• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ambipolar performance improvement of the C-shaped pocket TFET with dual metal gate and gate-drain underlap

    2023-11-02 08:13:36ZiMiaoZhao趙梓淼ZiXinChen陳子馨WeiJingLiu劉偉景NaiYunTang湯乃云JiangNanLiu劉江南XianTingLiu劉先婷XuanLinLi李宣霖XinFuPan潘信甫MinTang唐敏QingHuaLi李清華WeiBai白偉andXiaoDongTang唐曉東
    Chinese Physics B 2023年10期
    關鍵詞:趙梓

    Zi-Miao Zhao(趙梓淼), Zi-Xin Chen(陳子馨), Wei-Jing Liu(劉偉景),?, Nai-Yun Tang(湯乃云),Jiang-Nan Liu(劉江南), Xian-Ting Liu(劉先婷), Xuan-Lin Li(李宣霖), Xin-Fu Pan(潘信甫),Min Tang(唐敏), Qing-Hua Li(李清華), Wei Bai(白偉), and Xiao-Dong Tang(唐曉東)

    1College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China

    2Semiconductor Manufacturing International Corporation,Shanghai 201203,China

    3Radiwave Technologies Corporation Limited,Shenzhen 518172,China

    4Key Laboratory of Polar Materials and Devices,East China Normal University,Shanghai 200041,China

    Keywords: tunnel field effect transistor,ambipolar current,dual metal gate,gate-drain underlap

    1.Introduction

    With Moore’s law, MOSFET devices have scaled to the nanometer size, the number of devices and components on a single chip has increased dramatically, and today we have a significant increase in the ability of data processing.However, to further scale, MOSFETs start to face a series of challenges: short-channel effects (SCEs), hot-carrier effects(HCEs), higher power consumption, etc.To meet these challenges, one of the solutions is to find new devices to replace MOSFETs.The tunneling field-effect transistor (TFET) is one of the promising devices to replace CMOS for low-power applications.[1]The conduction mechanism of TFETs is bandto-band tunneling (BTBT), which is the key phenomenon for the conduction of current in this quintessential reversebiased gated p-i-n structure, unlike MOSFETs, where conduction is due to the transition of charge.[2]With a lower subthreshold swing (SS), TFETs can break the 60 mV/decade limit at room temperature, and achieve lower off-state currents and better immunity to short-channel effects.However,there are still two main problems with TFETs: the low onstate currentIon, and the ambipolar characteristics.To address the low on-state current problem, researchers have now proposed a number of solutions, such as the introduction of heterostructures,including heterogeneous gate dielectrics,[3-5]source channel heterojunctions,[6-8]and heterogeneous gate materials;[9,10]the introduction of line tunneling structures to increase the tunneling area;[11-16]utilization of black phosphorus instead of silicon materials;[17,18]insertion of a metal strip in the gate oxide layer;[19]and the introduction of pocket structures.[20,21]Ambipolar conduction makes the TFET less effective in complementary circuits and restricts its utility in digital circuit design.Several solutions have been proposed to suppress ambipolar currents: using asymmetric doping,[22-24]gate-drain underlap,[23,25,26]gate-drain overlap,[27]heterogeneous dielectrics,[23,28,29]work function engineering,[23,30,31]recessed drains[32]and spacer engineering.[33]

    To solve these issues,a TFET with a C-type pocket(CSPTFET)[34]was proposed in previous work by our team,which improved the low on-state current while further reducing the sub-threshold swing;however,the ambipolar behavior was not fully suppressed.Further work is needed to optimize the structure of the device to completely suppress the ambipolar current while ensuring that the on-state current is not affected as much as possible, thus improving the performance of the device.Therefore,this work investigates the effects of both dualmetal gate and gate-drain underlap designs on the ambipolar characteristics of the device based on the CSP-TFET,respectively,and combines the two designs to propose the C-shaped pocket dual metal underlap TFET (CSP-DMUN-TFET).The effects of the work function of the metal gate and the gatedrain underlap length on the DC and analog/RF characteristics of the device are analyzed in detail.The optimum values of these two parameters are also determined to achieve a high on-state current with significant suppression of the ambipolar behavior.

    The article is arranged as follows:Section 2 describes the basic structure of the proposed device,parameters,the model used for simulation and the calibration of the model.Section 3 discusses the DC and analog/RF characteristics of the device and the structure optimization process.Section 4 summarizes the work performed.

    2.Device structure and simulation model

    The C-type pocket TFET (CSP-TFET) structure is characteristically based on a conventional double-gate siliconbased tunneling field-effect transistor structure with a pocket region added to the source and channel regions with the opposite type of doping concentration to the source region.The aim of the mechanism is to enhance the electric field by fully depleting the pocket region under the action of the electric field, thus increasing the band-band tunneling rate between the source region and the channel and further improving the on-state current.

    The structure parameters of the C-type pocket TFET with a dual-metal gate structure (CSP-DM-TFET) and the C-type pocket TFET with a gate-drain underlap (CSP-UN-TFET)proposed in this paper are as follows: to suppress ambipolar characteristics,the doping concentration of the source and drain are 1×1020cm-3and 5×1018cm-3, respectively.Also, the channel is doped with a doping concentration of 1×1017cm-3.All regions are assumed to be uniformly doped.SiO2was used as the gate oxide layer with a thickness of 2 nm.Based on the team’s previous work,[34]we found that increasing theTpandLp2in the C-pocket would increase the leakage current and prevent the device from switching off,and increasing theTpwould also reduce the on-state current of the device.Therefore,theTpandLp2should not be large,and we also considered the fabrication issues.[35]Finally, the parameters of the C-type pocket were selected to beLp1=30 nm,Tp=2 nm andLp2=1 nm.The device structures of the CSPDM-TFET and CSP-UN-TFET are shown in Fig.1.

