• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    青藏高原春季感熱異常對(duì)中國(guó)北方雨季降水影響的數(shù)值研究

    2014-07-02 00:26:45李新周劉曉東
    地球環(huán)境學(xué)報(bào) 2014年3期
    關(guān)鍵詞:劉曉東青藏高原中國(guó)科學(xué)院

    李新周,劉曉東

    (1. 中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710075;2.中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 100101)

    青藏高原春季感熱異常對(duì)中國(guó)北方雨季降水影響的數(shù)值研究

    李新周1,2,劉曉東1,2

    (1. 中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710075;2.中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 100101)

    青藏高原作為一個(gè)抬升的熱源對(duì)亞洲季風(fēng)演化及其周邊區(qū)域降水都有著深刻影響,近年來(lái)高原春季冷暖異常引起學(xué)者們的高度關(guān)注。本文利用NCEP II和NOAA資料分析了近33年春季高原感熱通量、東亞夏季風(fēng)北緣及中國(guó)北方雨季降水年際年代際變化特征,進(jìn)而利用公用大氣模式CAM5進(jìn)行了關(guān)閉春季高原感熱的敏感性數(shù)值試驗(yàn)。主要結(jié)論如下:近33年來(lái)春季高原感熱通量呈下降趨勢(shì),與中國(guó)北方雨季(7—8月)降水顯著正相關(guān),達(dá)到95%顯著性水平。春季高原冷(2000—2011年,簡(jiǎn)稱CTP)較暖時(shí)段(1986—1997年,簡(jiǎn)稱WTP)感熱通量平均降低20 W·m?2左右。相應(yīng)地,夏季風(fēng)北緣平均南退3個(gè)緯度左右,導(dǎo)致中國(guó)北方雨季大氣可降水和降水率也分別減少2.44 kg·m?2和1.09 mm·d?1。數(shù)值試驗(yàn)結(jié)果顯示,當(dāng)關(guān)閉春季(3月1日至5月15日)高原感熱對(duì)大氣加熱時(shí),東亞夏季風(fēng)整體爆發(fā)時(shí)間明顯推遲,夏季風(fēng)最北位置偏南2~3個(gè)緯度,中國(guó)北方整體降水減弱。這種因春季高原熱源異常引起大氣環(huán)流的改變是中國(guó)北方雨季降水多寡的主要原因之一,可以作為中國(guó)北方區(qū)域雨季降水的關(guān)鍵因子。

    青藏高原;春季感熱加熱;雨季降水;東亞夏季風(fēng);數(shù)值模擬

    1 Introduction

    As an elevated heat source, the Tibetan Plateau (TP) plays a important role in regulating the outbreak and development of Asian monsoons, which have received significant attention from meteorological scholars. As early as the 1950s, Ye et al(1957) recognized TP as a heat source in summer and a heat sink in winter. An in-depth study conducted over the past several decades, and has achieved fruitful outcomes based on the datum of the 1stand 2ndscientif c experiments on TP, instrumental observations and satellite remote sensing. The studies have explicitly noted that TP play a significant role in the outbreak and development of the Asian monsoon, and the formation and maintenance of summer circulation (Luo and Yanai, 1984; Huang, 1985; Wu, 2004; Duan et al, 2005; Zhao et al, 2007; Zhou et al, 2009; Liu et al, 2011). Recent studies continue to emphasize that the thermo-dynamic effect of TP during the spring not only provides a favorable background condition for the outbreak of the Asian monsoon (Liu et al, 2002), but also can be used as a factor to predict the July precipitation in the Yangtze River area of China (Duan et al, 2005), with a significant impact on the spring and summer precipitation in southeast China (Wen et al, 2010; Liu and Wang, 2011).

    The Asian monsoon is the most powerful and complicated system in the world, and affects the survival of more than half of the world’s population. Therefore, it is both scientifically significant and of practical value to accurately understand the development of the Asian monsoon. The East Asian summer monsoon (EASM) is an important circulation system of the Asian monsoon, and its strength and north margin (NSM) determine the amount of rainy season precipitation in North China. Jiang et al. (2008) considered that the strong EASM causes more precipitation in North China, Huaihe River Basin and Meiyu region, based on the station observations and normalized datum. The weak EASM results in more precipitation in the Yangtze River basin and less precipitation at the NSM (Qian et al, 2009). The north-south swing of the NSM marks the transition zone between wet and dry in China , where the annual precipitation is 200 ~ 400 mm (Qiang et al, 2004; Li et al, 2012).

    The outbreak and development of the EASM and its northward are closely related to the spring heat source over TP. The studies by Wu and Zhang (1998) and Ueda and Yasunari (1998) suggest that the development of the EASM is determined by the meridional temperature gradient over TP and its surrounding area. Atmospheric warming over TP during the spring is mainly attributed to the surface sensible heat flux (SSHF) (Li and Yanai, 1996). The SSHF over TP presents a signif cant downward trend during the past 30 years based on NCEP II (Duan and Wu, 2008; Guo et al, 2011); correspondingly, the rainy season precipitation significantly has a decreasing trend in North China (Liu et al, 2006; Ma, 2007). There seems to be some correspondence in them. Accordingly, in this study, the correlations betweenSSHF over TP, NSM and rainy season precipitation in North China are analyzed, using the NCEP-DOE Reanalysis II (NCEP II) and National Oceanic and Atmospheric Administration (NOAA) datum. Further, the effects of the SSHF over TP on the EASM onset, the location of NSM, and the precipitation in North China, are checked by the latest global atmospheric circulation model, to f nd the prediction factor of the rainy season precipitation in North China.

