• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An integrated sensor technology for measurements of specific heat ratio of combustion gases in supersonic flow

    2014-07-10 13:15:25WangTiejinChenJun
    實驗流體力學(xué) 2014年6期
    關(guān)鍵詞:折射角激波超聲速

    Wang Tiejin,Chen Jun

    (1.China Academy of Aerospace Aerodynamics,Beijing 100074,China;2.State Key Lab.for Turbulence Complex and Systems,Department of Mechanics and Engineering Science,College of Engineering,Peking University,Beijing 100871,China)

    An integrated sensor technology for measurements of specific heat ratio of combustion gases in supersonic flow

    Wang Tiejin1,Chen Jun2

    (1.China Academy of Aerospace Aerodynamics,Beijing 100074,China;2.State Key Lab.for Turbulence Complex and Systems,Department of Mechanics and Engineering Science,College of Engineering,Peking University,Beijing 100871,China)

    We present an integrated probe system for measuring the specific heat ratioγof combustion gases by combining Pitot tube and laser beam tracking system.The key benefit of the measurement system is the elimination of the complicated gas chromatography apparatus.The pressure ratio and the angle of refraction of a laser beam across the normal shock wave generated by Pitot tube are simultaneously measured with this system.The angle of refraction of the laser beam is expected to be accurately recorded by the laser tracking system consisting of two CCD cameras and a mobile spatial coordinate measuring system(MSc MS).Moreover,the density ratio across the shock wave is deduced with Gladstone-Dale relation and Snell’s law.The specific heat ratioγis accordingly quantified by its relation to the pressure ratio and the density ratio across the shock wave.This technique may effectively reduce the time taken to obtainγ.Uncertainty estimation shows that the uncertainty brought by the laser beam tracking system and Pitot tube measurement are limited within 5.5%for any Mach number if the stagnation temperature is lower than 1000K.Feasibility analysis present that the technique is physically realizable but a few technical issues need to be addressed before it can be implemented.

    specific heat ratio;combustion gas;supersonic flow;Pitot tube;laser

    0 Introduction

    High temperature(up to 1700K[1])gases such as the combustion reaction products of the pure oxygen or air with the fuels,e.g.,hydrogen,methane,ethanol and kerosene can be adopted as the working media in hypersonic wind tunnel experiments.However,the complexity of combustion process makes it difficult to accurately predict the concentration of each component of the combustion gases.In experiments,the characteristic parameters,such as the specific heat and density,are important but cannot be predefined.For example,the specific heat ratio,the ratio of the molar heat capacity at constant pressure to the molar heat capacity at constant volume,is crucial in evaluating the Mach number,as one of the performance indices of a supersonic wind tunnel nozzle.

    Commonly there are two methods to obtainγ—one istheempiricalmethodusually adopted in the flow field calculation of engine exhaust system[2];another isthecompositionanalysismethodused in calibration of the thermal structure of a hypersonic wind tunnel[3].The empirical method calculates for the components of combustion gases based on an empirical combustion efficiency formula under a similar combustion condition.Thus the resultantγis an approximation under a similar flow condition and its uncertainty is intrinsically unpredictable.The composition analysis method calculates according to the quantities of the components of the combustion gases by analyzing the gas chromatography at different temperatures.Complex gas chromatography is essential for accurate measurement of the quantities of all components of the combustion gases[4].

    In addition to the complicated facilities of chromatography analysis,it is a real challenge for one to probe the temperature of the combustion gases in the heat hypersonic flow[5].Hence,this method has not been widely employed.

    This paper presents a new technique for efficiently obtaining the accurateγof the combustion gas in hypersonic flow field.This technique is proposed to utilize the relations of the fluid densities before and after a normal shock wave induced by the Pitot tube.Feasibility of this method is testified in details.The advantages of this method are the simplicity and economy of the instruments and the high precision of the resultant data.

    1 Principle of measuringγ

    When Pitot tube is set in a supersonic flow,the fluid over a small area covering the tip of the tube undergoes deceleration,which makes the flow transform from supersonic to subsonic,as shown in Figure 1.Therefore,a normal shock wave is effectively formed in front of the tube[6],and the pressure ratio across the shock wave,p2/p1andρ1/ρ2,can be determined by the normal shock wave relations,that are

    wherep1andp2are total pressures just upstream and downstream of the normal shock wave,respectively;ρ1is the static density upstream of the normal shock wave,ρ2is the density downstream of the normal shock wave;γis the specific heat ratio of combustion gases,andM1is the Mach number of the hypersonic flow upstream of the normal shock wave.By applying Equations(1)and(2)[7-8],we established the formulation of the present method.

    We first take the pure air as the typical fluid.The principle of calibrating the hypersonic nozzle with pure air can be extrapolated to the multi-component cases.For the pure air flow,γis a predetermined quantity.p1andp2can be directly measured with the Pitot tube[8].Hence,M1is determined by Equation(1).However,for the hypersonic nozzle with multi-components,bothM1andγare usually the quantities to be measured.It is necessary to combine Equations(1)and(2)with the measuredp1,p2andr,in order to obtain the specific heat ratio,γ.

    Two approximations in high Mach number flows are taken as the conditions to estimate the density ratio,r.They are:

    (1)The hypersonic flow across a normal shock is steady;

    (2)The combustion gases are perfect gases.