    All the electrical characteristics simulations were carried out by Synopsys Sentaurus TCAD.The Fermi-Dirac model,the bandgap narrowing model,the doping-dependent mobility model,the carrier Shockley-Read-Hall(SRH)model,and the Auger model were used in the simulation.Since the silicon thickness (Tsi) is 20 nm (larger than 7 nm), quantum effects are not considered in this simulation.In this paper,we employ the dynamic non-local band-to-band tunneling(BTBT)model,which can consider the spatial variation of energy bands and apply to arbitrary tunneling potentials with abrupt or asymptotic heterojunctions, and can simulate the tunneling process more accurately.The non-local BTBT model used in this paper is calibrated using the work by Boucart and Ionescu.[3]The calibration of transfer characteristics is depicted in Fig.2.

    Table 1.The device parameters.

    Fig.1.A 2-D schematic view of(a)the CSP-DM-TFET and(b)the CSPUN-TFET.

    Fig.2.Calibration of the TCAD model parameters obtained by comparing the simulated and experimental Ids-Vgs characteristics of Ref.[3].

    3.Results and discussion

    The effects of the D-gate work functionφ2, the D-gate lengthLφ2, and the gate-drain underlap lengthLunderon device performance are investigated to obtain better suppression of ambipolar characteristics.TheIon,Iamb,Ion/Ioff,and SSavgare important indicators of DC characteristics, andgm,fT,and GBP are important indicators of analog/RF characteristics.The drain voltageVDSis set to 1 V,and the gate voltageVgsis varied from-1.5 V to 2 V.The currents in the statesVDS=1 V,Vgs=2 V,VDS=1 V,Vgs=-1.5 V andVDS=1 V,Vgs=0 V are defined as the on-state currentIon,the ambipolar currentIamband the off-state currentIoff, respectively.Note that in this work, the energy band diagrams and electric field diagrams are obtained at the location of 1 nm (line A-A'in Fig.1)below the interface of the silicon and gate oxide layer along the channel direction.

    3.1.DC characteristics analysis

    3.1.1.Effect ofφ2andLφ2on the device

    Figure 3 shows the energy band diagram of the CSPTFET device in the on, off, and ambipolar states.When a positive voltage is applied to the gate, the energy band in the channel bends downwards, resulting in a partial overlap between the source valence band and the channel conduction band,and carriers tunneling from the valence band to the conduction band to form a current.This phenomenon is called band-to-band tunneling (BTBT).Similarly, when a negative voltage is applied to the gate, the energy band of the channel bends upwards,causing the drain valence band and the channel conduction band to partially overlap,generating a tunneling current.Since the device conducts in both gate polarities,this characteristic is called ambipolarity.This current is created when a negative voltage is applied to the gate and is called the ambipolar current.Ambipolarity is undesirable as it causes malfunction of the inverter-based logic circuits.[36]

    Thus this work takes two designs to suppress ambipolar currents, namely, the dual metal gate and the gate-drain underlap, and analysis the effects of these two designs on the ambipolar characteristics of the CSP-TEFT.The present work focuses on the suppression of ambipolar currents and therefore focuses on the channel-drain junction.

    The transmission characteristics of the CSP-DM-TFET are shown in Fig.4.We setLp1as 30 nm andLDGas 0.5(LDGis the D-gate gate length factor,which is the proportion of Dgate to the total channel area gate length), change the D-gate gate work functionφ2from 4.0 eV to 4.6 eV, and keep the S-gate gate work function at 4.5 eV.It can be seen from Fig.4 that the ambipolar current decreases as the D-gate gate work functionφ2decreases.This is due to the fact that as the D-gate work functionφ2continues to decrease,it leads to a reduction in the degree of energy band bending,an increase in the width of the tunneling barrier, and an increasing depletion width at the drain-channel junction, as shown in Fig.5(a), which reduces the incidence of tunneling and suppresses the ambipolar current.

    Fig.3.Energy band diagrams of CSP-TFET devices in the on-state(VDS =1 V,Vgs =2 V), off-state (VDS =1 V,Vgs =0 V) and ambipolar state(VDS=1 V,Vgs=-1.5 V),respectively.

    Fig.4.Effects of the work function φ2 on the transmission characteristics of CSP-DM-TFET devices,where the left Y-axis corresponds to the logarithmic curve and the right Y-axis to the linear curve.

    Fig.5.(a) An energy band diagram of the CSP-DM-TFET in the ambipolar state corresponding to the variation of the work function φ2 from 4.0 eV to 4.6 eV (VDS =0 V,Vgs =-1.5 V).(b) The lateral electric field intensity of the CSP-DM-TFET in the off-state (VDS =0 V,Vgs =0 V) and in the ambipolar state(VDS=0 V,Vgs=-1.5 V).(c)An energy band diagram corresponding to the CSP-DM-TFET in the off-state(VDS=0 V,Vgs=0 V)and the ambipolar state(VDS=0 V,Vgs=-1.5 V).

