日韩精品久久久久久密 | 天天躁夜夜躁狠狠久久av| 90打野战视频偷拍视频| 91精品三级在线观看| 人妻 亚洲 视频| 欧美97在线视频| 日韩制服丝袜自拍偷拍| 天堂俺去俺来也www色官网| a级毛片黄视频| 亚洲一区中文字幕在线| 91精品伊人久久大香线蕉| 校园人妻丝袜中文字幕| 制服人妻中文乱码| 国产片内射在线| 男女边吃奶边做爰视频| 大码成人一级视频| 精品一区二区免费观看| 看非洲黑人一级黄片| 日韩大码丰满熟妇| 青草久久国产| 亚洲国产欧美一区二区综合| 最近中文字幕2019免费版| 国产探花极品一区二区| 赤兔流量卡办理| 在线观看免费视频网站a站| 免费黄频网站在线观看国产| 在线亚洲精品国产二区图片欧美| 黄网站色视频无遮挡免费观看| 午夜激情av网站| 国产片特级美女逼逼视频| 亚洲一区中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 国产av国产精品国产| 日本爱情动作片www.在线观看| 亚洲精品乱久久久久久| 99热网站在线观看| 欧美日韩福利视频一区二区| 国产欧美日韩综合在线一区二区| 欧美日韩视频精品一区| 最新的欧美精品一区二区| 午夜福利网站1000一区二区三区| 久久性视频一级片| 免费观看a级毛片全部| 男女边吃奶边做爰视频| e午夜精品久久久久久久| 最近最新中文字幕免费大全7| 成人国产av品久久久| 欧美激情 高清一区二区三区| 男人添女人高潮全过程视频| 国产精品香港三级国产av潘金莲 | 一个人免费看片子| 久久久久久久国产电影| 亚洲精品在线美女| 亚洲国产欧美日韩在线播放| 国产精品蜜桃在线观看| 亚洲精品日本国产第一区| 又黄又粗又硬又大视频| 中文字幕av电影在线播放| 国产日韩一区二区三区精品不卡| 青春草亚洲视频在线观看| 夫妻午夜视频| 狂野欧美激情性xxxx| 在线观看三级黄色| 亚洲欧洲国产日韩| 看非洲黑人一级黄片| 日韩精品有码人妻一区| 最黄视频免费看| 美女主播在线视频| 波多野结衣一区麻豆| 成人黄色视频免费在线看| 色吧在线观看| 午夜久久久在线观看| 久久国产亚洲av麻豆专区| 高清不卡的av网站| 国产免费一区二区三区四区乱码| 黄色怎么调成土黄色| 校园人妻丝袜中文字幕| 黄色怎么调成土黄色| 国产av国产精品国产| 黑人欧美特级aaaaaa片| 久久精品久久精品一区二区三区| 久久青草综合色| 丁香六月欧美| av在线播放精品| 黄色毛片三级朝国网站| 色播在线永久视频| 国语对白做爰xxxⅹ性视频网站| 综合色丁香网| 91精品国产国语对白视频| 丝袜美足系列| 欧美日韩国产mv在线观看视频| 丝袜美足系列| 亚洲综合精品二区| av在线老鸭窝| 亚洲欧美日韩另类电影网站| 久久精品久久久久久久性| 国产一级毛片在线| 男人舔女人的私密视频| 国产欧美日韩一区二区三区在线| 在线亚洲精品国产二区图片欧美| 熟妇人妻不卡中文字幕| 自线自在国产av| 国产色婷婷99| 国产午夜精品一二区理论片| 久久久精品免费免费高清| 欧美黑人欧美精品刺激| 国产成人午夜福利电影在线观看| 国产av一区二区精品久久| 亚洲精品一二三| 欧美变态另类bdsm刘玥| 亚洲成人国产一区在线观看 | 精品亚洲成a人片在线观看| 国产精品麻豆人妻色哟哟久久| av视频免费观看在线观看| 久久精品国产亚洲av涩爱| 十八禁网站网址无遮挡| 成人免费观看视频高清| 国产熟女欧美一区二区| 少妇人妻久久综合中文| 亚洲免费av在线视频| 一级毛片电影观看| 91精品国产国语对白视频| 免费在线观看视频国产中文字幕亚洲 | 欧美 亚洲 国产 日韩一| 狂野欧美激情性bbbbbb| 亚洲三区欧美一区| 久久久久久人人人人人| 国产色婷婷99| 99国产精品免费福利视频| 亚洲av日韩精品久久久久久密 | 高清在线视频一区二区三区| 国产亚洲精品第一综合不卡| 男女无遮挡免费网站观看| 宅男免费午夜| 捣出白浆h1v1| 高清黄色对白视频在线免费看| 欧美亚洲 丝袜 人妻 在线| 一区在线观看完整版| 最近最新中文字幕免费大全7| 看免费av毛片| 嫩草影视91久久| 黄色视频不卡| 亚洲熟女精品中文字幕| av一本久久久久| 