    2 Data analysis

    2.1 Data description

    This study employs the NCEP II including the daily surface sensible heat flux, atmospheric precipitation, and wind speed (Kanamitsu et al, 2002). Additionally, the daily precipitation data (0.5°×0.5°) is provided by NOAA (Chen et al, 2008). The time span is from 1979 to 2011. The definition of NSM is referenced Tang et al(2010). The atmospheric precipitation provided by the NCEP II data is less than that given by the data of the European Centre for Medium-Range Weather Forecasts (ECMWF) adopted by Tang et al.; thus, this study uses the difference of 35~45 kg·m?2between the maximum and minimum of the daily atmospheric precipitable water to represent the NSM (see the shaded area in Fig. 1d).

    Fig.1 The SSHF anomaly over TP and its relationship with the rainy season precipitation in North China(a) The sequence of the variation in SSHF over TP (W·m?2); (b) The sequences of atmospheric precipitation (mm) and the precipitable water (kg·m?2) for July-August in North China; (c) The distribution of the correlation coeff cients between the SSHF over TP and the atmospheric precipitation for July-August; (d) The NSM (shaded area) and the wind f eld of July averaged for 1979—2011.

    2.2 Relationships between the SSHF and the precipitation

    Generally, the SSHF is the main contributor to TP which determines the outbreak and development of the EASM. Latent heating dominates after mid-May. Therefore, the average of SSHF is selected during March 1stto May 15thto reflect the heating intensity of TP (Liu and Wang, 2011). The range of TP is 80o~100oE, 25o~36oN. Figure 1a shows the evolving sequence of the SSHF over TP during 1979—2011. The SSHF is higher during 1980s to 1990s than 2000s, and the average of SSHF decreases from 47.97 W·m?2in 1990s to 29 W·m?2in 2000s. This study defines the 12 consecutive years from 1986 to 1997 with a relatively high SSHF as the warm time period (WTP) of TP; correspondingly, the12 consecutive years from 2000 to 2011 are def ned as the cold time period (CTP). In the following analysis, the values used refer to the average of the 12 years of WTP and CTP unless otherwise specif ed. A linear trend analysis of 1979—2011 (not shown) indicates that the SSHF in most parts of TP (2000 meters or more above sea level) has a downward trend, which is most pronounced in the middle and eastern parts of TP. The average SSHF in the CTP is lower than the WTP by approximately 20 W·m?2.

    The rainy season precipitation in North China is mainly concentrated from July—August and accounts for approximately 40% of the annual total precipitation. The sequences of average atmospheric precipitation and precipitable water of July—August in North China (113o~125oS, 37o~43oN) (Fig. 1b) exhibit similar characteristics with the SSHF over TP. The average atmospheric precipitation (precipitable water) for July—August in the WTP is 4.25 mm·d?1(34.26 kg·m?2); in the CTP, the value is 3.91 mm·d?1(31.82 kg·m?2). The difference of atmospheric precipitation (precipitable water) between the CTP and WTP is 1.09 mm·d?1(2.44 kg·m?2). The correlation coefficients between the SSHF over TP and monthly average atmospheric precipitation and precipitable water are computed during 1979 to 2011, a positive for July—August (Fig. 1c) in North China, with a significance level of 95%, irrelevant for other seasons (not shown). Figure 1d shows the characteristics of the NSM averaged for 1979—2011, where the shaded area in the f g.1d is the NSM (with an atmospheric precipitation of 35~45 kg·m?2). Meanwhile, the f g.1d also shows the average 850hPa wind field in July for 1979—2011. The position of the NSM is consistent with the wind field, which indicates that it is reasonable to define the NSM based on the atmospheric precipitable water. This result suggests that there is a close relationship between the SSHF over TP, the NSM, and the rainy season precipitation in North China, which is worth further analysis and study.

    2.3 Decadal relationships

    The strength of the EASM and its farthest position determine the spatial characteristics of the NSM. The average NSM and the wind field of July (Figs. 2a and b) in the WTP and CTP indicate that the 850 hPa wind field of July is generally consistent with the NSM. The overall NSM in the WTP is shifted northward, while southward in the CTP. The average NSM in the CTP retreats southward by approximately 2 latitudes, and the maximum difference between CTP and WTP is up to 3 latitudes. There is northerly wind anomaly over eastern China based on differences between CTP and WTP (Fig. 2c). The difference in atmospheric precipitable water between the CTP and WTP near the NSM is as large as 3 kg·m?2; moreover, the precipitation decreases by approximately 2 mm·d?1(Fig. 2d). Therefore, the warmth and coldness over TP in spring directly affect the position of the NSM and play a regulatory role with respect to the precipitation, can be used to predict the rainy season precipitation in North China.

    3 Numerical experiments

    3.1 Descriptions

    The global atmospheric circulation model used in this study is the community atmosphere model version 5 (CAM5) (Neale et al, 2010), including the atmosphere and land modules, which is a sub-module of the Community Earth System Model (CESM1.0), released by the U.S. National Center for Atmospheric Research (NCAR) in the summer of 2010 (Vertenstein et al, 2010). Following the development in the past decades, CAM5 has achieved significant improvements, especially with respect to the impact of anthropogenic emissions on the climate in the boundary layer and radiation process, which could not be carefully considered in the previous versions.

    Based on the above analysis, to further clarify the main contribution of the SSHF over TP to the NSM and the rainy season precipitation in North China, we use the up-to-date version of CAM5 to conduct a control experiment (without any changing parameters, referred to as CTL) and a sensitive experiment in which the SSHF over TP is shut off (referred to asTPoff). In TPoff experiment, the sensible heat flux is zero in TP area with elevations above 2000 meters from March 1stto May 15th. That is, TP surface does not transfer sensible heat to the atmosphere in the numerical integration, and the land-atmosphere heat exchange stops (Guo et al, 2011). In both numerical experiments, the horizontal resolutions are 1.9 o×2.5o, with 30 vertical layers. Every experiment integrates over 12 consecutive years, and the average for the last 10 years is used for the analysis.