    Furthermore,it can be seen from Fig.4 that as the negative gate voltage continues to increase, the ambipolar current shows a decreasing trend and then increases.The reason for this,as shown in Fig.5(b),is that the existence of the C-type pocket, as well as the gate full overlap structure, results in a high lateral electric field in the pocket region of the device in the off-state, leading to a high leakage current.As the negative gate voltage increases, the leakage current is suppressed.In other words, the leakage current is dominant in the negative gate voltage range of 0 V to-1 V.As shown in Fig.5(c),as the negative voltage rises,the energy band gradually bends upwards,the tunneling barrier decreases,and the reverse conduction takes place.At this point,the tunneling current at the drain-channel junction becomes dominant.

    To further optimize the CSP-DM-TFET,the effect of theLφ2on the ambipolar and on-state currents is analyzed.TheLφ2is the length of the D-gate and is defined asLDG×Lg(0<LDG≤1).The effect of theLDGon the DC characteristics of the CSP-DM-TFET withLp1at 30 nm,Lp2at 1 nm,andφ1andφ2at 4.5 eV and 4.0 eV, is shown in Fig.6(a).TheLDGvaries from 0.1 to 0.9,with the ambipolar current decreasing with the increasingLDGuntil it goes to 0.6.It can be seen in Fig.6(b) that as theLDGincreases, the degree of energy band bending at the channel/drain junction decreases,leading to an increase in the tunneling barrier and suppression of the ambipolar current.As theLDGcontinues to increase beyond 0.6, there is no significant change in the ambipolar current, but the leakage current in the off-state increases and the device cannot be switched off.As shown in Fig.6(c),due to the increasedLDG, which brings the D-gate with its lower work function closer to the source-channel junction,the electric field strength near the source-channel junction is increased, thus reducing the tunneling barrier width and allowing the device to have a higher leakage current in the off-state.In addition,Ionslightly increases with the increasingLDG.Based on the above analysis, theLDGwas optimally set to 0.6,withIon=9.66×10-4A/μm,Iamb=6.94×10-17A/μm,SSavg=17.7 mV/dec,andIon/Ioff≈1×1011.In this work,the average subthreshold swing is used as a performance metric.Bhuwalka[37]and Boucart and Ionescu[3]proposed a definition for calculating SSavgwith the following equation:[38]

    whereVTHis the threshold voltage,whose value is the voltage corresponding to a drain currentITHof 10-7A/μm.AndVOFFtakes the value of the gate voltage corresponding to a drain currentIoffof 10-14A/μm.

    3.1.2.Effect ofLunderon the device

    The CSP-UN-TFET retains full overlap of the gate at the source, varying the value of theLunderfrom 5 nm to 25 nm,and its transfer characteristics are shown in Fig.7(a).As the length of theLunderincreases,the ambipolar current decreases.When it reaches 25 nm, the ambipolar current decreases by about six orders of scale.As shown in Fig.7(b),the decreased ambipolar current is caused by gate-drain underlap,which results in a reduced electric field at the channel/drain junction.As theLunderincreases,the electric field density at the channeldrain junction becomes smaller,which reduces the probability of tunneling and thus suppresses the ambipolar current.In addition, from the energy band diagram, as shown in Fig.7(c),the energy band bending at the channel-drain junction decreases as theLunderincreases, which increases the width of the tunneling barrier.Similarly, when theLunderis 25 nm,the ambipolar current decreases with an increasing negative gate voltage in the 0 to-1 V range.Because the leakage current dominates in this range, there is a relatively small increase in the tunneling current at the channel/drain junction.As the negative gate voltage continues to increase after-1 V,the tunneling current at the channel/drain junction dominates,at which point it rises slightly as the negative gate voltage increases.Compared to the CSP-DM-TFET,the CSP-UN-TFET is more effective at suppressing ambipolar currents,which remains low by~10-16orders of scale at the gate voltage of-1.5 V.Furthermore, as shown in Fig.7(a), the on-state currentIondecreases as the length of theLunderincreases, but the reduction is limited.Therefore, to suppress the ambipolar current more effectively, theLunderlength is set to 25 nm.The DC characteristics of the CSP-UN-TFET device in this case areIon=8.34×10-4A/μm,Iamb=2.79×10-17A/μm,SSavg=16.9 mV/dec,andIon/Ioff≈1×1011.

    Fig.7.(a)The effect of the Lunder change from 5 nm to 25 nm on the transfer characteristics of CSP-UN-TFET devices.CSP-UN-TFET devices in the ambipolar state(VDS=1 V,Vgs=-1.5 V)with the Lunder change from 5 nm to 25 nm,corresponding to(b)the energy band diagram,and(c)the lateral electric field.

    In summary, the ambipolar characteristics of both the CSP-DM-TFET and CSP-UN-TFET devices are suppressed.But compared to the CSP-DM-TFET,the CSP-UN-TFET can suppress the ambipolar current better with the disadvantage of the reducedIon.

