• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lower Bounds on the(Laplacian)Spectral Radius of Weighted Graphs?

    2014-06-05 03:09:40AimeiYUMeiLU

    Aimei YU Mei LU

    1 Introduction

    In this paper,we consider a simple connected weighted graph in which the edge weights are positive numbers.LetG=(V,E)be a simple connected weighted graph with a vertex setV={v1,v2,···,vn}.We denote bythe weight of the edgeand assume=For short,we writei~jif the verticesviandvjare adjacent.Forvi∈V,let=w(vi)=wij.IfGis a weighted graph with=wjfor any∈V,thenGis called a regular weighted graph.IfG=(X∪Y,E)is a weighted bipartite graph withwi=wjfor anyvi,vj∈Xandfor any,∈Y,thenGis called a semiregular weighted bipartite graph.

    Forvi∈V,letγi=γ(vi)=IfGis a weighted graph withfor any∈V,thenGis called a pseudo-regular weighted graph.IfG=(X∪Y,E)is a weighted bipartite graph withfor anyvi,vj∈Xandfor anyvk,vl∈Y,thenGis called a pseudo-semiregular weighted bipartite graph.Obviously,any regular weighted graph is a pseudo-regular weighted graph and any semiregular weighted bipartite graph is a pseudo-semiregular weighted bipartite graph.

    The adjacency matrixA(G)of a weighted graphGis defined asA(G)=where

    LetW(G)=diag(w1,w2,···,wn).Then the Laplacian matrixL(G)of a weighted graphGisL(G)=W(G)?A(G).The signless Laplacian matrixQ(G)of a weighted graphGisQ(G)=W(G)+A(G).Clearly,A(G),L(G)andQ(G)are real symmetric matrices.Hence their eigenvalues are real numbers.We denote by(M)the largest eigenvalue of a real symmetric matrixM.For a weighted graphG,we denote by(G),(G)and(G)the largest eigenvalues ofA(G),L(G)andQ(G),respectively,and call them the spectral radius,the Laplacian spectral radius and the signless Laplacian spectral radius ofG,respectively.WhenGis connected,A(G)andQ(G)are irreducible matices and so by Perron-Frobenius Theorem,(G)and(G)are simple with the positive eigenvectors.

    If=1 for all edgesthenGis an unweighted graph.For an unweighted graph,wi=w()=is the degree of∈V(G),andis the 2-degree ofThere exists a vast literature that studies the bounds of the spectral radius,the Laplacian spectral radius and the signless spectral radius.We refer the reader to[1,7–8,10–13,15–16,21]for more information.

    For weighted graphs,Yang,Hu and Hong[19]gave the upper and lower bounds of the spectral radius of the weighted trees;Das and Bapat[6]and Sorgun and Bykkse[17]gave some upper bounds of the spectral radius;Rojo[14]and Das[4–5]gave some upper bounds of the Laplacian spectral radius.

    The remainder of this paper is organized as follows.In Section 2,we give some useful lemmas.In Section 3,we present some lower bounds of the spectral radius of weighted graphs.In Section 4,we give some lower bounds of the signless Laplacian spectral radius of weighted graphs,from which we can get some lower bounds of the Laplacian spectral radius of weighted graphs.From these bounds,we can deduce some known lower bounds on the spectral radius and the Laplacian spectral radius of unweighted graphs.

    2 Some Lemmas

    The following are some useful lemmas.

    Lemma 2.1(see[10])Let A be a nonnegative symmetric matrix and x be a unit vector of.If(A)=Ax,then Ax=(A)x.

    Lemma 2.2(see[18])Let G be a simple connected weighted bipartite graph.Then(G)=(G).

    ProofLetG=(X∪Y,E)be a connected weighted bipartite graph withnvertices and suppose thatX=Y=LetU=()be then×ndiagonal matrix with=1 if 1≤i≤kand=?1 ifk+1≤i≤n.It is easy to see thatL(G)U=Q(G),which implies thatL(G)andQ(G)have the same spectrum.Henceμ1(G)=q1(G).

    Lemma 2.3(see[2])Let M=()be an n×n irreducible nonnegative matrix with the spectral radius ρ(M),and(M)be the i-th row sum of M for1≤i≤n.Then

    Moreover,either equality holds if and only if the row sums of M are all equal.