    Fig.2 The results of reanalysis(a) The average NSM and the wind f eld at 850 hPa in July in the WTP; (b) The same as (a) but for CTP;(c) The difference in the wind f eld at 850 hPa between CTP and WTP in July over TP;(d) The difference in atmospheric precipitation (shaded area, mm·d?1) and the precipitable water (contour, kg·m?2) between CTP and WTP.

    3.2 Experimental results

    The CAM5 numerical model significantly reproduces the spatial and temporal distribution of the SSHF over TP, and the values are slightly larger than the NCEP II data. The spatial and temporal variations in the atmospheric precipitation and precipitable water in East Asia are generally consistent with the reanalysis data (not shown). So, CAM5 can be used to conduct the numerical sensitivity experiment over TP.

    The SSHF over TP is one of the main factors affecting the outbreak of the Asian monsoon and its advancing. Figures 3a and b show the NSM (the shaded area) and the 850 hPa wind f eld in July in CTL and TPoff. The position of the NSM in the CTL is shifted farther to the north in comparison with NCEP, and the northward advance of the EASM in July is also stronger, while the general distribution is consistent with the NCEP II. In comparison with the CTL, the NSM in TPoff is shifted significantly southward by 2~3 latitude degrees, and the wind field of July isalso weaker, which is consistent with the results of the reanalysis of the NCEP II. The difference between the wind f elds of TPoff and CTL (Fig. 3c) indicates that the strength of the EASM in July signif cantly decreases, a northerly wind anomaly appearing in North China. For July—August, the atmospheric precipitation and precipitable water decrease by 2 mm·d?1and 2 kg·m?2, respectively, due to the impact of the SSHF over TP (Fig. 3d), which is consistent with the results of the reanalysis data. The center of the largest difference is slightly different from the NCEP II data, which most likely occurs as a result of the systematic error of the CAM5. A comparison of numerical experiments clearly indicates that the SSHF over TP has a signif cant regulatory impact on the NSM and rainy season precipitation in North China and can be considered comprehensively in future climate predictions as a factor affecting rainy season precipitation in North China.

    Fig.3 The results of numerical experiments The characteristics of the variations in the multi-year average NSM and the rainy season precipitation in North China, simulated by the CAM5.(a) The CTL; (b) TPoff; (c) wind f eld anomaly (TPoff-CTL);(d) atmospheric precipitation (shaded area, mm·d?1) and the precipitable water (contour, kg·m?2) anomaly.

    In Asia, the summer monsoon first outbreaks in early to mid-April in the area of the Bay of Bengal (Wu and Zhang, 1998); then, the South China Sea monsoon develops in early May. The CTL simulated the outbreak of the summer monsoon well (Fig. 4a), which is consistent with the observational data. But, in the TPoff, the timing of the outbreak of the summer monsoon in the Bay of Bengal is postponed to late April (Fig. 4b), and the development of the South China Sea monsoon is also delayed to late May. This conf rm that the SSHF over TP plays a key role in determining the outbreak time of the EASM. The advancing of the EASM is also constrained by the SSHF over TP. The cross-equatorial airflow issignificantly weakened in TPoff. A northerly wind anomaly appears in eastern China, with significant weakening of EASM. In summary, the SSHF over TP plays a key role in determining the outbreak time, the advancing, and the north margin position of the EASM. Therefore, the change in atmospheric circulation caused by the heat source anomaly over TP in spring is one of the key factors of the rainy season in North China.

    Fig.4 The timing of the EASM onset, as shown by the CAM5(a) The CTL; (b) TPoff

    4 Conclusions

    The main conclusions are described in the following:

    1) The reanalysis data indicates that in 1979—2011, the SSHF over TP exhibits a significant downward trend, has a positive correlation with atmospheric precipitation and the precipitable water for July—August in North China. The significance level of this correlation is 95% for July—August, while the correlation for other seasons is not significant. The SSHF decreased from 47.97 W·m?2in 1990s to 29 W·m?2in 2000s. On average, the SSHF in the CTP decreased by approximately 20 W·m?2in comparison with the WTP. The reanalyzed data indicate that the average atmospheric precipitation and the precipitable water of the rainy season (July—August) in the CTP decrease by 1.09 mm·d?1and 2.44 kg·m?2in North China, respectively, compared with the WTP. The rainy season precipitation in North China is closely related to the SSHF anomaly over TP.

    2) The NCEP II indicates that the maximum difference of the NSM between the WTP and CTP is as much as 3 degrees of latitude. When TP is warm during spring, the EASM is stronger with significantly more northward advancement, and the opposite situation occurs when TP is cold during spring. The fluctuations of the EASM and northsouth swing of the NSM caused by the coldness and warmth of TP in spring are the main reasons for the rainy season precipitation anomaly in North China.

    3) The numerical experiments indicate that when the SSHF over TP is shut off, that is, when heat is no longer transferred from the surface of TP to the atmosphere from March 1stto May 15th, the timing of the EASM onset is postponed, and the strength of the monsoon is weakened. The EASM also retreats further to the south, and its North edge is shifted southward by 2~3 degrees of latitude. Due to the shut-off of the SSHF over TP, the rainy season atmospheric precipitation and the precipitable water in North China are decreased by 2 mm·d?1and 2 kg·m?2, respectively. The analysis of the circulation field indicates that the SSHF anomaly over TP is the primary contributor to the outbreak time and the magnitude of northward advancement of the EASM. The change of this circulation field is one of the factors that ultimately determine the rainy season precipitation in North China. It can be observed that the SSHF over TP is the main factor affecting the outbreak and development of the EASM, and can be used as a key factor for the prediction of rainy seasonprecipitation in North China.