    Therefore,to ensure that the ambipolar currents are suppressed without affecting the on-state currents as much as possible,a combination of these two methods is used to compensate for the negative effects on the on-state currents caused by the gate-drain underlap structure.During the combination process of optimization,the following principles were applied: minimal reduction of the on-state current and complete suppression of the ambipolar current.The finalized improved device CSP-DMUN-TFET structure is shown in Fig.8.The device parameters are:LDGof 0.4,Lunderof 20 nm, andφ2of 4.0.Figure 9 shows a comparison of the transfer characteristic curves of the CSP-DM-TFET, CSP-UN-TFET, and CSP-DMUN-TFET devices.It can be seen that the ambipolar current of the CSP-DMUN-TFET device remains at the same level as that of the CSP-UN-TFET, and theIonof the CSPDMUN-TFET is larger than that of the CSP-UN-TFET.In this case,the DC characteristics of the CSP-DMUN-TFET device areIon=9.03×10-4A/μm,Iamb=2.15×10-17A/μm,SSavg=13.3 mV/dec,andIon/Ioff≈1×1011.

    Fig.8.A 2-D schematic view of the CSP-DMUN-TFET.

    Fig.9.A comparison of transmission characteristics curves for the CSPDM-TFET,CSP-UN-TFET,and CSP-DMUN-TFET devices.

    3.2.Analog/RF characteristics analysis

    In this section, the effects ofφ2andLunderon the analog/RF characteristics of the CSP-DM-TFET and CSP-UNTFET devices are investigated,including the transconductance(gm), cut-off frequency(fT), gain-bandwidth product(GBP),etc., respectively.These parameters are extracted at the frequency of 1 MHz.Thegmis an important indicator that is used to measure the analog characteristics of devices,[39]and a highergmindicates better performance for analog applications.Analysis of the analog parametergmplays a critical role in obtaining a higherfTand GBP.[40]

    Figures 10(a)and 10(b)shows the effect ofφ2andLunderparameters on thegmof the CSP-DM-TFET and CSP-UNTFET devices, respectively.It can be seen from Figs.10(a)and 10(b)that as the gate voltage increases, the drain current increases,which leads to an increase in thegm.However,due to the decrease in carrier mobility, the higher theVgsvoltage is, the lower thegmis.Furthermore, it can be noted that theLunderhas a greater effect on thegmthan theφ2, as a largerLunderreduces the drain current.

    Fig.10.(a)Variation of φ2 from 4.0 eV to 4.6 eV,corresponding to the gm of the CSP-DM-TFET device.(b) Variation of Lunder from 5 nm to 25 nm,corresponding to the gm of the CSP-UN-TFET device.

    Figures 11(a)and 11(b)show the effect ofφ2andLunderon theCgdof the CSP-DM-TFET and CSP-UN-TFET devices,respectively.It can be seen from Fig.11(a)that varying theφ2has a greater effect on theCgdof the CSP-DM-TFET device at low voltages.As the lower work function increases, the coupling between the gate and drain,Cgd,gradually increases asφ2decreases, affecting the switching speed of the device.In addition, theCgddecreases with the increasingLunder, as seen in Fig.11(b), due to the fact that the gate-drain underlap structure increases the distance between the gate and drain regions,weakens the capacitive coupling,and reduces the effective charge concentration in the uncovered region of the gate.[41,42]

    The cut-off frequency is the frequency at which the current gain becomes unity, and plays a significant role in deciding the device performance at high frequency,[43]as shown below:

    As can be seen from Eq.(2),fTis positively proportional togmand inversely proportional toCgg.

    As shown in Fig.12,thefTincreases as theVgsincreases initially and after thefTreaches its peak, it begins to fall sharply, due to the fact that thegmbegins to fall after reaching its maximum value and is accompanied by an increase in theCgd.From Fig.12(a), it can be seen that changing theφ2has an apparent effect on thefTof the CSP-DM-TFET device,due to the fact that a decrease in theφ2increases the coupling between the gate-drain and theCgdincreases.When theφ2is 4.0 eV,it obviously reduces the cut-off frequency of the CSPDM-TFET.Figure 12(b) shows that the effect of theLunderis not very significant on thefT, because both thegmin the numerator and theCgdin the denominator decrease as theLunderincreases.

    Another important parameter for RF analysis is the GBP,which signifies the product of gain and bandwidth at a constant DC gain value 10.[44]The value of the GBP is expressed as follows:

    As shown in Figs.12(c)and 12(d),the tendency of the GBP is similar to that of thefT.

    Fig.12.(a)and(c)The change of φ2 from 4.0 eV to 4.6 eV,corresponding to the variation of the fT and GBP of the CSP-DM-TFET device,respectively.(b) and (d) The change of Lunder from 5 nm to 25 nm, corresponding to the variation of the fT and GBP of the CSP-UN-TFET device,respectively.

    In summary,the CSP-DM-TFET device reduces the analog/RF characteristics by increasing the gate-drain capacitance due to the use of a lower work function in the D-gate.The CSP-UN-TFET improves the analog/RF performance by reducing the gate drain capacitance due to the presence of the underlap in the gate-drain.The CSP-DMUN-TFET device proposed in this work combines the advantages of both designs,with an analog/RF performance somewhere between the above two devices:gm=1.27×10-3S,fT=5.99×1010Hz,GBP=2.06×1010Hz.