    The first approximation is justified based on the fact that the higher the Mach number of the coming flow is,the more steady the normal shock wave generated by the flow is[9].For example,for the gases ofγ=1.4,the shock wave is always stable ifM1>1.48.The Mach numbers considered in the present study are far above the instability bound.Hence,the first approximation is rational for most cases of the supersonic flows encountered.

    The second approximation——the perfect gas requirement——is the requirement for the applicability of Equations(1)and(2).We will discuss the errors brought by the imperfect gas condition of the flow in Sec.4.

    It is easy to measurep1andp2by using Pitot tube and pressure sensors,but measurement ofris challenging.The following section focuses on the principle and feasibility of the method to measure the density ratiorin detail.

    2 Feasibility of density ratio measurement

    We developed an optical method to measure the density ratio,r,and the principle is presented in Figure 1.A laser beam is generated from the inner of the Pitot tube,and penetrates the normal shock wave with the angle of incidence,α2.The beam is refracted at an angle ofα1after passing through the normal shock wave.

    Fig.1 Schematic of measurement ofρ2/ρ1with a Pitot tube in supersonic flow圖1 在超聲速流動中采用皮托管測量ρ2/ρ1

    Snell′s law gives the relationship between angles of incidence and refraction for a light impinging on an interface between two media with different indices of refraction,as follows[10-11],

    wheren1andn2are the refractive indices for the gases upstream and downstream of the normal shock wave,respectively;α1andα2are the angle of refraction for the laser beam and the angle of incidence,respectively.

    According to the Gladstone-Dale formula,then1andn2can be determined by the functions of densities,[12],

    whereKis an coefficient varying with the features of the gas.For the same type of gas,the effect of temperature is small,and thusKis usually considered as a constant for the same gas.Combination of Equations(4)and(5)leads to the following equation,

    Considering Equation(3)and(6),the reciprocal of density can be expressed as follows:

    whereα1andα2are measured by the laser beam tracking system.A container connecting to Pitot tube collects the gas past the shock.A gas density meter(for example,the Sarasota ID900)set up in the container measures the gas density,ρ2.Hence,the refractive index,n2,is obtained using the Gladstone-Dale formula(Equation(5)).It is noted that the Pitot pressure measurement and the gas collection must be operated separately.The density ratiorand the inflow densityρ1are obtained from Equation(7).

    The accuracy ofrmeasurement is based on the fact that the normal shock wave in front of the Pitot tube is so thin that the normal shock wave can be considered as a zero-thickness interface between two fluids with different densities[8].Since the thicknessof the shock wave is on the order of the magnitude of 10-4mm[13],this consideration is rational for conventional hypersonic wind tunnels except for lowdensity wind tunnels.

    We take the apparatus in CAAA for example to examine the feasibility of the measurement system.The two CCD cameras of MegaPlusII ES4020(Redlake Company)with the resolution of 2048×2048 pixels(4.19Mpixel,integration time:104μs)are supposed to be applied to record the refracted laser beam and the normal shock wave.The schematic graph for the camera recording system is shown in Figure 2.The field of view for each camera is 15mm ×15mm and the spatial resolution for each pixel is 7.3μm.Considering the width of the laser beam is 50~200μm,the uncertainty for the recorded laser beam is below 15μm.The mobile spatial coordinate measuring system(MSc MS)works to locate the two cameras with the position uncertainty of 2μm[14-15].Thus the system uncertainty for measuring the position of the laser beam is limited within ±20μm.Taking the FD-3 hypersonic wind tunnel in CAAA for example,the test section for the experiment of the compressible mixing layer is 300mm(width)×40mm(height)×70mm(depth)[16].

    Fig.2 The schematic graph for the laser beam tracking system. The dash line indicates the coordinate system supporting CCD cameras,Camera-1 and Camera-2.Camera-1 is located at(x1,y1)in the coordinate system of MSc MS to capture the image of the refracted laser beam.Camera-2 is placed at(x2,y2)in the coordinate system of MSc MS to record the position where the laser beam is refracted by the normal shock wave圖2 激光光束跟蹤系統(tǒng)示意圖。虛線代表支撐CCD相機(jī)(Camera-1和-2)的坐標(biāo)系統(tǒng)。Camera-1位于MSc MS系統(tǒng)的(x1,y1),記錄折射激光位置;Camera-2位于MSc MS系統(tǒng)的(x2,y2),記錄正激波光線發(fā)生折射位置

    Thus the distance between the two cameras is supposed to be 150mm,the uncertainty of the measured angle by Camera-1 is lower than 1.5×10-4in radian number,and the corresponding relative error is under 0.01%.

    With primary analysis of the relation between the Mach number and the density ratio as well as the pressure ratio,we found that the measurement is effective at 4<M1<8 and 1.1<γ<1.4.The specific heat ratio is relatively distinct in these ranges while the angle of refraction is sensitive to the density change.High accuracy of the specific heat ratio measurement can therefore be easily obtained under these test conditions.

    3 Uncertainty analysis of measurement of specific heat ratio

    Regarding the measurement ofr=1/ra=ρ2/ρ1 as shown in Equation(7),one can see that thoughris determined by bothα1andα2.Whenα2approaches 0°(or 90°),α1is also close to 0°or(90°),and sinα2/sinα1would bring large uncertainty to Equation(7).The analysis of the angle of refraction under the typical flow conditions(4<M1<8)suggests that 2°~10°would give relatively accurateα1.