    4) This study only comparatively analyzed the impact of the SSHF anomaly over TP on the EASM and rainy season precipitation in North China. The analysis was performed by means of shutting off the atmospheric heating by the SSHF over TP, while it remains unknown how the SSHF anomaly over TP contiguously affects the development of the EASM. It is necessary to apply various observational data and high-resolution numerical experiments to explain the impact mechanism, which is the main focus of our future works.

    Chen M Y, Shi W, Xie P P, et al. 2008. Assessing objective techniques for gauge-based analyses of global daily precipitation [J]. Journal of Geophysical Research, 113, D04110: 1–13.

    Duan A M, Wu G X. 2008. Weaking trend in the atmospheric heat source over the Tibetan Plateau during recent decades. part I: observations [J]. Journal of Climate, 21: 3149–3164.

    Duan A M, Liu Y M, Wu G X. 2005. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer [J]. Science China Earth Sciences, 48(2): 250–257.

    橫向的基層農(nóng)技人員輪崗制度,有別于“轉(zhuǎn)崗”從事行政工作,“轉(zhuǎn)崗”會(huì)有意無(wú)意中淡化了其農(nóng)機(jī)人員本職身份。輪崗制度是通過(guò)縣農(nóng)口有關(guān)部門統(tǒng)籌安排,根據(jù)工作需要,優(yōu)化配置基層農(nóng)技人員人力資源,保證基層農(nóng)技人才在鄉(xiāng)鄉(xiāng)之間、縣鄉(xiāng)之間的橫向縱向流動(dòng),本質(zhì)是強(qiáng)調(diào)專業(yè)全面化,從更廣視角做精做細(xì)農(nóng)技推廣工作。

    Guo X F, Yang K, Chen Y Y. 2011. Weakening sensible heat source over the Tibetan Plateau revisited: effects of the land-atmosphere thermal coupling [J]. Theoretical and Applied Climatology, 104: 1–12.

    Huang R H. 1985. The Inf uence of the heat source anomaly over Tibetan Plateau on the northern Hemispheric circulation anomalies [J]. Acta Meteorologica Sinica, 43(2): 208 –220. (in Chinese)

    Jiang Z, Yang S, He J, et al. 2008. Interdecadal variations of East Asian summer monsoon northward propagation and inf uences on summer precipitation over East China [J]. Meteorology and Atmospheric Physics, 100: 101–119.

    Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP/ DOE AMIP-II Reanalysis (R-2) [J]. American Meteorological Society, 83: 1631–1643.

    Li C, Yanai M. 1996. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast [J]. Journal of Climate, 9: 358 –375.

    Li X Z, Ma Z G, Liu X D, et al. 2006, Inter-decadal Characteristics of Aridification over Northern China in Association with variations of the Atmospheric Circulation during the Last Fifty Years [J]. Chinese Journal of Atmospheric Sciences, 30(4):401– 409.

    Li Y, Wang N A, Li Z L, et al. 2012. Holocene climate cycles in northwest margin of Asian monsoon [J]. Chinese Geograph Science, 22(4): 450 – 461.

    Liu C L, Xie G D, Huang H Q. 2006. Shring and drying up of Baiyangdian lake wetland: a natural or human cause? [J]. Chinese Geographical Scence, 16(4): 314 –319.

    Liu P, Qian Y F, Yan M. 2011. The relation between the underlying surface thermal anomalies and the onset and intensity of the south China sea summer monsoon [J]. Journal of Tropical Meteorology , 27(2): 209–218. (in Chinese)

    Liu X, Wu G X, Liu Y M, et al. 2002. Diabatic heating over the Tibetan Plateau and the seasonal variations of the Asian circulation and summer monsoon onset [J]. Chinese Journal of Atmospheric Sciences, 26(6): 781–793. (in Chinese)

    Luo H B, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: precipitation and Kinematic analyses [J]. Monthly Weather Review, 112: 966 – 989.

    Ma Z G. 2007. The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO) [J]. Chinese Science Bulletin, 52: 2130–2139.

    Neale R B, Chen C C, Gettelman A, et al. 2010. Description of the NCAR Community Atmosphere Model (CAM5.0) [R]. Technical Report, NCAR.

    Qian W H, Ding T, Hu H R, et al. 2009. An overview of drywet climate variability among monsoon-westerly regionsand the monsoon northernmost marginal active zone in China [J]. Adavances in Atmospheric Sciences, 26(4): 630 – 641.

    Qiang M R, Li S, Gao S Y. 2004. Evidence for abrupt cliamtic changes on northwstern margin of East Asian monsoon region during last deglaciation [J]. Chinese Geographical Science, 14(2): 117–121.

    Tang X, Chen B D, Liang P, et al. 2010. Definition and features of the north edeg of the East Asian summer monsoon [J]. Acta Meteorologica Sinica, 24(1): 43 – 49.

    Ueda H, Yasunari T. 1998. Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea [J]. Journal of the Meteorological Society of Japan, 76: 1–12.

    Vertenstein M, Craig T, Middleton A, et al. 2010. CESM1.0.3 User’s Guide [OL]. http://www.cesm.ucar.edu/models/ cesm1.0/cesm/cesm doc/book1.html.

    Wen L, Cui P, Li Y, et al. 2010. The inf uence of sensible heat on monsoon precipitation in central and eastern Tibet [J]. Meteorological Applications, 17(4): 452– 462.

    Wu G X, Zhang Y S. 1998. Tibetan Plateau forcing and the timing of the monsoon onset over south Asia and the south China sea [J]. Monthly Weather Review, 126: 913–927.

    Wu G X. 2004. Recent progress in the study of the Qinghai-Xizang Plateau climate dynamics in China [J]. Quaternary Sciences, 24(1): 1 – 9. (in Chinese)

    Ye D Z, Luo S W, Zhu B Z. 1957. The wind structure and heat balance in the lower troposhere over Tibetan Plateau and its surroudings [J]. Acta Meteorologica Sinica, 2(2): 108 –121. (in Chinese)

    Zhao P, Zhou Z, Liu J. 2007. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: an observational investigation [J]. Journal of Climate, 20: 3942–3955.