    4.Conclusion and perspectives

    This work investigated the effects of dual metal gate and gate-drain underlap designs on the ambipolar characteristics of devices based on silicon-based dual-gate CSP-TFETs.Both designs are capable of suppressing ambipolar currents, with the gate-drain underlap being more effective,but with a small reduction in the on-state current, while the dual metal gate barely effects the on-state current.In addition,the dual metal gate structure causes a degradation of the analog/RF performance of the device compared to the gate-drain underlap structure.Therefore, a combination of both designs is proposed for the CSP-DMUN-TFET.Due to the full gate overlap in the pocket area, the CSP-DMUN-TFET has a high onstate current while being able to fully suppress ambipolar currents:Ion=9.08×10-4A/μm,Iamb=2.15×10-17A/μm,SSavg=13.3 mV/dec,Ion/Ioff≈1×1011,gm=1.27×10-3S,fT= 5.99×1010Hz, GBP = 2.06×1010Hz.The CSPDMUN-TFET effectively solves the problems of low on-state current and ambipolar characteristics of conventional dualgate TFETs and is more suitable for low-power applications.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.52177185 and 62174055).

    猜你喜歡
    趙梓
    夏天的喜歡
    Matrix effect suppressing in the element analysis of soils by laser-induced breakdown spectroscopy with acoustic correction
    很忙
    再生水水質安全的研究進展
    突破與重構:教師AI接納的復雜擴散機制探究與建模
    兔子小棕
    有趣的“知己知彼”游戲
    省檔案館開展“圓夢助學”活動
    陜西檔案(2019年5期)2019-01-09 21:58:02
    《綠色行,迎“全運”》
    堅強少女用愛撐起半邊天
    下一代英才(2018年3期)2018-06-23 11:23:20
    videos熟女内射| 日韩不卡一区二区三区视频在线| 婷婷色综合大香蕉| 日韩伦理黄色片| 日韩大片免费观看网站| 亚洲国产欧美人成| 青春草亚洲视频在线观看| 国产精品女同一区二区软件| 十分钟在线观看高清视频www | 国产免费又黄又爽又色| 国产午夜精品一二区理论片| 在线精品无人区一区二区三 | 一级二级三级毛片免费看| 久久久久精品性色| 国产欧美日韩精品一区二区| 午夜日本视频在线| 欧美一区二区亚洲| 少妇 在线观看| 午夜免费观看性视频| 我的老师免费观看完整版| 爱豆传媒免费全集在线观看| 中文字幕精品免费在线观看视频 | 黑人猛操日本美女一级片| 成年人午夜在线观看视频| 97在线人人人人妻| 免费观看在线日韩| 一级a做视频免费观看| 中文乱码字字幕精品一区二区三区| 亚洲国产毛片av蜜桃av| 天堂中文最新版在线下载| 国产精品一及| 中文字幕精品免费在线观看视频 | 国产视频首页在线观看| 欧美丝袜亚洲另类| 午夜免费男女啪啪视频观看| 亚洲真实伦在线观看| 激情 狠狠 欧美| 免费在线观看成人毛片| 免费看光身美女| 免费人妻精品一区二区三区视频| 久久青草综合色| 国产精品伦人一区二区| 黄色配什么色好看| 色婷婷av一区二区三区视频| 在现免费观看毛片| 国产成人午夜福利电影在线观看| 亚洲欧美日韩无卡精品| 六月丁香七月| 国产日韩欧美在线精品| 国产免费一级a男人的天堂| 国产男人的电影天堂91| 简卡轻食公司| 高清视频免费观看一区二区| 日本av免费视频播放| 视频中文字幕在线观看| 极品教师在线视频| 免费av不卡在线播放| www.