    According to Equation(2),the variance ofrwith different Mach numbers and specific heat ratios can be calculated,as shown in Figure 3 and Figure 4.Figure 3 shows the profiles of the density ratio,r,vs.the Mach number,M1.Note thatrincreases with the increase ofM1.This trend is enforced by decreasingγ.Figure 4 is the profiles ofrvs.γat variousM1.It is shown that,at higher Mach number,ris more sensitive toγ.

    The error propagation for density ratio is analyzed here.From Equation(6),we have

    Fig.3 Density ratio,r,vs.Mach number,M1圖3 密度比與馬赫數(shù)的關(guān)系

    Fig.4 Density ratio,r,vs.γ圖4 密度比與γ的關(guān)系

    and then we have the estimation of the error propagation forra,

    Considering the relative error of about 0.01% of Camera-1 obtained in the previous section,the relative error of the density ratio is about 0.5% based on the error relation,Equation(9).The accuracy of the density-ratio-measuring system is satisfactory.

    From Equation(2),we have

    For estimating the uncertainty brought from the uncertainty in measuringrandM1,the relative error for the specific heat ratioγis derived as follows,

    whereδγ/γandδM1/M1are the relative errors of the density ratiorand that of the Mach numberM1,respectively.Estimation of the relative error ofγis obtained from Equation(12)with Equation(2),(10)and(11).If the uncertainty ofrandM1are supposed to beδr/r~δM1/M1~0.5%in the range of 4<M1<8 and 1.1<γ<1.4,δγ/γis always less than 0.4%.Hence,the present method may provide an acceptable accuracy.

    Let us analyze the error induced by the perfect gas assumption.Zebbiche(2011)reported that the error by using perfect gas relations is lower than 5% if the stagnation temperatureT0is lower than 1000K for any value of Mach number,and T0may reach up to 3000K when Mach number is lower than 2.0[17].Hence the present technique using the prefect gas model is effective to estimateγin the hypersonic flow ofT0<1000K.The gas at high temperatures becomes calorically imperfect gas;bothCpandγvary with temperature.In order to measureγfor high temperature hypersonic flow,one has to introduce a nonlinear implicit equation forTandM1and this takes more time for calculation and for data processing.By using the calorically imperfect gas model,for example theHigh Temperature model[17],the present measurement system is readily applicable for high temperature flows.

    4 Discussion

    The core of the technique is the measurement of the density ratio,r,which needs to be validated and verified at first.From Equation(1)and(2),one can see that if the ratio of the specific heat is predefined the two equations become two redundant functions for Mach number.The Mach number can be solved with the measured pressure ratio by Equation(1),and it also can be obtained with the measured density ratio by Equation(2).This provides a way of calibrating the density ratio measurement system.The calibration procedure may be summarized as follows:(a)obtain the Mach number at the point of interest by probing the pressures before and after the normal shock wave(see Equation(1));(b)then calculate the Mach number with the density ratio derived from the angle of fraction of the laser beam(see Equation(2)and(7));(c)finally validate and calibrate the density measurement system by comparing of the two Mach numbers.

    In comparison with the gas chromatography technique,the present method may provide real time measuring results.The uniqueness of the pres-ent technique is the ability to obtain the Mach number and the density ratio of a hypersonic flow at the same time with a physically realizable system.With this measurement system the specific heat ratio of gases over the whole flow field can be obtained.In addition,the post processing of these results is more efficient and more extensive than that of gas chromatography,i.e.both spatial and temporal signals can be obtained.This technique is expected to have a wide range of applications in high speed flow measurements,though a few technical issues are yet to be addressed.For example,the structure and the size of the tube,the light path design,the combination of the tube and the laser beam,the thermal protection issues,the effects of the light source and the accurate record of the angle of refraction should be considered.

    Several critical techniques in the measurement system are discussed here.First,since the laser beam emerging from the light source in Pitot tube passes through the stagnation and the post-shock regions,the gradient of the density will deflect the beam.The deflection angle can be obtained by measuring the displacement of the laser beam at the presence of the shock wave and simulating the geometrical optics in compressible flows.Secondly,the quality of the laser beam is a crucial factor for obtaining accurate refractive angle of the laser beam.The properties of light such as its reflection,dispersion,and refractive indices are determined by the media,i.e.the combustion gases in the present case.Hence,the frequency and the energy power of the laser beam should be well designed ahead.Thirdly,the physical structure of the Pitot tube should be designed as small as possible to attain the high spatial resolution,but it should still be able to generate a regular normal-shock-wave——an essential flow region making anidealrefraction of the laser beam.Finally,thermal protection of the tube is also a challenge to measurements in high temperature flows.At present this technique is under development in the laboratory.

    5 Conclusion

    (1)A novel,accurate and simpleγ-measuring technique utilizing laser beam tracking and pressure measurement techniques has been presented.The key benefit of the new technique is the elimination of the complicated gas chromatography system.

    (2)The pressures before and after the normal shock wave formed by Pitot tube are measured concurrently with the density ratio by laser beam tracking system.This improves the ease of use and reduces the time to obtain the final data for calibration of a hypersonic wind tunnel nozzle.