    Zhou X J, Zhao P, Chen J M, et al. 2009. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate [J]. Science China Earth Sciences, 52(11): 1679–1693.

    Numerical simulation of the impact of spring sensible heat anomalies over Tibetan Plateau on rainy season precipitation in North China

    LI Xin-zhou1,2, LIU Xiao-dong1,2
    ( 1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; 2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China)

    As an elevated heat source, Tibetan Plateau (TP) has a signif cant impact on the evolution of Asian monsoons and the surrounding precipitation. Particularly in recent years, the occurrence of spring thermal anomalies over TP has attracted signif cant attention from scholars. This study uses the NCEP-DOE Reanalysis II (NCEP II) and National Oceanic and Atmospheric Administration (NOAA) to analyze the changes of spring (March to May) surface sensible heat f ux (SSHF) over TP, the interannual and inter-decadal variations of the North edge of the East Asian summer monsoon (NSM) and rainy season precipitation in North China within the past 33 years. Further, a numerical sensitivity experiment is conducted in which the SSHF is shut off over TP, employing the Common Atmospheric Model version 5 (CAM5). The main conclusions are as follows: the SSHF over TP during 1979—2011 exhibits a downward trend and has a significant positive correlation (at 95% significance level) with the rainy season (July—August) precipitation in North China. The averaged SSHF in spring decreases~20 W·m?2during the cold (2000—2011, CTP for short) than warm time period (1986—1997, WTP for short) over TP. Correspondingly, the north margin of East Asia summer monsoon (NSM) retreats southward by an average of 3 degrees of latitude, causes the rainy season atmospheric precipitation and precipitable water in North China to decrease by 1.09 mm·d?1and 2.44 kg·m?2, respectively. The results of the numerical experiments indicate when the SSHF over TP is closed in spring (March 1stto May 15th), the time of the EASM onset signif cantly delays, the NSM retreats southward by 2~3 degrees of latitude, and the rainy season precipitation in North China reduces by 1 mm·d?1. The change in atmospheric circulation caused by the spring sensible heat anomaly over TP is one of the main causes of the rainy season precipitation in North China, and can be used as a key factor.

    Tibetan Plateau; spring sensible heat; rainy season precipitation; East Asia summer monsoon; numerical simulation

    P461

    :A

    :1674-9901(2014)03-0207-09

    10.7515/JEE201403004

    2014-05-21

    國(guó)家自然科學(xué)基金項(xiàng)目(41290255,41472162);中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDB03020601)