最近2019中文字幕mv第一页| 考比视频在线观看| 黑丝袜美女国产一区| 哪个播放器可以免费观看大片| 啦啦啦在线观看免费高清www| 伦理电影免费视频| 精品少妇内射三级| 国产精品国产三级国产专区5o| 亚洲少妇的诱惑av| 亚洲,欧美,日韩| 天天操日日干夜夜撸| 视频区图区小说| 夫妻午夜视频| 精品卡一卡二卡四卡免费| 777久久人妻少妇嫩草av网站| 女的被弄到高潮叫床怎么办| 日韩一区二区视频免费看| 人人妻人人澡人人爽人人夜夜| 日韩一本色道免费dvd| 少妇人妻久久综合中文| 欧美久久黑人一区二区| 日韩免费高清中文字幕av| 国产亚洲一区二区精品| av在线老鸭窝| 啦啦啦 在线观看视频| 亚洲av欧美aⅴ国产| 日韩不卡一区二区三区视频在线| 伦理电影免费视频| 午夜福利影视在线免费观看| 亚洲成人一二三区av| 日韩精品免费视频一区二区三区| 性高湖久久久久久久久免费观看| 母亲3免费完整高清在线观看| 性少妇av在线| xxxhd国产人妻xxx| a级毛片黄视频| 人人妻,人人澡人人爽秒播 | 一边摸一边抽搐一进一出视频| 嫩草影视91久久| 国产伦理片在线播放av一区| 肉色欧美久久久久久久蜜桃| 久久免费观看电影| 免费不卡黄色视频| 久久久久久久久免费视频了| a 毛片基地| 极品少妇高潮喷水抽搐| 午夜福利,免费看| 天天操日日干夜夜撸| 精品一区二区免费观看| 综合色丁香网| 最近的中文字幕免费完整| 日本91视频免费播放| 国产在线视频一区二区| 男女边摸边吃奶| 18禁裸乳无遮挡动漫免费视频| 久久97久久精品| 韩国高清视频一区二区三区| 男女高潮啪啪啪动态图| 久久影院123| 9热在线视频观看99| 九九爱精品视频在线观看| 亚洲在久久综合| 亚洲精品久久久久久婷婷小说| 国产男人的电影天堂91| av卡一久久| 老司机靠b影院| 赤兔流量卡办理| 亚洲欧美一区二区三区黑人| 日本wwww免费看| 久久青草综合色| 国产乱来视频区| 日韩精品免费视频一区二区三区| 亚洲成人av在线免费| 久久久久精品久久久久真实原创| 美女国产高潮福利片在线看| 国产成人一区二区在线| 精品国产乱码久久久久久小说| 日本欧美国产在线视频| 精品少妇黑人巨大在线播放| 午夜av观看不卡| 一本久久精品| 国产色婷婷99| 免费在线观看黄色视频的| 不卡av一区二区三区| 国产精品久久久人人做人人爽| 99精品久久久久人妻精品| 久久精品亚洲熟妇少妇任你| 一本一本久久a久久精品综合妖精| 操美女的视频在线观看| 97精品久久久久久久久久精品| 欧美黑人欧美精品刺激| 亚洲美女视频黄频| 9热在线视频观看99| 深夜精品福利| 一本—道久久a久久精品蜜桃钙片| 欧美日韩av久久| 啦啦啦 在线观看视频| 色综合欧美亚洲国产小说| 免费看av在线观看网站| 久久精品人人爽人人爽视色| 成人三级做爰电影| 亚洲欧美日韩另类电影网站| 男人添女人高潮全过程视频| 国产成人精品久久二区二区91 | 亚洲国产最新在线播放| 少妇被粗大的猛进出69影院| 一区二区av电影网| 国产精品99久久99久久久不卡 | 卡戴珊不雅视频在线播放| 欧美在线黄色| 99香蕉大伊视频| 国产精品久久久久成人av| 在线观看一区二区三区激情| 亚洲精品久久久久久婷婷小说| 亚洲,一卡二卡三卡| 无遮挡黄片免费观看| 亚洲国产精品一区二区三区在线| 又粗又硬又长又爽又黄的视频| 丝袜脚勾引网站| 精品一品国产午夜福利视频| 日韩大码丰满熟妇| 久久精品久久精品一区二区三区| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 丝袜美足系列| 成年动漫av网址| 亚洲色图 男人天堂 中文字幕| 日韩成人av中文字幕在线观看| www.