色视频.com| 最后的刺客免费高清国语| 日日啪夜夜爽| 日本-黄色视频高清免费观看| 久久久久视频综合| 丝袜脚勾引网站| 久久国产精品男人的天堂亚洲 | 亚洲va在线va天堂va国产| 亚洲人成网站在线播| www.av在线官网国产| 在线观看一区二区三区| 欧美成人一区二区免费高清观看| 夜夜爽夜夜爽视频| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 国产69精品久久久久777片| 日韩成人伦理影院| 哪个播放器可以免费观看大片| 啦啦啦中文免费视频观看日本| 午夜精品国产一区二区电影| 国产av精品麻豆| 97超视频在线观看视频| 欧美xxxx黑人xx丫x性爽| 人妻少妇偷人精品九色| 日本一二三区视频观看| 99热全是精品| 亚洲精品成人av观看孕妇| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 欧美少妇被猛烈插入视频| 一级黄片播放器| 色5月婷婷丁香| 亚洲天堂av无毛| 精品少妇久久久久久888优播| 香蕉精品网在线| 成人免费观看视频高清| 啦啦啦在线观看免费高清www| 亚洲精品日本国产第一区| h视频一区二区三区| 男女边摸边吃奶| 国产视频首页在线观看| 内地一区二区视频在线| 人体艺术视频欧美日本| 精品一区在线观看国产| 熟妇人妻不卡中文字幕| 国产精品一区二区在线观看99| 一级毛片 在线播放| 毛片女人毛片| 赤兔流量卡办理| 久久99蜜桃精品久久| 久久青草综合色| 亚洲人成网站在线播| 国产高清不卡午夜福利| 一级毛片电影观看| 成人二区视频| 亚洲av二区三区四区| 十分钟在线观看高清视频www | 一级黄片播放器| 欧美+日韩+精品| 国内揄拍国产精品人妻在线| 国产人妻一区二区三区在| 欧美老熟妇乱子伦牲交| 精品国产三级普通话版| 国内精品宾馆在线| 亚洲图色成人| 激情 狠狠 欧美| 成人特级av手机在线观看| 最后的刺客免费高清国语| 狂野欧美白嫩少妇大欣赏| 精品亚洲成a人片在线观看 | 亚洲精品日韩在线中文字幕| 777米奇影视久久| 国产黄片视频在线免费观看| 99热6这里只有精品| 丝袜喷水一区| 中文资源天堂在线| 欧美激情极品国产一区二区三区 | 亚洲美女视频黄频| 99九九线精品视频在线观看视频| 日韩亚洲欧美综合| 伊人久久国产一区二区| 在线精品无人区一区二区三 | 国产精品99久久99久久久不卡 | 亚洲熟女精品中文字幕| 麻豆国产97在线/欧美| 国产精品久久久久成人av| 国产在线一区二区三区精| 老司机影院毛片| 久久久国产一区二区| 青春草国产在线视频| 亚洲国产日韩一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 91狼人影院| 亚洲欧洲国产日韩| 午夜激情福利司机影院| 插逼视频在线观看| 一级二级三级毛片免费看| 久久久久久人妻| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 国产精品伦人一区二区| 亚洲国产高清在线一区二区三| 又粗又硬又长又爽又黄的视频| 免费在线观看成人毛片| 免费观看av网站的网址| 嫩草影院新地址| 国产 一区 欧美 日韩| 亚洲精品视频女| 国精品久久久久久国模美| 国产 一区 欧美 日韩| 亚洲精品自拍成人| 春色校园在线视频观看| 日韩在线高清观看一区二区三区| 又大又黄又爽视频免费| 亚洲国产色片| av天堂中文字幕网| 青青草视频在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 22中文网久久字幕| 精品久久久精品久久久| 不卡视频在线观看欧美| 一级a做视频免费观看| 欧美日韩亚洲高清精品| 亚洲av国产av综合av卡| 午夜老司机福利剧场| 国产伦精品一区二区三区四那| 日本午夜av视频| 亚洲欧美清纯卡通| 亚洲久久久国产精品| 色吧在线观看| 蜜桃亚洲精品一区二区三区| 国产乱人视频| 性色avwww在线观看| 18+在线观看网站| 免费播放大片免费观看视频在线观看| a级毛色黄片| 大陆偷拍与自拍| 国产高清国产精品国产三级 | 国产亚洲午夜精品一区二区久久| 99久久人妻综合| 亚洲精品乱码久久久久久按摩| 一区二区三区四区激情视频| 蜜桃在线观看..| 少妇人妻 视频| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| 亚洲av电影在线观看一区二区三区| 亚洲国产精品国产精品| 在线观看免费日韩欧美大片 | 国产免费视频播放在线视频| 中国美白少妇内射xxxbb| 高清日韩中文字幕在线| 国产精品久久久久久久久免| 亚洲一区二区三区欧美精品| 色婷婷久久久亚洲欧美| 久久久久久久久久人人人人人人| 青青草视频在线视频观看| 国产精品麻豆人妻色哟哟久久| 在线观看国产h片| 欧美成人午夜免费资源| 欧美日韩在线观看h| 大香蕉97超碰在线| 国产探花极品一区二区| 高清av免费在线| 国产91av在线免费观看| freevideosex欧美| 在线免费十八禁| 久久久久久久久久久免费av| 一级毛片久久久久久久久女| 一级爰片在线观看| 国产成人91sexporn| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 综合色丁香网| 久久婷婷青草| 我的女老师完整版在线观看| 熟妇人妻不卡中文字幕| 婷婷色麻豆天堂久久| 18禁裸乳无遮挡免费网站照片| 人人妻人人爽人人添夜夜欢视频 | 超碰av人人做人人爽久久| videos熟女内射| 精品人妻视频免费看| 国产老妇伦熟女老妇高清| 成人免费观看视频高清| 嫩草影院新地址| 99久久精品一区二区三区| 精品一区二区免费观看| 亚洲精品国产av蜜桃| 亚洲一区二区三区欧美精品| 亚洲国产精品成人久久小说| 亚洲国产高清在线一区二区三| av国产精品久久久久影院| a级一级毛片免费在线观看| 最新中文字幕久久久久| 建设人人有责人人尽责人人享有的 | 免费看日本二区| 欧美日韩一区二区视频在线观看视频在线| 天天躁日日操中文字幕| 在线精品无人区一区二区三 | 免费看光身美女| 色哟哟·www| 国产在线一区二区三区精| 久久99蜜桃精品久久| 色婷婷久久久亚洲欧美| av.