    李新周,E-mail: lixz@ieecas.cn

    猜你喜歡
    劉曉東青藏高原中國(guó)科學(xué)院
    Structure,electronic,and nonlinear optical properties of superalkaline M3O(M =Li,Na)doped cyclo[18]carbon
    《中國(guó)科學(xué)院院刊》新媒體
    青藏高原上的“含羞花”
    中國(guó)科學(xué)院院士
    ——李振聲
    《鐵單質(zhì)的化學(xué)性質(zhì)》教學(xué)設(shè)計(jì)
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    為了讓青藏高原的天更藍(lán)、水更綠、草原更美
    權(quán)力“變現(xiàn)”高手
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    Optimal Control Strategy for Buck Converter Under Successive Load Current Change*
    国产成人精品一,二区 | 中文字幕av成人在线电影| 成人三级黄色视频| 亚洲精品粉嫩美女一区| 午夜爱爱视频在线播放| 久久久精品大字幕| 国产免费一级a男人的天堂| 久久精品久久久久久噜噜老黄 | 国产亚洲av嫩草精品影院| 一级av片app| 国产午夜精品一二区理论片| 我的老师免费观看完整版| 亚洲av男天堂| 亚洲精品国产av成人精品| 蜜桃久久精品国产亚洲av| 亚洲国产日韩欧美精品在线观看| 亚洲乱码一区二区免费版| 亚洲欧洲日产国产| 在线免费观看不下载黄p国产| 午夜精品一区二区三区免费看| 亚洲经典国产精华液单| 日韩精品有码人妻一区| 中国美女看黄片| 亚洲久久久久久中文字幕| 内射极品少妇av片p| 我的老师免费观看完整版| 日韩三级伦理在线观看| 国产淫片久久久久久久久| 99热这里只有是精品50| 亚洲成人久久性| 亚州av有码| 在线观看午夜福利视频| 99久久成人亚洲精品观看| 久久久久久久久久久免费av| 少妇被粗大猛烈的视频| 天天躁日日操中文字幕| 国产精品久久电影中文字幕| 国产精品国产高清国产av| 亚洲乱码一区二区免费版| 国产精品精品国产色婷婷| av女优亚洲男人天堂| 亚洲欧美日韩高清在线视频| 男女啪啪激烈高潮av片| 超碰av人人做人人爽久久| 久久精品夜色国产| 久久久久久久久久成人| 村上凉子中文字幕在线| 成人漫画全彩无遮挡| 狂野欧美白嫩少妇大欣赏| 免费一级毛片在线播放高清视频| 亚洲精品久久久久久婷婷小说 | 一区二区三区四区激情视频 | 亚洲一级一片aⅴ在线观看| 中国美女看黄片| 国产乱人偷精品视频| 成年版毛片免费区| 婷婷六月久久综合丁香| 成人无遮挡网站| 精品人妻一区二区三区麻豆| 不卡一级毛片| 中文精品一卡2卡3卡4更新| 毛片女人毛片| 啦啦啦观看免费观看视频高清| 天堂中文最新版在线下载 | 国产久久久一区二区三区| 免费无遮挡裸体视频| 久久精品夜夜夜夜夜久久蜜豆| 女人十人毛片免费观看3o分钟| 极品教师在线视频| 免费无遮挡裸体视频| 国产高清激情床上av| 亚洲精品影视一区二区三区av| 国产91av在线免费观看| 国产亚洲精品久久久久久毛片| 久久精品国产清高在天天线| 国产真实乱freesex| 欧美潮喷喷水| 亚洲自拍偷在线| 天美传媒精品一区二区| 尤物成人国产欧美一区二区三区| 国产免费一级a男人的天堂| 国产一区二区在线av高清观看| 午夜爱爱视频在线播放| 亚洲在久久综合| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 又黄又爽又刺激的免费视频.| 插逼视频在线观看| 一级毛片电影观看 | 成年av动漫网址| 大香蕉久久网| 中文精品一卡2卡3卡4更新| 国产真实乱freesex| 成人午夜精彩视频在线观看| 深夜a级毛片| 国产高清有码在线观看视频| 国产高清三级在线| 欧美又色又爽又黄视频| 日日摸夜夜添夜夜爱| 日本三级黄在线观看| 在线观看免费视频日本深夜| 有码 亚洲区| 中文字幕精品亚洲无线码一区| 成人欧美大片| 熟女电影av网| 天天躁夜夜躁狠狠久久av| 免费观看人在逋| 久久久久久久久大av| 日本免费a在线| 简卡轻食公司| 中文在线观看免费www的网站| 小说图片视频综合网站| 男女做爰动态图高潮gif福利片| 久久久久久大精品| 亚洲欧美清纯卡通| 色尼玛亚洲综合影院| 18+在线观看网站| 日韩精品青青久久久久久| 久久人人爽人人爽人人片va| 国产淫片久久久久久久久| 欧美日韩精品成人综合77777| 精品国产三级普通话版| 听说在线观看完整版免费高清| 午夜福利在线观看吧| 日本黄色片子视频| 国产av麻豆久久久久久久| 国产成人精品久久久久久| 热99在线观看视频| 成人午夜高清在线视频| 日韩精品有码人妻一区| 久久欧美精品欧美久久欧美| 国产精品久久久久久精品电影| av在线天堂中文字幕| 简卡轻食公司| 成年免费大片在线观看| 成人美女网站在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 日本黄大片高清| 亚洲av男天堂| 免费搜索国产男女视频| 中出人妻视频一区二区| 国产精品人妻久久久久久| 国产免费一级a男人的天堂| 精品一区二区免费观看| 欧美日韩乱码在线| 人妻系列 视频| 国产av麻豆久久久久久久| 免费观看在线日韩| 成人国产麻豆网| 欧美一区二区亚洲| 精品一区二区三区视频在线| 国产在视频线在精品| 国产精品国产高清国产av| 国产真实伦视频高清在线观看| 我要看日韩黄色一级片| 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区国产精品久久精品| 成熟少妇高潮喷水视频| 国产女主播在线喷水免费视频网站 | 晚上一个人看的免费电影| 婷婷亚洲欧美| 国产一区二区激情短视频| 性欧美人与动物交配| 亚洲成人av在线免费| 成年女人永久免费观看视频| 亚洲第一电影网av| 日日啪夜夜撸| 男人的好看免费观看在线视频| 亚洲av中文字字幕乱码综合| 热99在线观看视频| 国产真实乱freesex| 久久精品国产亚洲av涩爱 | 成人午夜精彩视频在线观看| 亚洲av男天堂| 久久草成人影院| 熟女电影av网| 少妇裸体淫交视频免费看高清| 级片在线观看| 91aial.com中文字幕在线观看| 中国美女看黄片| 欧美变态另类bdsm刘玥| 久久精品国产清高在天天线| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 色综合站精品国产| 直男gayav资源| 国产爱豆传媒在线观看| 嫩草影院入口| 亚洲,欧美,日韩| 日日撸夜夜添| 免费看日本二区| av.