自偷自拍.com| 久久精品国产亚洲av高清一级| 精品第一国产精品| 晚上一个人看的免费电影| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| av卡一久久| 日韩 欧美 亚洲 中文字幕| 最近最新中文字幕大全免费视频 | 欧美久久黑人一区二区| 在线观看www视频免费| 看十八女毛片水多多多| 哪个播放器可以免费观看大片| 亚洲成人手机| 天天躁狠狠躁夜夜躁狠狠躁| 纵有疾风起免费观看全集完整版| 男女高潮啪啪啪动态图| 悠悠久久av| 精品酒店卫生间| 日韩av免费高清视频| 热re99久久精品国产66热6| av有码第一页| 久久久久国产一级毛片高清牌| 秋霞在线观看毛片| 国产成人精品在线电影| 久久韩国三级中文字幕| 久久女婷五月综合色啪小说| 欧美日韩国产mv在线观看视频| 午夜福利在线免费观看网站| 天天躁日日躁夜夜躁夜夜| 免费高清在线观看日韩| 国语对白做爰xxxⅹ性视频网站| 国产高清不卡午夜福利| 一本大道久久a久久精品| 香蕉丝袜av| 亚洲精品国产av成人精品| 国产男女超爽视频在线观看| 又黄又粗又硬又大视频| 永久免费av网站大全| 国产片特级美女逼逼视频| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 老鸭窝网址在线观看| 丝袜脚勾引网站| 母亲3免费完整高清在线观看| 美国免费a级毛片| 欧美日本中文国产一区发布| 亚洲成国产人片在线观看| 丰满饥渴人妻一区二区三| 午夜福利在线免费观看网站| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 欧美xxⅹ黑人| 国产一区二区 视频在线| 丁香六月天网| 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频| 久久精品熟女亚洲av麻豆精品| av福利片在线| a 毛片基地| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲国产一区二区在线观看 | 夫妻性生交免费视频一级片| 国产片内射在线| 91成人精品电影| 波多野结衣一区麻豆| 九色亚洲精品在线播放| 久久久国产精品麻豆| 搡老乐熟女国产| 美女中出高潮动态图| 狂野欧美激情性xxxx| 国产亚洲av片在线观看秒播厂| 日韩不卡一区二区三区视频在线| 亚洲欧美激情在线| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费高清a一片| 天堂8中文在线网| 极品人妻少妇av视频| 晚上一个人看的免费电影| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区国产| 人人妻人人澡人人爽人人夜夜| 黑人欧美特级aaaaaa片| 亚洲精品一二三| 美女扒开内裤让男人捅视频| 国产又爽黄色视频| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 超色免费av| 不卡av一区二区三区| 日韩熟女老妇一区二区性免费视频| 欧美日韩视频高清一区二区三区二| 精品国产一区二区三区四区第35| 欧美日韩一级在线毛片| 97精品久久久久久久久久精品| 你懂的网址亚洲精品在线观看| av在线播放精品| 尾随美女入室| 午夜久久久在线观看| 精品亚洲成国产av| 又大又黄又爽视频免费| 热re99久久精品国产66热6| 天天躁夜夜躁狠狠久久av| 婷婷色综合www| 国产成人精品在线电影| 日本av手机在线免费观看| 少妇被粗大的猛进出69影院| 中文精品一卡2卡3卡4更新| 精品亚洲乱码少妇综合久久| 在线观看免费午夜福利视频| 久久人人爽人人片av| 人成视频在线观看免费观看| 午夜福利视频精品| 国产精品.久久久| 久久精品国产综合久久久| 满18在线观看网站| 激情视频va一区二区三区| 999久久久国产精品视频| 99精品久久久久人妻精品| 极品少妇高潮喷水抽搐| 国产精品三级大全| 日本黄色日本黄色录像| 女人爽到高潮嗷嗷叫在线视频| 满18在线观看网站| 久久精品久久久久久久性| 视频区图区小说| 国产精品久久久av美女十八| 在线观看国产h片| 大香蕉久久网| www日本在线高清视频| 最新的欧美精品一区二区| 亚洲国产成人一精品久久久| 精品久久蜜臀av无| 免费在线观看完整版高清| 卡戴珊不雅视频在线播放| 黄频高清免费视频| 日韩一区二区三区影片| 久久久久精品久久久久真实原创| 国产xxxxx性猛交| 久久影院123| 成人免费观看视频高清| 精品少妇内射三级| 