    (3)Uncertainty estimation is illustrated with the examples of the available apparatus.The uncertainties of the technique are acceptable——the upper bound of the uncertainty is assured below 5.5% for any Mach number withT0<1000K.

    (4)Feasibility analysis shows that the technique is physically realizable with several technical issues to be addressed.The present technique can be applied for other purposes,such as the realtime measurement of hypersonic flows.

    [1]Felderman E J,Akers D T,Liu C T,et al.Hypersonic wind tunnel nozzle survivability for T&E final report:T&E/S&T project[R].AEDC-TR-06-17,2006

    [2]Liu G.Principle of liquid rocket engines(in Chinese)[M].Space Publishing Company,1993.

    [3]Huebner L D,Rock K E,Voland R T,et al.Calibration of the Langley 8-foot high temperature tunnel for hypersonic airbreathing propulsion testing[R].AIAA 96-2197,1996.

    [4]Amirav A,Gordin A,Tzanani N.Supersonic gas chromatography/mass spectrometry[J].Rapid Commun.Mass Spectrom,2001,15:811-820.

    [5]Roseberry C M.Arc-heated gas flow experiments for hypersonic propulsion[D].University of Texas,2005.

    [6]Balachandran P.Fundamentals of compressible fluid dynamics[M].Prentice-Hall of India Pvt.Limited,2006.

    [7]Ames research staff.Equations,tables,and charts for compressible flow,Tech rep[R].NACA-TR-1135,1953.

    [8]Tropea C,Yarin A L,F(xiàn)oss J F.Springer handbook of experimental fluid mechanics[M].Springer-Verlag,2007:216-228.

    [9]Matsuo K,Yaga M,Mochizuki H.Stability of normal shock waves in diffusers[J].AIAA Journal,1987,25:1515-1517.

    [10]Klein M V.Optics[M].New York:Wiley,1970.

    [11]Driscoll W G.Handbook of optics[M].New York:McGraw-Hill,1978.

    [12]Tropea C,Yarin A L,F(xiàn)oss J F.Springer handbook of experimental fluid mechanics[M].Springer-Verlag,2007:473-474.

    [13]Anderson J D J.Fundamental of aerodynamics[M].New York:McGraw-Hill Company,1984.

    [14]Franceschini F,Galetto M,Maisano D,et al.Mobile spatial co-ordinate measuring system(MSc MS)——introduction to the system[J].Int J Prod Res,2009,47:3867-3889.

    [15]Franceschini F,Maisano D,Mastrogiacomo L.Mobile spatial coordinate measuring system(MSc MS)and CMMs:A structured comparison[J].Int J Adv Manuf Technol,2009,42:1089-1102.

    [16]Wang T J,Shi X T,Chen J,et al.Multiscale structures in compressible turbulent mixing layers[J].Mod Phys Lett B,2010,24:1429-1432.

    [17]Zebbiche T.Thermodynamics-interaction studies-solids,liquids and gases[C].November,2011,Ch.Effect of Stagnation Temperature on Supersonic Flow Parameters with Application for Air in Nozzles Zebbicc,2011,16:421-444.

    王鐵進(jìn)(1970-),男,河北故城人,研究員。研究方向:空氣動力學(xué)實驗與測試技術(shù)、實驗設(shè)備、空氣動力學(xué)應(yīng)用技術(shù)。通訊地址:北京7201信箱57分箱(100074)。E-mail:tiej701@163.com

    陳 軍(1968-),男,吉林省吉林市人,北京大學(xué)湍流與復(fù)雜系統(tǒng)國家重點實驗室高級工程師。研究方向:湍流物理機(jī)制及流動結(jié)構(gòu)、氣動光學(xué)效應(yīng)、高速流動測量技術(shù)、流動顯示技術(shù)、熱對流物理機(jī)制、風(fēng)工程。通訊地址:北京大學(xué)工學(xué)院力學(xué)與工程科學(xué)系(100871)。E-mail:jun@pku.edu.cn

    (編輯:張巧蕓)

    1672-9897(2014)06-0073-07doi:10.11729/syltlx20140026

    超聲速流動燃燒氣體比熱比的集成傳感測量技術(shù)

    王鐵進(jìn)1,陳 軍2
    (1.中國航天空氣動力技術(shù)研究院,北京 100074; 2.北京大學(xué)工學(xué)院力學(xué)與工程科學(xué)系湍流與復(fù)雜系統(tǒng)國家重點實驗,北京 100871)

    介紹了為測量燃燒氣體的比熱比而設(shè)計的包含了皮托管和激光光束跟蹤系統(tǒng)的集成測量系統(tǒng)。該系統(tǒng)通過測量壓力比和穿過皮托管前正激波的激光折射角來獲得比熱比,從而免使用復(fù)雜而昂貴的光相色譜儀器。激光光束折射角通過兩臺CCD攝像頭和移動空間坐標(biāo)測量系統(tǒng)(MSc MS)來準(zhǔn)確記錄激光光束折射角。密度比通過Gladstone-Dale關(guān)系和Snell律來獲得。由此,通過所獲得的跨激波的壓力比和密度比可以定量確定比熱比。這一技術(shù)可有效降低比熱比測量時間。本文對激光光束跟蹤系統(tǒng)和皮托管所帶來的不確定性進(jìn)行了分析,結(jié)果表明在總溫不超過1000K時系統(tǒng)不確定性低于5.5%。可行性分析表明該技術(shù)可以實現(xiàn),但仍有部分技術(shù)問題需要在實施前解決。