    By Lemma 2.3,the following result holds immediately.

    Lemma 2.4Let G be a simple connected weighted graph.Then

    Moreover,either equality holds if and only if G is a regular weighted graph.

    Lemma 2.5(see[5])Let G be a simple connected weighted graph.Then

    where the equality holds if and only if G is a regular weighted bipartite graph or a semiregular weighted bipartite graph.

    3 Lower Bounds of the Spectral Radius

    The following theorem is one of our main results.

    Theorem 3.1Let G be a simple connected weighted graph of order n.Then

    where the equality holds if and only if G is a pseudo-regular weighted graph or a pseudosemiregular weighted bipartite graph.

    ProofLetA(G)be the adjacency matrix ofGandX=be the unit positive eigenvector ofA(G)corresponding toλ1(A(G)).For short,we writeA(G)asAin the following proof.Take

    Noting thatCis a unit positive vector,we have

    Since

    we have

    If the equality holds,then

    By Lemma 2.1,C=C.If the multiplicity ofis one,thenX=C,which implies=(G)(1≤i≤n).HenceGis a pseudo-regular weighted graph.Otherwise,the multiplicity of(A2)=((A))2is two,which implies that?λ1(A)is also an eigenvalue ofG.ThenGis a connected bipartite graph by a theorem of Frobenius(see,for example,[3,Theorem 0.3]).Without loss of generality,we assume

    whereB=is ann1×n2matrix withn1+n2=n.Let

    and

    whereX1=X2=andC2=Since

    we have

    and

    Noting thatBBTandBTBhave the same nonzero eigenvalues,λ1(A2)is the spectral radius ofBBTand its multiplicity is one.Sois a constant),which implies(1≤i<j≤n1).Similarly,is a constant),which implies(n1+1≤i<j≤n).HenceGis a pseudo-semiregular weighted graph.

    Conversely,ifGis a pseudo-regular weighted graph,then=p(1≤i≤n)is a constant,which impliesAC=pC.By Perron-Frobenius Theorem(see[2]),for any positive eigenvector of a nonnegative matrix,the corresponding eigenvalue is the spectral radius of that matrix.

    Henceλ1(G)=p=

    IfGis a pseudo-semiregular weighted bipartite graph,we assume

    (1≤i≤n1)and(n1+1≤i≤n),whereB=)is ann1×n2matrix withn1+n2=n.LetC1=andC2=So for eachi(1≤i≤n1),thei-th element ofBBTC1is

    Similarly,rj(BTBC2)=for eachj(1≤j≤n2).HenceA2C=p1p2C,whereC=(w1,w2,···,wn)T.It is known that for any positive eigenvector of a nonnegative matrix,the corresponding eigenvalue is the spectral radius of that matrix.So

    From the equality(?),we have

    It follows that

    This completes the proof of Theorem 3.1.

    Corollary 3.1(1)Let G be a pseudo-regular weighted graph with γ(v)=pw(v)for each v∈V(G).Then(G)=p.

    (2)Let G be a pseudo-semiregular weighted bipartite graph with the bipartition(X,Y).If γ(v)=pxw(v)for each v∈X and γ(v)=pyw(v)for each v∈Y,then λ1(G)=

    Since a regular weighted graph must be a pseudo-regular weighted graph and a semiregular weighted bipartite graph must be a pseudo-semiregular weighted bipartite graph,we have the following results immediately from Corollary 3.1.

    Corollary 3.2(1)Let G be a regular weighted graph with w(v)=a for each v∈V(G).Then λ1(G)=a.

    (2)Let G be a semiregular weighted bipartite graph with the bipartition(X,Y).If w(v)=a for each v∈X and w(v)=b for each v∈Y,then λ1(G)=

    Corollary 3.3Let G be a simple connected weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted graph or a semiregular weighted bipartite graph.