19禁男女啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| 国产精品av久久久久免费| 午夜福利视频精品| 国产成人精品在线电影| 大片免费播放器 马上看| 午夜福利免费观看在线| 中文字幕av电影在线播放| av视频免费观看在线观看| 久久久久国产一级毛片高清牌| 国产一区有黄有色的免费视频| 免费不卡黄色视频| 老熟女久久久| 婷婷色综合大香蕉| 蜜桃国产av成人99| 国产熟女午夜一区二区三区| 如何舔出高潮| 亚洲天堂av无毛| 欧美 日韩 精品 国产| 亚洲天堂av无毛| 国产成人欧美| 亚洲一区二区三区欧美精品| 久久精品国产综合久久久| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频| 亚洲五月色婷婷综合| 国产精品成人在线| 欧美 日韩 精品 国产| 久久这里只有精品19| 国产精品麻豆人妻色哟哟久久| 国产激情久久老熟女| 少妇精品久久久久久久| 久久久久视频综合| 日韩视频在线欧美| 熟女少妇亚洲综合色aaa.| 久久狼人影院| 男女国产视频网站| 日韩欧美一区视频在线观看| 亚洲欧洲日产国产| 高清在线视频一区二区三区| 操美女的视频在线观看| 国产淫语在线视频| 国产人伦9x9x在线观看| 精品少妇黑人巨大在线播放| 美女福利国产在线| 人体艺术视频欧美日本| 精品久久久精品久久久| 国产成人精品无人区| 亚洲五月色婷婷综合| 成人手机av| 亚洲美女搞黄在线观看| av片东京热男人的天堂| 在线观看人妻少妇| 国产精品人妻久久久影院| 午夜免费观看性视频| 青春草亚洲视频在线观看| 国产成人精品福利久久| 亚洲欧美一区二区三区久久| 精品国产乱码久久久久久男人| 超碰成人久久| 90打野战视频偷拍视频| 我要看黄色一级片免费的| 老鸭窝网址在线观看| 另类精品久久| 亚洲欧美成人综合另类久久久| 天天影视国产精品| 美女扒开内裤让男人捅视频| 亚洲成人国产一区在线观看 | 亚洲欧洲日产国产| 人妻 亚洲 视频| 9色porny在线观看| 女性生殖器流出的白浆| 一本大道久久a久久精品| 亚洲国产欧美一区二区综合| 久久久久久免费高清国产稀缺| 美女主播在线视频| 老汉色∧v一级毛片| 亚洲av男天堂| 日韩视频在线欧美| 精品一区二区三区av网在线观看 | 另类亚洲欧美激情| 亚洲色图综合在线观看| 欧美日韩综合久久久久久| 亚洲精品日本国产第一区| 一区二区三区精品91| 国产欧美日韩一区二区三区在线| 性少妇av在线| 久久精品aⅴ一区二区三区四区| 少妇的丰满在线观看| 男女无遮挡免费网站观看| 欧美国产精品一级二级三级| 亚洲,欧美,日韩| 精品久久久精品久久久| 1024视频免费在线观看| 如何舔出高潮| 可以免费在线观看a视频的电影网站 | 天堂中文最新版在线下载| 五月天丁香电影| 亚洲精品久久久久久婷婷小说| 婷婷成人精品国产| 日本wwww免费看| 两性夫妻黄色片| 悠悠久久av| 国产97色在线日韩免费| 天天影视国产精品| 黑人猛操日本美女一级片| 秋霞伦理黄片| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 成人漫画全彩无遮挡| 国产一区二区三区综合在线观看| 丝袜美足系列| 永久免费av网站大全| 日韩一区二区三区影片| 哪个播放器可以免费观看大片| 国产精品久久久久久久久免| 菩萨蛮人人尽说江南好唐韦庄| 搡老岳熟女国产| 久久午夜综合久久蜜桃| 欧美激情极品国产一区二区三区| 欧美日韩国产mv在线观看视频| 在线看a的网站| 国产亚洲av高清不卡| 日韩伦理黄色片| 搡老岳熟女国产| 中文字幕最新亚洲高清| 19禁男女啪啪无遮挡网站| 一本久久精品| 亚洲一区二区三区欧美精品| 在线亚洲精品国产二区图片欧美| 各种免费的搞黄视频| 欧美黑人欧美精品刺激| 婷婷色综合www| 亚洲美女黄色视频免费看| 午夜福利视频在线观看免费| 黑人猛操日本美女一级片| 亚洲国产日韩一区二区| 国产精品久久久久成人av| 午夜日本视频在线| 久久久久久人妻| 熟女少妇亚洲综合色aaa.| 在线精品无人区一区二区三| 一区二区三区乱码不卡18|