    比熱比;燃燒氣體;超聲速流動;皮托管;激光

    O35,TJ530

    :A

    WangTJ,ChenJ.Anintegratedsensortechnologyformeasurementsofspecificheatratioofcombustiongasesinsupersonicflow.JournalofExperimentsinFluidMechanics,2014,28(6):73-79.王鐵進(jìn),陳軍.超聲速流動燃燒氣體比熱比集成傳感測量技術(shù).實驗流體力學(xué),2014,28(6):73-79.

    date:2014-03-15;Revised date:2014-09-02

    National Nature Science Fund(11172006,10572004,90716008),MOST 973 Project(2009CB724100)

    Chen Jun,E-mail:Jun@pku.edu.cn

    猜你喜歡
    折射角激波超聲速
    高超聲速出版工程
    高超聲速飛行器
    大氣層內(nèi)載體星光折射間接敏感地平定位可行性分析
    航空兵器(2022年1期)2022-03-04 08:27:16
    一種基于聚類分析的二維激波模式識別算法
    基于HIFiRE-2超燃發(fā)動機(jī)內(nèi)流道的激波邊界層干擾分析
    對初中物理教學(xué)中“折射光路”問題的探討
    TMCP鋼各向異性對超聲波折射角的影響
    無損檢測(2018年10期)2018-10-19 09:54:20
    斜激波入射V形鈍前緣溢流口激波干擾研究
    超聲速旅行
    適于可壓縮多尺度流動的緊致型激波捕捉格式
    两个人免费观看高清视频| 国产av又大| 日本黄色日本黄色录像| 天天躁日日躁夜夜躁夜夜| 一级毛片精品| 国产精品98久久久久久宅男小说| 一区二区三区激情视频| 精品一区二区三区视频在线观看免费 | 亚洲av熟女| 久久国产亚洲av麻豆专区| 男男h啪啪无遮挡| 久久午夜综合久久蜜桃| 别揉我奶头~嗯~啊~动态视频| 亚洲色图综合在线观看| 国产精品久久视频播放| 亚洲av美国av| 欧美日韩亚洲高清精品| 在线观看66精品国产| 香蕉久久夜色| 国产高清国产精品国产三级| 久久精品成人免费网站| 久久99一区二区三区| 大香蕉久久网| 成人av一区二区三区在线看| 老司机在亚洲福利影院| 国产成人av激情在线播放| 国产成人av教育| 在线免费观看的www视频| 激情在线观看视频在线高清 | 国产99久久九九免费精品| 黑人操中国人逼视频| 又紧又爽又黄一区二区| 亚洲美女黄片视频| 岛国毛片在线播放| 视频在线观看一区二区三区| 亚洲黑人精品在线| 别揉我奶头~嗯~啊~动态视频| 大片电影免费在线观看免费| 亚洲精品国产色婷婷电影| 亚洲国产精品合色在线| 婷婷成人精品国产| 亚洲欧美激情在线| 亚洲视频免费观看视频| 亚洲欧美一区二区三区黑人| 久久这里只有精品19| 亚洲色图综合在线观看| a级毛片黄视频| 飞空精品影院首页| 精品久久久久久,| 大陆偷拍与自拍| 这个男人来自地球电影免费观看| x7x7x7水蜜桃| 精品国产乱子伦一区二区三区| 91在线观看av| 黑人巨大精品欧美一区二区mp4| 亚洲精品在线观看二区| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美一区二区综合| 99热网站在线观看| 欧美日韩瑟瑟在线播放| 亚洲av成人不卡在线观看播放网| 99在线人妻在线中文字幕 | 激情在线观看视频在线高清 | 少妇裸体淫交视频免费看高清 | 亚洲国产毛片av蜜桃av| 午夜福利免费观看在线| av福利片在线| 美女福利国产在线| 精品一区二区三区视频在线观看免费 | 国产男女内射视频| 日日爽夜夜爽网站| 亚洲精品在线美女| 免费少妇av软件| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 高清av免费在线| 精品第一国产精品| 亚洲五月色婷婷综合| a级片在线免费高清观看视频| 国内毛片毛片毛片毛片毛片| 黄色片一级片一级黄色片| 正在播放国产对白刺激| 美国免费a级毛片| 国产精品亚洲一级av第二区| 成年动漫av网址| 90打野战视频偷拍视频| 国产av又大| 成熟少妇高潮喷水视频| a级毛片黄视频| 国产深夜福利视频在线观看| 国产精品久久久人人做人人爽| 亚洲性夜色夜夜综合| 久久精品国产亚洲av高清一级| 国产精品免费大片| 热99国产精品久久久久久7| 国产精品综合久久久久久久免费 | 一级作爱视频免费观看| 在线播放国产精品三级| 王馨瑶露胸无遮挡在线观看| 成人特级黄色片久久久久久久| 91成人精品电影| 国产有黄有色有爽视频| 视频在线观看一区二区三区| √禁漫天堂资源中文www| 欧美成人免费av一区二区三区 | 老汉色∧v一级毛片| 啦啦啦免费观看视频1| 亚洲精品美女久久av网站| 在线观看日韩欧美| 国产精品永久免费网站| 黄色成人免费大全| 91成人精品电影| 