    ProofBy Theorem 3.1 and the Cauchy-Schwarz inequality,

    Since

    we have

    If the equality holds,Gis a pseudo-regular weighted graph or a pseudo-semiregular weighted bipartite graph(by Theorem 3.1)withγi=γjfor all 1≤i<j≤n.ThusGis a regular weighted graph or a semiregular weighted bipartite graph.Conversely,ifGis a regular weighted graph,the equality holds immediately.IfGis a semiregular weighted bipartite graph,weassume thatw(v1)=···=w(vn1)=aand=···=w()=b.Sincea=(n?)b,By Corollary 3.2,we have(G)=Thus the equality holds.

    Corollary 3.4Let G be a simple connected weighted graph of order n.Then

    ProofBy Corollary 3.3 and the Cauchy-Schwarz inequality,

    Remark 3.1IfGis a simple connected unweighted graph of ordernwith the degree sequenced1,d2,···,dn,the minimum degreeδ,andti=then the inequalities(3.1),(3.2)and(3.3)become

    respectively.The inequality(3.4)is one of the main results in[20],and the inequality(3.5)is one of the main results in[9].

    4 Lower Bounds of the(Signless)Laplacian Spectral Radius

    Theorem 4.1Let G be a simple connected weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted graph or a semiregular weighted bipartite graph.

    ProofLetW(G)+A(G)be the signless Laplacian matrix ofGandX=be the unit positive eigenvector ofW(G)+A(G)corresponding toq1(G).For short,we writeW(G)+A(G)asW+Ain the following proof.Take

    Then

    Since

    we have

    If the equality holds,then

    which implies that(W+A)2C=((W+A)2)C(by Lemma 2.1).SinceW+Ais a nonnegative irreducible positive semidefinite matrix,all eigenvalues ofW+Aare nonnegative.By Perron-Frobenius Theorem,the multiplicity of(W+A)is one.Since((W+A)2)=((W+A))2,we have the multiplicity ofλ1((W+A)2)is one.Hence,if the equality holds,thenX=C.Byλ1(W+A)C=(W+A)C,we haveλ1(W+A)wi=+γifori=1,2,···,n.Thus+=+for alli/j.Assume,without loss of generality,thatw1=a=max{wi:1≤i≤n},w2=b=min{wi:1≤i≤n}andab.Then we have

    Sinceγ1≥abandγ2≤ab,

    Thus we must haveγ1=ab=γ2.This impliesw(v)=aorw(v)=bfor allv∈V(G),sinceGis a connected weighted graph.HenceGis a regular weighted graph or a semiregular weighted bipartite graph.

    Conversely,ifGis a regular weighted graph withw(v)=afor eachv∈V,then

    By Lemma 2.4,q1(G)=2aand so the equality holds.

    IfGis a semiregular connected bipartite graph withw(v1)=···=w(vn1)=aand=···=w(vn)=b,noting thatn1a=(n?n1)b,we have

    By Lemmas 2.2 and 2.5,q1(G)=μ1(G)=a+band so the equality holds.

    Corollary 4.1Let G be a simple connected weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted graph.

    ProofBy Theorem 4.1 and the Cauchy-Schwarz inequality,we have

    If the equality holds,Gis a regular weighted graph or a semiregular bipartite weighted graph(by Theorem 4.1)withfor 1≤i<j≤n.IfGis a semiregular bipartite weighted graph,without loss of generality,we assume thatw1=a=max{wi:1≤i≤n}andw2=b=min{wi:1≤i≤n}.Then we have+ab,which impliesa=b.HenceGis a regular bipartite weighted graph.Conversely,ifGis a regular weighted graph,by Lemma 2.4,the equality holds immediately.

    Corollary 4.2Let G be a simple connected weighted graph.Then

    ProofBy Corollary 4.1 and the Cauchy-Schwarz inequality,

    Remark 4.1LetGbe a simple connected unweighted graph with the degree sequenced1,d2,···,dn,the minimum degreeδ,andti=Then the inequalities(4.1),(4.2)and(4.3)become

    respectively.

    By Lemma 2.2,for a simple connected weighted bipartite graphG,its Laplacian spectral radiusμ1(G)is equal to its signless Laplacian spectral radiusq1(G).So by Theorem 4.1 and Corollaries 4.1–4.2,the following results hold immediately.

    Theorem 4.2Let G be a simple connected bipartite weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted bipartite graph or a semiregular weighted bipartite graph.

    Corollary 4.3Let G be a simple connected bipartite weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted bipartite graph.