在线天堂| 亚洲色图综合在线观看| 欧美人与善性xxx| 亚洲欧洲日产国产| 大又大粗又爽又黄少妇毛片口| 国产一区二区在线观看日韩| 免费看日本二区| 91午夜精品亚洲一区二区三区| 亚洲综合精品二区| 黑丝袜美女国产一区| 天美传媒精品一区二区| 91狼人影院| 有码 亚洲区| 涩涩av久久男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 美女高潮的动态| 国内少妇人妻偷人精品xxx网站| 亚洲国产最新在线播放| av福利片在线观看| av卡一久久| 内射极品少妇av片p| 丰满乱子伦码专区| 国产av一区二区精品久久 | 亚洲不卡免费看| 国产精品福利在线免费观看| a 毛片基地| 免费观看av网站的网址| 午夜福利影视在线免费观看| 最近中文字幕2019免费版| 国精品久久久久久国模美| 亚洲欧美成人精品一区二区| 久久ye,这里只有精品| 精品一区二区三卡| 国产亚洲91精品色在线| 国产免费又黄又爽又色| 五月玫瑰六月丁香| 99热这里只有是精品50| 黑人高潮一二区| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 在线亚洲精品国产二区图片欧美 | 日韩人妻高清精品专区| 精品人妻熟女av久视频| 久久热精品热| 日韩亚洲欧美综合| 国产精品一区二区性色av| 最后的刺客免费高清国语| 五月开心婷婷网| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 国产高清国产精品国产三级 | 久久97久久精品| 色5月婷婷丁香| av一本久久久久| 一级毛片aaaaaa免费看小| 亚洲精品乱久久久久久| 在线观看人妻少妇| 日本vs欧美在线观看视频 | 夫妻性生交免费视频一级片| 一区二区三区免费毛片| 精品国产一区二区三区久久久樱花 | 欧美xxxx性猛交bbbb| 人妻夜夜爽99麻豆av| 一本久久精品| 99精国产麻豆久久婷婷| 午夜福利影视在线免费观看| 精品熟女少妇av免费看| 国产精品熟女久久久久浪| 国产熟女欧美一区二区| 一区二区三区免费毛片| 九九在线视频观看精品| 午夜福利视频精品| 三级经典国产精品| 欧美成人一区二区免费高清观看| 美女脱内裤让男人舔精品视频| 亚洲高清免费不卡视频| 亚洲av二区三区四区| 国产成人免费无遮挡视频| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 伊人久久精品亚洲午夜| 一区二区三区四区激情视频| 性高湖久久久久久久久免费观看| 亚洲高清免费不卡视频| 最近中文字幕2019免费版| 久久午夜福利片| 亚洲成色77777| 在线观看免费高清a一片| 免费大片黄手机在线观看| 久久人人爽av亚洲精品天堂 | 亚洲国产最新在线播放| 亚洲电影在线观看av| 一区二区三区免费毛片| 日本免费在线观看一区| 国产精品久久久久成人av| 肉色欧美久久久久久久蜜桃| 五月天丁香电影| av在线蜜桃| 99久久精品国产国产毛片| 九九在线视频观看精品| 久久久色成人| 国产乱人视频| 国产视频内射| 国产精品成人在线| 18禁动态无遮挡网站| 日韩中字成人| 久久久久久久久久久丰满| 久久99热这里只有精品18| 丝瓜视频免费看黄片| 日本wwww免费看| 狠狠精品人妻久久久久久综合| 国产一区二区在线观看日韩| 久久精品国产鲁丝片午夜精品| 视频区图区小说| 高清毛片免费看| 99久久精品热视频| 久久久a久久爽久久v久久| 亚州av有码| 亚洲第一av免费看| 一边亲一边摸免费视频| 蜜桃在线观看..| 国产精品精品国产色婷婷| 91狼人影院| 视频中文字幕在线观看| 亚洲中文av在线| 欧美zozozo另类| 网址你懂的国产日韩在线| 亚洲av电影在线观看一区二区三区| 涩涩av久久男人的天堂| 亚洲欧美日韩无卡精品| 爱豆传媒免费全集在线观看| 国产人妻一区二区三区在| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 特大巨黑吊av在线直播| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 老师上课跳d突然被开到最大视频| 一区二区三区精品91| 成年人午夜在线观看视频| 三级经典国产精品| 欧美一区二区亚洲| 久久这里有精品视频免费| av免费在线看不卡| 久久精品久久久久久久性| 高清午夜精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 性色avwww在线观看| 免费观看在线日韩| 欧美xxxx性猛交bbbb| av在线观看视频网站免费| 亚洲av综合色区一区| 亚洲天堂av无毛| 欧美高清性xxxxhd video| 亚洲av男天堂| 成年女人在线观看亚洲视频| 亚洲国产精品一区三区| 国产成人精品福利久久| 日韩免费高清中文字幕av| av在线蜜桃| 最近的中文字幕免费完整| 自拍偷自拍亚洲精品老妇| 如何舔出高潮| 