久久精品aⅴ一区二区三区四区| 亚洲人成77777在线视频| 久久性视频一级片| 国产高清国产精品国产三级| 成年版毛片免费区| 12—13女人毛片做爰片一| 大型黄色视频在线免费观看| 满18在线观看网站| 91麻豆av在线| 久久久久国产精品人妻aⅴ院 | 成人黄色视频免费在线看| 国产男女内射视频| 国产精品99久久99久久久不卡| 18禁国产床啪视频网站| 亚洲国产精品一区二区三区在线| 成年女人毛片免费观看观看9 | 黄色视频,在线免费观看| 一夜夜www| 亚洲精华国产精华精| 欧美日韩视频精品一区| 伦理电影免费视频| 在线观看66精品国产| 午夜福利欧美成人| 交换朋友夫妻互换小说| 亚洲 欧美一区二区三区| 亚洲五月色婷婷综合| 国产淫语在线视频| 欧美黄色片欧美黄色片| 别揉我奶头~嗯~啊~动态视频| 最新美女视频免费是黄的| av免费在线观看网站| 国产在线观看jvid| 又大又爽又粗| 成人18禁高潮啪啪吃奶动态图| 97人妻天天添夜夜摸| 久久久国产欧美日韩av| av超薄肉色丝袜交足视频| av网站在线播放免费| 亚洲一区二区三区不卡视频| 中文亚洲av片在线观看爽 | 国产人伦9x9x在线观看| 日韩免费av在线播放| 十八禁网站免费在线| 国产精华一区二区三区| 国产成人av激情在线播放| 自线自在国产av| 欧美日韩中文字幕国产精品一区二区三区 | 国产av又大| 欧美中文综合在线视频| 亚洲自偷自拍图片 自拍| av线在线观看网站| 久久中文字幕人妻熟女| 久久影院123| 曰老女人黄片| 一区二区日韩欧美中文字幕| 久99久视频精品免费| 人妻丰满熟妇av一区二区三区 | 国产一卡二卡三卡精品| 一级片免费观看大全| 美女扒开内裤让男人捅视频| 国产精品1区2区在线观看. | 欧美在线一区亚洲| 国产成人免费观看mmmm| 精品卡一卡二卡四卡免费| 免费少妇av软件| 久久精品国产亚洲av高清一级| av天堂久久9| 男女下面插进去视频免费观看| 国产成人欧美在线观看 | 久久中文看片网| 国产精品久久视频播放| 黑人欧美特级aaaaaa片| 一边摸一边做爽爽视频免费| 免费高清在线观看日韩| 中国美女看黄片| 日韩欧美在线二视频 | 国产又色又爽无遮挡免费看| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 999久久久精品免费观看国产| 丝袜美腿诱惑在线| 最新在线观看一区二区三区| 精品久久久久久久久久免费视频 | 美女国产高潮福利片在线看| 国产又色又爽无遮挡免费看| 亚洲熟女精品中文字幕| 黑人操中国人逼视频| 亚洲全国av大片| 国产成人精品久久二区二区91| 女人被狂操c到高潮| 老司机深夜福利视频在线观看| 国产日韩欧美亚洲二区| 一夜夜www| 99国产精品免费福利视频| 久久久水蜜桃国产精品网| 后天国语完整版免费观看| 国产欧美日韩综合在线一区二区| 亚洲精品成人av观看孕妇| 亚洲国产精品sss在线观看 | 久久香蕉国产精品| 欧美精品一区二区免费开放| 精品福利观看| av在线播放免费不卡| 一区在线观看完整版| 欧美人与性动交α欧美软件| 国产精品九九99| 午夜老司机福利片| 色播在线永久视频| 国产淫语在线视频| 三级毛片av免费| 看黄色毛片网站| 亚洲美女黄片视频| 一边摸一边抽搐一进一小说 | 黄色女人牲交| 两性夫妻黄色片| 国产激情欧美一区二区| 国产精品久久久av美女十八| 男女下面插进去视频免费观看| 亚洲国产中文字幕在线视频| 国产乱人伦免费视频| 国产真人三级小视频在线观看| 精品亚洲成国产av| 久久天躁狠狠躁夜夜2o2o| 亚洲一码二码三码区别大吗| 午夜亚洲福利在线播放| 中文字幕人妻丝袜一区二区| 精品第一国产精品| 色婷婷久久久亚洲欧美| 老熟女久久久| 日韩三级视频一区二区三区| 黄色视频,在线免费观看| 亚洲五月婷婷丁香| 国产精华一区二区三区| 如日韩欧美国产精品一区二区三区| 天天操日日干夜夜撸| 亚洲一区二区三区欧美精品| 电影成人av| 精品一区二区三区四区五区乱码| 黄片播放在线免费| 久久久久国产精品人妻aⅴ院 | 欧美在线黄色| 国产91精品成人一区二区三区| 久久人妻福利社区极品人妻图片| 国产精品久久久久久人妻精品电影| 夜夜爽天天搞| 日本vs欧美在线观看视频| 国内久久婷婷六月综合欲色啪| 亚洲av片天天在线观看| 国产视频一区二区在线看| 天天躁狠狠躁夜夜躁狠狠躁| 宅男免费午夜| 午夜亚洲福利在线播放| 精品无人区乱码1区二区| 人妻丰满熟妇av一区二区三区 | 怎么达到女性高潮| 不卡av一区二区三区| 正在播放国产对白刺激| 真人做人爱边吃奶动态| 水蜜桃什么品种好| 老汉色∧v一级毛片| 一级片'在线观看视频| 18禁黄网站禁片午夜丰满| 国产成人av激情在线播放| 91精品国产国语对白视频| 美女福利国产在线| 亚洲三区欧美一区| avwww免费| 超碰97精品在线观看| 亚洲视频免费观看视频| 中文字幕人妻丝袜制服| 色精品久久人妻99蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 国产精品综合久久久久久久免费 | 搡老岳熟女国产| 色在线成人网| 岛国毛片在线播放| 