    Corollary 4.4Let G be a simple connected bipartite weighted graph.Then

    Remark 4.2LetGbe a simple connected unweighted graph with the degree sequenced1,d2,···,dn,the minimum degreeδ,andti=Then the inequalities(4.4),(4.5)and(4.6)become

    respectively.The inequality(4.7)is one of the main results in[20],and the inequality(4.8)is one of the main results in[10].

    [1]Anderson,W.N.and Morley,T.D.,Eigenvalues of the Laplacian of a graph,Linear and Multilinear Algebra,18,1985,141–145.

    [2]Bapat,R.B.and Raghavan,T.E.S.,Nonnegative Matrix and Applications,Cambridge University Press,Cambridge,1997.

    [3]CvetkoviD.,Doob,M.and Sachs,H.,Spectra of Graphs–Theory and Application,Academic Press,New York,1980.

    [4]Das,K.C.,Extremal graph characterization from the upper bound of the Laplacian spectral radius of weighted graphs,Linear Algebra and Its Applications,427,2007,55–69.

    [5]Das,K.C.and Bapat,R.B.,A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs,Linear Algebra and Its Applications,409,2005,153–165.

    [6]Das,K.C.and Bapat,R.B.,A sharp upper bound on the spectral radius of weighted graphs,Discrete Mathematics,308,2008,3180–3186.

    [7]Das,K.C.and Kumar,P.,Some new bounds on the spectral radius of graphs,Discrete Mathematics,281,2004,149–161.

    [8]Guo,J.M.,A new upper bounds for the Laplacian spectral radius of graphs,Linear Algebra and Its Applications,400,2005,61–66.

    [9]Hofmeister,M.,Spectral radius and degree sequence,Math.Nachr.,139,1988,37–44.

    [10]Hong,Y.and Zhang,X.D.,Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees,Discrete Mathematics,296,2005,187–197.

    [11]Li,J.S.and Zhang,X.D.,On the Laplacian eigenvalues of a graph,Linear Algebra and Its Applications,285,1998,305–307.

    [12]Liu,H.Q.,Lu,M.and Tian,F.,On the Laplacian spectral radius of a graph,Linear Algebra and Its Applications,376,2004,135–141.

    [13]Merris,R.,Laplacian matrices of graphs:A survey,Linear Algebra and Its Applications,197-198,1994,143–176.

    [14]Rojo,O.,A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs,Linear Algebra and Its Applications,420,2007,625–633.

    [15]Rojo,O.,Soto,R.and Rojo,H.,An always nontrivial upper bound for Laplacian graph eigenvalues,Linear Algebra and Its Applications,312,2000,155–159.

    [16]Shu,J.L.,Hong,Y.and Kai,W.R.,A sharp bound on the largest eigenvalue of the Laplacian matrix of a graph,Linear Algebra and Its Applications,347,2002,123–129.

    [17]Sorgun,S.and Bykkse,S.,The new upper bounds on the spectral radius of weighted graphs,Applied Mathematics and Computation,218,2012,5231–5238.

    [18]Tan,S.W.,On the Laplacian spectral radius of weighted trees with a positive weight set,Discrete Mathematics,310,2010,1026–1036.

    [19]Yang,H.Z.,Hu,G.Z.and Hong,Y.,Bounds of spectral radii of weighted trees,Tsinghua Science and Technology,8,2003,517–520.

    [20]Yu,A.M.,Lu,M.and Tian,F.,On the spectral radius of graphs,Linear Algebra and Its Applications,387,2004,41–49.

    [21]Zhang,X.D.,Two sharp upper bound for the Laplacian eigenvalues,Linear Algebra and Its Applications,376,2004,207–213.