在线天堂| 青春草亚洲视频在线观看| 九九爱精品视频在线观看| 国产免费一级a男人的天堂| 天美传媒精品一区二区| 亚洲av中文字字幕乱码综合| av免费在线看不卡| 老司机福利观看| 成年女人看的毛片在线观看| 色播亚洲综合网| 联通29元200g的流量卡| www.色视频.com| 久久人人爽人人片av| 在线观看66精品国产| 欧美性猛交黑人性爽| 亚洲久久久久久中文字幕| 国内少妇人妻偷人精品xxx网站| 我要搜黄色片| 亚洲人成网站在线观看播放| 久久中文看片网| 青春草国产在线视频 | 亚洲av第一区精品v没综合| 精品久久久久久久久久免费视频| 色噜噜av男人的天堂激情| 麻豆成人午夜福利视频| 小说图片视频综合网站| 久久6这里有精品| 免费一级毛片在线播放高清视频| 搡女人真爽免费视频火全软件| 熟女人妻精品中文字幕| 在线观看免费视频日本深夜| 亚洲欧美日韩卡通动漫| av专区在线播放| 一区福利在线观看| 欧美色欧美亚洲另类二区| 亚洲成人av在线免费| 青春草亚洲视频在线观看| 丝袜喷水一区| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 黄色日韩在线| 69人妻影院| 成人一区二区视频在线观看| 色吧在线观看| 成熟少妇高潮喷水视频| 黄片无遮挡物在线观看| 99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| 亚洲av熟女| 午夜视频国产福利| 亚洲一级一片aⅴ在线观看| 亚洲精品456在线播放app| 国内精品美女久久久久久| 69av精品久久久久久| 午夜精品一区二区三区免费看| 看非洲黑人一级黄片| 午夜激情欧美在线| 欧美精品一区二区大全| 丝袜美腿在线中文| 特级一级黄色大片| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 色噜噜av男人的天堂激情| 美女 人体艺术 gogo| 高清午夜精品一区二区三区 | 在线天堂最新版资源| 最近中文字幕高清免费大全6| 国产av麻豆久久久久久久| 久久久久久伊人网av| 色视频www国产| 国产成人精品久久久久久| 99国产精品一区二区蜜桃av| 久久久久久久久中文| 久久久久久久久久黄片| 中文字幕制服av| 美女cb高潮喷水在线观看| 免费看光身美女| a级毛片免费高清观看在线播放| 午夜久久久久精精品| 精华霜和精华液先用哪个| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 嫩草影院入口| 成年版毛片免费区| 69av精品久久久久久| 国产亚洲精品av在线| 久久国产乱子免费精品| 毛片一级片免费看久久久久| av免费观看日本| 国国产精品蜜臀av免费| 偷拍熟女少妇极品色| 成熟少妇高潮喷水视频| 成人特级黄色片久久久久久久| 男女边吃奶边做爰视频| 亚洲av电影不卡..在线观看| 精品一区二区三区人妻视频| 天美传媒精品一区二区| 久久久a久久爽久久v久久| 日韩av不卡免费在线播放| 嫩草影院新地址| 国产精品永久免费网站| 美女脱内裤让男人舔精品视频 | 丰满乱子伦码专区| 能在线免费观看的黄片| 精品久久久久久久久久免费视频| 免费av观看视频| 少妇高潮的动态图| 日韩中字成人| 亚洲婷婷狠狠爱综合网| 真实男女啪啪啪动态图| 欧美日韩综合久久久久久| avwww免费| 亚洲欧美日韩卡通动漫| 久久99热6这里只有精品| a级一级毛片免费在线观看| 国产极品精品免费视频能看的| 国产蜜桃级精品一区二区三区| 欧美成人一区二区免费高清观看| 成熟少妇高潮喷水视频| 中文字幕av在线有码专区| 日韩一本色道免费dvd| 有码 亚洲区| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 在线a可以看的网站| 国产精品久久久久久精品电影| 最后的刺客免费高清国语| 午夜久久久久精精品| 国产精品久久久久久久电影| 日日撸夜夜添| 一本久久中文字幕| 级片在线观看| 免费观看在线日韩| 日韩三级伦理在线观看| 人妻少妇偷人精品九色| 日韩一区二区视频免费看| 亚洲激情五月婷婷啪啪| 久久久久久大精品| 国产黄色视频一区二区在线观看 | 中文在线观看免费www的网站| 国产白丝娇喘喷水9色精品| av国产免费在线观看| 日日摸夜夜添夜夜爱| 精品久久久久久成人av| 亚洲国产精品合色在线| 国产精品久久久久久精品电影| 中国美女看黄片| 一本精品99久久精品77| 国产精品久久久久久久电影| 久久久久久伊人网av| 一本久久精品| 久久久精品大字幕| 国产高潮美女av| 我要看日韩黄色一级片| 国产精品伦人一区二区| 免费av不卡在线播放| 爱豆传媒免费全集在线观看| 亚洲精品国产av成人精品| 国内精品久久久久精免费| 中文字幕av成人在线电影| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 岛国毛片在线播放| 九九久久精品国产亚洲av麻豆| 久久午夜福利片| 真实男女啪啪啪动态图| 91久久精品电影网| 黄色视频,在线免费观看| 青春草国产在线视频 | 久久人人精品亚洲av| 综合色丁香网| 欧美另类亚洲清纯唯美| 久久久久久久久久久免费av| 亚洲美女视频黄频| 六月丁香七月| 九九爱精品视频在线观看| av福利片在线观看| 免费av毛片视频| 性色avwww在线观看| 日本一本二区三区精品| 1000部很黄的大片| 男女边吃奶边做爰视频| 在线免费观看不下载黄p国产| 午夜免费男女啪啪视频观看| 99国产极品粉嫩在线观看| 我要看日韩黄色一级片| 性欧美人与动物交配| 人妻制服诱惑在线中文字幕| 哪个播放器可以免费观看大片| 日日摸夜夜添夜夜爱| 国产在视频线在精品| 免费观看在线日韩| 国产国拍精品亚洲av在线观看| 男插女下体视频免费在线播放| 久久久精品大字幕| 男女啪啪激烈高潮av片| 18禁在线播放成人免费| 特大巨黑吊av在线直播| 色哟哟哟哟哟哟| 99riav亚洲国产免费| 婷婷亚洲欧美| 天美传媒精品一区二区| 国产伦理片在线播放av一区 | 干丝袜人妻中文字幕| 亚洲色图av天堂| 久久久久久大精品| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 成年免费大片在线观看| 国产免费一级a男人的天堂| 夜夜爽天天搞| 国产在线男女| 久久精品国产亚洲av香蕉五月| 99国产精品一区二区蜜桃av| 中文资源天堂在线| 日韩一本色道免费dvd| 欧美成人一区二区免费高清观看| 国产在线男女| 国产一区二区三区av在线 | 成人高潮视频无遮挡免费网站| 美女黄网站色视频| 少妇人妻精品综合一区二区 | 日韩欧美一区二区三区在线观看| 国产麻豆成人av免费视频| 国产精品.