黑丝袜美女国产一区| 免费观看人在逋| 国产精品成人在线| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩高清在线视频| 岛国在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| ponron亚洲| 国产在线一区二区三区精| 黄色女人牲交| 叶爱在线成人免费视频播放| 桃红色精品国产亚洲av| 两人在一起打扑克的视频| 热99国产精品久久久久久7| 少妇被粗大的猛进出69影院| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一av免费看| 国产蜜桃级精品一区二区三区 | 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成人国产一区在线观看| 精品久久久久久久毛片微露脸| 日韩人妻精品一区2区三区| 日本wwww免费看| 国产男女内射视频| 另类亚洲欧美激情| 黑丝袜美女国产一区| 国产片内射在线| 亚洲全国av大片| 亚洲一码二码三码区别大吗| 日日摸夜夜添夜夜添小说| av线在线观看网站| 男人的好看免费观看在线视频 | 国产精品.久久久| 老司机午夜福利在线观看视频| 亚洲精品成人av观看孕妇| 亚洲成av片中文字幕在线观看| 国产亚洲欧美98| 少妇 在线观看| 天堂中文最新版在线下载| 最近最新中文字幕大全电影3 | 无限看片的www在线观看| videosex国产| 男女高潮啪啪啪动态图| 纯流量卡能插随身wifi吗| 成在线人永久免费视频| 欧美大码av| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o| 色播在线永久视频| 亚洲成人免费av在线播放| 日本撒尿小便嘘嘘汇集6| 97人妻天天添夜夜摸| 女性生殖器流出的白浆| 在线播放国产精品三级| 亚洲av片天天在线观看| 亚洲 国产 在线| 欧美色视频一区免费| 欧美精品啪啪一区二区三区| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 亚洲国产欧美日韩在线播放| 免费观看人在逋| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲情色 制服丝袜| 婷婷精品国产亚洲av在线 | 久久人妻福利社区极品人妻图片| 老司机靠b影院| 国产蜜桃级精品一区二区三区 | 国产亚洲精品久久久久久毛片 | 国产97色在线日韩免费| 久久精品国产a三级三级三级| 99国产精品一区二区蜜桃av | 精品少妇一区二区三区视频日本电影| 久久99一区二区三区| 看免费av毛片| 另类亚洲欧美激情| 国产aⅴ精品一区二区三区波| videos熟女内射| 国产精品成人在线| 午夜视频精品福利| 18禁裸乳无遮挡免费网站照片 | 精品福利观看| 中亚洲国语对白在线视频| 黑人欧美特级aaaaaa片| 日本黄色日本黄色录像| 中文字幕色久视频| 天天躁狠狠躁夜夜躁狠狠躁| 69精品国产乱码久久久| 精品少妇一区二区三区视频日本电影| 18禁美女被吸乳视频| 最近最新中文字幕大全电影3 | 欧美不卡视频在线免费观看 | 国产男靠女视频免费网站| 一边摸一边抽搐一进一小说 | 精品一品国产午夜福利视频| www.精华液| 亚洲精品在线观看二区| 国产黄色免费在线视频| 精品少妇一区二区三区视频日本电影| 亚洲七黄色美女视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久人人97超碰香蕉20202| 天天操日日干夜夜撸| 色综合婷婷激情| 免费少妇av软件| 国产精品秋霞免费鲁丝片| 少妇 在线观看| 色94色欧美一区二区| 99国产精品99久久久久| 精品乱码久久久久久99久播| 法律面前人人平等表现在哪些方面| 999久久久国产精品视频| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 国产日韩一区二区三区精品不卡| 日本精品一区二区三区蜜桃| 夫妻午夜视频| 精品亚洲成国产av| 婷婷丁香在线五月| 国产亚洲精品第一综合不卡| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 国产91精品成人一区二区三区| 十分钟在线观看高清视频www| 亚洲熟女毛片儿| 国产亚洲精品久久久久5区| 黄色怎么调成土黄色| 国产淫语在线视频| 三级毛片av免费| 亚洲国产欧美网| 黄片小视频在线播放| 久久久国产成人免费| 精品久久久精品久久久| 美女国产高潮福利片在线看| 少妇猛男粗大的猛烈进出视频| 飞空精品影院首页| 欧美日本中文国产一区发布| 高清毛片免费观看视频网站 | 午夜福利免费观看在线| 国产av精品麻豆| 久久久久视频综合| 一边摸一边抽搐一进一出视频| avwww免费| 欧美日韩乱码在线| 高清毛片免费观看视频网站 | aaaaa片日本免费| 精品福利永久在线观看| 国产成人av激情在线播放| 91成人精品电影| 精品久久久久久电影网| 国产无遮挡羞羞视频在线观看| 男女下面插进去视频免费观看| 一本综合久久免费| 