    欧美丝袜亚洲另类 | 亚洲成av片中文字幕在线观看| 黄色丝袜av网址大全| 好男人在线观看高清免费视频 | 亚洲中文日韩欧美视频| 精品欧美一区二区三区在线| 国产真实乱freesex| 亚洲五月婷婷丁香| 国内毛片毛片毛片毛片毛片| 成人亚洲精品一区在线观看| 在线天堂中文资源库| 国产精品免费一区二区三区在线| 美女免费视频网站| 国产高清视频在线播放一区| 色老头精品视频在线观看| 无人区码免费观看不卡| 久久香蕉激情| 久久九九热精品免费| 色播亚洲综合网| 亚洲,欧美精品.| 欧美成人午夜精品| 久久人妻av系列| 欧美性猛交╳xxx乱大交人| 国产又爽黄色视频| 在线观看免费视频日本深夜| 啦啦啦观看免费观看视频高清| 后天国语完整版免费观看| 淫秽高清视频在线观看| 欧美日韩精品网址| 丁香六月欧美| 亚洲欧美精品综合久久99| 欧美性猛交╳xxx乱大交人| 午夜免费观看网址| 国产又爽黄色视频| 天天一区二区日本电影三级| 日本三级黄在线观看| 国产成人av教育| 波多野结衣高清作品| 97碰自拍视频| 777久久人妻少妇嫩草av网站| 美女 人体艺术 gogo| 满18在线观看网站| 午夜福利欧美成人| 黑人巨大精品欧美一区二区mp4| 精品国产乱子伦一区二区三区| 亚洲成a人片在线一区二区| 免费观看人在逋| 亚洲精品久久成人aⅴ小说| 亚洲一区中文字幕在线| 99热这里只有精品一区 | 午夜福利一区二区在线看| 一进一出抽搐gif免费好疼| 香蕉久久夜色| 日韩欧美国产在线观看| 制服诱惑二区| 长腿黑丝高跟| 99久久久亚洲精品蜜臀av| 久久精品国产99精品国产亚洲性色| 日本 欧美在线| 美女高潮喷水抽搐中文字幕| 国产三级在线视频| 波多野结衣巨乳人妻| 亚洲成国产人片在线观看| АⅤ资源中文在线天堂| 亚洲 国产 在线| 欧美精品亚洲一区二区| 午夜久久久在线观看| 可以在线观看的亚洲视频| or卡值多少钱| 中文字幕人成人乱码亚洲影| 国产成人欧美在线观看| 大型av网站在线播放| 欧美午夜高清在线| 日韩精品青青久久久久久| 久久青草综合色| 亚洲成国产人片在线观看| 给我免费播放毛片高清在线观看| 黄频高清免费视频| 国产欧美日韩精品亚洲av| 精华霜和精华液先用哪个| 午夜视频精品福利| 国产精品亚洲一级av第二区| 两个人看的免费小视频| 欧美黄色淫秽网站| 成人手机av| 最近最新免费中文字幕在线| 午夜福利视频1000在线观看| 欧美成狂野欧美在线观看| 国产精品美女特级片免费视频播放器 | 国产成人精品久久二区二区免费| 老司机福利观看| 日韩一卡2卡3卡4卡2021年| 少妇裸体淫交视频免费看高清 | 国产免费男女视频| 少妇熟女aⅴ在线视频| 熟女电影av网| 伊人久久大香线蕉亚洲五| 精品人妻1区二区| 国产又爽黄色视频| 99精品欧美一区二区三区四区| 国产精品九九99| 国产伦人伦偷精品视频| 一级片免费观看大全| 亚洲精华国产精华精| 两个人视频免费观看高清| 成在线人永久免费视频| 国产成人系列免费观看| 成人特级黄色片久久久久久久| 欧美日本视频| 国产真实乱freesex| 亚洲av熟女| 亚洲全国av大片| 亚洲av片天天在线观看| 美女扒开内裤让男人捅视频| 狂野欧美激情性xxxx| 久久精品国产清高在天天线| 婷婷精品国产亚洲av| 中文字幕人妻熟女乱码| 日本免费a在线| 国产精品香港三级国产av潘金莲| 久久香蕉精品热| 91在线观看av| 日本撒尿小便嘘嘘汇集6| 丝袜美腿诱惑在线| 怎么达到女性高潮| 久久精品成人免费网站| 亚洲男人天堂网一区| 一级黄色大片毛片| 国产精品一区二区免费欧美| 精品欧美国产一区二区三| 久久中文字幕一级| www.