精品一区二区免费观看| 亚洲三级黄色毛片| 成人漫画全彩无遮挡| 国产一区二区三区综合在线观看 | 22中文网久久字幕| 干丝袜人妻中文字幕| 在线观看一区二区三区| 亚洲人成网站高清观看| 亚洲精品国产色婷婷电影| 亚洲久久久国产精品| 少妇猛男粗大的猛烈进出视频| 美女脱内裤让男人舔精品视频| 女性被躁到高潮视频| 午夜日本视频在线| 中文字幕亚洲精品专区| 爱豆传媒免费全集在线观看| 赤兔流量卡办理| 黄色怎么调成土黄色| 黄色日韩在线| 在线免费十八禁| 亚洲真实伦在线观看| 亚洲国产成人一精品久久久| 各种免费的搞黄视频| 精品视频人人做人人爽| 欧美日韩视频高清一区二区三区二| 伦理电影大哥的女人| 婷婷色综合www| 天天躁夜夜躁狠狠久久av| 国产乱来视频区| 久久精品国产自在天天线| 亚洲国产精品国产精品| 亚洲欧洲日产国产| 亚洲国产日韩一区二区| 国产精品久久久久成人av| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 日本wwww免费看| 日韩视频在线欧美| 在线观看美女被高潮喷水网站| 成人亚洲精品一区在线观看 | 久久久久久久久久人人人人人人| 国产人妻一区二区三区在| 三级经典国产精品| av不卡在线播放| freevideosex欧美| 亚洲不卡免费看| 中文精品一卡2卡3卡4更新| 欧美高清成人免费视频www| 午夜免费鲁丝| 肉色欧美久久久久久久蜜桃| 日韩一区二区三区影片| 亚洲怡红院男人天堂| 男女无遮挡免费网站观看| 激情 狠狠 欧美| 看十八女毛片水多多多| av女优亚洲男人天堂| 国产午夜精品久久久久久一区二区三区| 国产久久久一区二区三区| 国产亚洲欧美精品永久| 一个人看视频在线观看www免费| 午夜老司机福利剧场| 中文字幕av成人在线电影| 国产精品久久久久久久久免| 亚洲精品色激情综合| 国产精品不卡视频一区二区| 精品久久久久久久末码| 亚洲激情五月婷婷啪啪| 蜜桃久久精品国产亚洲av| 又粗又硬又长又爽又黄的视频| 色5月婷婷丁香| 一区二区三区免费毛片| 亚洲精品自拍成人| 国产深夜福利视频在线观看| 国产精品欧美亚洲77777| 人妻制服诱惑在线中文字幕| 五月天丁香电影| 国产真实伦视频高清在线观看| 亚洲不卡免费看| 精品久久国产蜜桃| 国产精品一区二区三区四区免费观看| 毛片女人毛片| 欧美日韩视频精品一区| 国产日韩欧美在线精品| 人人妻人人添人人爽欧美一区卜 | 91精品国产国语对白视频| 高清黄色对白视频在线免费看 | www.av在线官网国产| 国产精品熟女久久久久浪| 亚洲欧美精品专区久久| av在线老鸭窝| 超碰av人人做人人爽久久| 插逼视频在线观看| 久久99热6这里只有精品| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 卡戴珊不雅视频在线播放| 91久久精品电影网| 99热这里只有精品一区| 夫妻午夜视频| 亚洲av二区三区四区| 国产黄色视频一区二区在线观看| 亚洲av成人精品一二三区| 人妻 亚洲 视频| 亚洲欧美日韩卡通动漫| 成人毛片a级毛片在线播放| 纯流量卡能插随身wifi吗| 亚洲国产欧美在线一区| 亚洲欧美日韩东京热| 国产老妇伦熟女老妇高清| 日本午夜av视频| 男人添女人高潮全过程视频| 高清不卡的av网站| 国产爱豆传媒在线观看| 亚洲精品乱码久久久v下载方式| 免费av中文字幕在线| 人人妻人人澡人人爽人人夜夜| 51国产日韩欧美| 久久久成人免费电影| 蜜桃在线观看..| 精品久久久精品久久久| 日本与韩国留学比较| 国产日韩欧美亚洲二区| 久久综合国产亚洲精品| 欧美xxⅹ黑人| 久久久久久久大尺度免费视频| 国产精品免费大片| 久久女婷五月综合色啪小说| 日韩一区二区三区影片| 免费不卡的大黄色大毛片视频在线观看| 高清视频免费观看一区二区| 久久久色成人| 久久精品久久久久久噜噜老黄| 久热这里只有精品99| 久久午夜福利片| 自拍偷自拍亚洲精品老妇| 少妇精品久久久久久久| 啦啦啦中文免费视频观看日本| 日韩欧美 国产精品| 亚洲美女搞黄在线观看| 搡老乐熟女国产| 你懂的网址亚洲精品在线观看| 亚洲av综合色区一区| 国产亚洲欧美精品永久| 成人亚洲精品一区在线观看 | 中文天堂在线官网| 久久精品国产a三级三级三级| 在线观看国产h片| 精品熟女少妇av免费看| 亚洲av不卡在线观看| 欧美另类一区| 国产有黄有色有爽视频| 极品教师在线视频| 黑人猛操日本美女一级片| 精品国产一区二区三区久久久樱花 | 国产欧美日韩一区二区三区在线 | 亚州av有码| 日本黄色日本黄色录像| 国产美女午夜福利| 99久久中文字幕三级久久日本| 精品少妇黑人巨大在线播放| 在线 av 中文字幕| 亚洲国产av新网站| 麻豆成人av视频| 丝袜脚勾引网站| 国产伦精品一区二区三区视频9| 日韩成人伦理影院| 女性被躁到高潮视频| 搡女人真爽免费视频火全软件| 熟女av电影| 亚洲精品日本国产第一区| 99久久精品热视频| 人妻一区二区av| 下体分泌物呈黄色| 国产成人免费观看mmmm| 亚洲国产日韩一区二区| 亚洲欧美日韩另类电影网站 | 直男gayav资源| 一级毛片久久久久久久久女| 日韩欧美 国产精品| 精品人妻一区二区三区麻豆| 嫩草影院新地址| 亚洲精品乱码久久久久久按摩| tube8黄色片| 国产成人a∨麻豆精品| 国产黄频视频在线观看| 一本—道久久a久久精品蜜桃钙片| 色5月婷婷丁香| 国产人妻一区二区三区在| 一级毛片 在线播放| 国产欧美亚洲国产|