亚洲欧美一区二区三区黑人| 美女国产高潮福利片在线看| 欧美日韩成人在线一区二区| 精品免费久久久久久久清纯 | av天堂在线播放| 视频在线观看一区二区三区| 精品福利观看| 少妇裸体淫交视频免费看高清 | 少妇 在线观看| 少妇裸体淫交视频免费看高清 | 久久精品熟女亚洲av麻豆精品| 成人18禁在线播放| 国产xxxxx性猛交| 亚洲成a人片在线一区二区| 中文字幕制服av| 精品久久久久久电影网| 乱人伦中国视频| 免费在线观看黄色视频的| 黄色成人免费大全| 天堂√8在线中文| xxx96com| 人妻一区二区av| 色播在线永久视频| 五月开心婷婷网| 制服人妻中文乱码| 深夜精品福利| 91老司机精品| 男女午夜视频在线观看| 国产成人欧美在线观看 | 建设人人有责人人尽责人人享有的| 久久久国产成人免费| 国产精品久久久久久精品古装| 嫁个100分男人电影在线观看| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 国产精品亚洲一级av第二区| 高清视频免费观看一区二区| 校园春色视频在线观看| 精品一区二区三卡| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 精品第一国产精品| 精品乱码久久久久久99久播| 99久久精品国产亚洲精品| 国产又色又爽无遮挡免费看| 99久久综合精品五月天人人| 亚洲成人国产一区在线观看| 久久人妻av系列| 亚洲国产看品久久| 国产男女内射视频| 人妻 亚洲 视频| 熟女少妇亚洲综合色aaa.| 免费少妇av软件| 日韩大码丰满熟妇| 亚洲全国av大片| 人人妻人人澡人人看| 悠悠久久av| 久久性视频一级片| 99国产极品粉嫩在线观看| 99久久国产精品久久久| 精品电影一区二区在线| 男人的好看免费观看在线视频 | 老汉色av国产亚洲站长工具| 国产在视频线精品| 国产有黄有色有爽视频| 亚洲av片天天在线观看| 大型av网站在线播放| 下体分泌物呈黄色| a级毛片在线看网站| 欧美人与性动交α欧美软件| 满18在线观看网站| 下体分泌物呈黄色| 麻豆国产av国片精品| 丝袜在线中文字幕| 久99久视频精品免费| 一区二区三区激情视频| 两人在一起打扑克的视频| 91成人精品电影| bbb黄色大片| 午夜福利乱码中文字幕| 黄色丝袜av网址大全| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | www日本在线高清视频| 国产成人精品无人区| 国产乱人伦免费视频| 亚洲五月天丁香| 亚洲自偷自拍图片 自拍| 久久九九热精品免费| 丝袜在线中文字幕| 欧美色视频一区免费| 一级a爱片免费观看的视频| 精品午夜福利视频在线观看一区| 在线视频色国产色| 久久影院123| 高清视频免费观看一区二区| 午夜免费鲁丝| 黄色女人牲交| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 精品久久久精品久久久| 大香蕉久久成人网| 欧美日韩黄片免| 久久性视频一级片| 12—13女人毛片做爰片一| cao死你这个sao货| 精品久久久精品久久久| 午夜福利在线观看吧| 激情视频va一区二区三区| 精品久久久久久电影网| 丁香欧美五月| 免费观看精品视频网站| 国产一区二区三区在线臀色熟女 | 在线免费观看的www视频| 99久久综合精品五月天人人| 18禁观看日本| av欧美777| 美女 人体艺术 gogo| 欧美日韩精品网址| 乱人伦中国视频| 91精品三级在线观看| 婷婷丁香在线五月| 丝瓜视频免费看黄片| 久久99一区二区三区| av国产精品久久久久影院| 欧美日韩黄片免| 久99久视频精品免费| 天堂俺去俺来也www色官网| 狠狠婷婷综合久久久久久88av| av不卡在线播放| 亚洲成av片中文字幕在线观看| 大片电影免费在线观看免费| 国产精品综合久久久久久久免费 | 午夜91福利影院| 国产一区二区三区综合在线观看| 亚洲av片天天在线观看| 国产一区二区三区综合在线观看| 成人影院久久| 欧美黄色片欧美黄色片| 国产精品欧美亚洲77777| 午夜福利在线免费观看网站| 久久精品亚洲熟妇少妇任你| 黄色视频,在线免费观看| 国产精品久久久久久精品古装| bbb黄色大片| 天天躁夜夜躁狠狠躁躁| 亚洲欧洲精品一区二区精品久久久| 亚洲久久久国产精品| 免费观看精品视频网站| 亚洲精华国产精华精| 免费在线观看影片大全网站| 美女 人体艺术 gogo| 在线观看www视频免费| 中文字幕人妻熟女乱码| 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡免费网站照片 | 久久人妻av系列| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 亚洲精品在线观看二区| 国产又色又爽无遮挡免费看| 亚洲精品中文字幕一二三四区| 9191精品国产免费久久| av不卡在线播放| 国产成人精品在线电影| 国产99久久九九免费精品| 一区福利在线观看| 久久午夜综合久久蜜桃| 午夜福利乱码中文字幕| 大码成人一级视频| 久久精品国产a三级三级三级|