久久久| 丰满乱子伦码专区| 99热这里只有精品一区| 国产精品综合久久久久久久免费| 嫩草影院新地址| 联通29元200g的流量卡| 日韩精品有码人妻一区| 国产人妻一区二区三区在| 麻豆成人av视频| 亚洲av免费在线观看| 国产视频内射| 国产黄片美女视频| 亚洲av成人av| 嘟嘟电影网在线观看| 国产熟女欧美一区二区| 一级毛片电影观看 | 一区二区三区免费毛片| 少妇的逼水好多| 国产成人91sexporn| 婷婷色av中文字幕| 1000部很黄的大片| 欧美成人一区二区免费高清观看| 国产精品人妻久久久久久| 高清日韩中文字幕在线| 又爽又黄无遮挡网站| 边亲边吃奶的免费视频| 欧美激情在线99| 麻豆一二三区av精品| 91麻豆精品激情在线观看国产| 亚洲成a人片在线一区二区| av天堂中文字幕网| a级毛片a级免费在线| 黄色日韩在线| 久久久久久久亚洲中文字幕| 只有这里有精品99| 久久午夜福利片| 看免费成人av毛片| a级毛片a级免费在线| 国产色爽女视频免费观看| 少妇被粗大猛烈的视频| 韩国av在线不卡| 麻豆久久精品国产亚洲av| 国产精品精品国产色婷婷| 久久久a久久爽久久v久久| 村上凉子中文字幕在线| 午夜精品在线福利| 网址你懂的国产日韩在线| а√天堂www在线а√下载| 日韩成人伦理影院| 国产成人精品婷婷| 久久久久久久久久久丰满| 只有这里有精品99| 久久久国产成人免费| www.av在线官网国产| 变态另类丝袜制服| 亚洲精品乱码久久久v下载方式| 久久久午夜欧美精品| 一本一本综合久久| 国产精品国产高清国产av| 中文字幕熟女人妻在线| av黄色大香蕉| 91av网一区二区| 99热全是精品| 久久精品91蜜桃| 欧美xxxx黑人xx丫x性爽| 欧美+日韩+精品| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 2022亚洲国产成人精品| 六月丁香七月| 少妇高潮的动态图| 嫩草影院新地址| 日日摸夜夜添夜夜添av毛片| 欧美精品国产亚洲| 成年av动漫网址| 亚洲欧美精品专区久久| 久久久色成人| 成人亚洲欧美一区二区av| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| 又爽又黄a免费视频| 亚洲精品成人久久久久久| 久久午夜亚洲精品久久| 亚洲av二区三区四区| 国产精品日韩av在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 午夜a级毛片| 成年av动漫网址| 少妇人妻一区二区三区视频| 欧美xxxx性猛交bbbb| 国产精品一区二区性色av| 久久国内精品自在自线图片| 99久久久亚洲精品蜜臀av| 久久国内精品自在自线图片| 亚洲精华国产精华液的使用体验 | 国产人妻一区二区三区在| 岛国毛片在线播放| 99九九线精品视频在线观看视频| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 国产中年淑女户外野战色| 深夜a级毛片| 99热这里只有精品一区| 搡女人真爽免费视频火全软件| 欧洲精品卡2卡3卡4卡5卡区| 日韩制服骚丝袜av| 国产 一区 欧美 日韩| 国产成年人精品一区二区| 国产在线精品亚洲第一网站| 精品久久久久久久久av| 国产成人午夜福利电影在线观看| 乱人视频在线观看| 亚洲最大成人中文| 美女内射精品一级片tv| h日本视频在线播放| 狠狠狠狠99中文字幕| 日韩国内少妇激情av| 亚洲av熟女| 国产精品一区二区在线观看99 | 一本精品99久久精品77| 久久久久久久久久黄片| 成人综合一区亚洲| 国产男人的电影天堂91| 亚洲在线自拍视频| 少妇的逼好多水| 亚洲三级黄色毛片| 欧美性猛交黑人性爽| 看黄色毛片网站| 成人漫画全彩无遮挡| 国产精品.久久久| 日日啪夜夜撸| 国产精品一二三区在线看| 日韩欧美精品v在线| 精品日产1卡2卡| 亚洲精品久久久久久婷婷小说 | 国产精品爽爽va在线观看网站| 啦啦啦观看免费观看视频高清| 亚洲av成人av| 欧美变态另类bdsm刘玥| 国产精品三级大全| 精品久久久噜噜| 亚洲内射少妇av| 91狼人影院| av视频在线观看入口| 在线观看免费视频日本深夜| 久久6这里有精品| 亚洲色图av天堂| 国产成人影院久久av| 国产精品一区二区性色av| 人妻少妇偷人精品九色| 一个人看的www免费观看视频| 免费人成视频x8x8入口观看| 老熟妇乱子伦视频在线观看| 成人无遮挡网站| 免费av不卡在线播放| 欧美成人a在线观看| 你懂的网址亚洲精品在线观看 | 一区二区三区免费毛片| av福利片在线观看| 精品久久久久久久末码| 亚洲av二区三区四区| 18禁裸乳无遮挡免费网站照片| 国内精品美女久久久久久| 国产中年淑女户外野战色| 亚洲成人精品中文字幕电影| 蜜桃久久精品国产亚洲av| 国产一区亚洲一区在线观看| 成人一区二区视频在线观看| 亚洲av一区综合| 美女脱内裤让男人舔精品视频 | 国产在视频线在精品| 日日撸夜夜添| 亚洲av不卡在线观看| 草草在线视频免费看| 十八禁国产超污无遮挡网站| 亚州av有码| 99热精品在线国产| 淫秽高清视频在线观看| 不卡视频在线观看欧美| 日韩欧美精品免费久久| 国产午夜福利久久久久久| 欧美色视频一区免费| av在线观看视频网站免费| 91精品国产九色| 高清日韩中文字幕在线| 国产伦精品一区二区三区四那| 我要看日韩黄色一级片| 人妻制服诱惑在线中文字幕| 最后的刺客免费高清国语| 一区二区三区高清视频在线| 非洲黑人性xxxx精品又粗又长| 欧美bdsm另类| 久久久久久久亚洲中文字幕| 国产视频首页在线观看| 九草在线视频观看| 日本一二三区视频观看| 久久精品人妻少妇| 成人亚洲精品av一区二区|