自偷自拍.com| 少妇熟女aⅴ在线视频| www国产在线视频色| 一级作爱视频免费观看| 国产成人精品无人区| 免费高清视频大片| 一级a爱片免费观看的视频| 久久婷婷成人综合色麻豆| 午夜福利成人在线免费观看| 一进一出抽搐动态| 搡老妇女老女人老熟妇| 亚洲精品粉嫩美女一区| 免费电影在线观看免费观看| 国内少妇人妻偷人精品xxx网站 | 丁香欧美五月| 国产精品影院久久| 麻豆久久精品国产亚洲av| 国产免费男女视频| 亚洲精品av麻豆狂野| 日韩欧美国产在线观看| 久久九九热精品免费| 国产av又大| 亚洲无线在线观看| avwww免费| 国产真人三级小视频在线观看| av中文乱码字幕在线| 黄色 视频免费看| 日韩国内少妇激情av| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看日韩欧美| 丝袜人妻中文字幕| 亚洲五月天丁香| 日韩大码丰满熟妇| 人人妻人人澡人人看| 精品免费久久久久久久清纯| 国内揄拍国产精品人妻在线 | 色在线成人网| 熟妇人妻久久中文字幕3abv| 国产单亲对白刺激| 亚洲一卡2卡3卡4卡5卡精品中文| 色播亚洲综合网| 国产高清有码在线观看视频 | 国产亚洲精品久久久久久毛片| 99精品在免费线老司机午夜| 正在播放国产对白刺激| 日韩有码中文字幕| 国产欧美日韩一区二区精品| 大香蕉久久成人网| 美女 人体艺术 gogo| 伦理电影免费视频| 国产成人精品久久二区二区免费| 国语自产精品视频在线第100页| 日韩欧美国产一区二区入口| 国产精品久久久人人做人人爽| 久久久精品欧美日韩精品| 桃红色精品国产亚洲av| 两人在一起打扑克的视频| 国产精品一区二区免费欧美| 国产真实乱freesex| 国产区一区二久久| 欧美一级a爱片免费观看看 | 欧美国产日韩亚洲一区| 男女那种视频在线观看| www日本在线高清视频| 最好的美女福利视频网| 久久久久久久久久黄片| cao死你这个sao货| 国产97色在线日韩免费| 成人欧美大片| 亚洲三区欧美一区| 丁香欧美五月| 嫩草影院精品99| 久久香蕉激情| 法律面前人人平等表现在哪些方面| 热re99久久国产66热| 亚洲五月色婷婷综合| 免费在线观看影片大全网站| 18禁黄网站禁片免费观看直播| 久久久水蜜桃国产精品网| 欧美性猛交╳xxx乱大交人| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 美女国产高潮福利片在线看| 最好的美女福利视频网| 琪琪午夜伦伦电影理论片6080| 欧美乱妇无乱码| 午夜久久久久精精品| 亚洲最大成人中文| 午夜福利18| a级毛片a级免费在线| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| 又黄又爽又免费观看的视频| 黄色 视频免费看| 18禁国产床啪视频网站| 久久亚洲真实| www国产在线视频色| 搡老熟女国产l中国老女人| 亚洲成人久久性| 国产欧美日韩一区二区三| 亚洲五月天丁香| 亚洲精品国产一区二区精华液| 香蕉久久夜色| 日本免费一区二区三区高清不卡| 少妇被粗大的猛进出69影院| 亚洲国产精品成人综合色| 国产亚洲欧美98| 中文字幕高清在线视频| 99久久久亚洲精品蜜臀av| 亚洲男人天堂网一区| 中亚洲国语对白在线视频| 亚洲avbb在线观看| 99国产精品一区二区三区| 国产野战对白在线观看| 亚洲狠狠婷婷综合久久图片| 久久久国产成人免费| 免费在线观看日本一区| 欧美不卡视频在线免费观看 | 999久久久精品免费观看国产| 少妇被粗大的猛进出69影院| av超薄肉色丝袜交足视频| 国产精品久久电影中文字幕| 少妇熟女aⅴ在线视频| 国产精品综合久久久久久久免费| 波多野结衣高清作品| 午夜福利在线观看吧| 在线播放国产精品三级| 亚洲最大成人中文| 亚洲第一av免费看| 成人亚洲精品一区在线观看| 久久香蕉激情| 怎么达到女性高潮| 日本免费一区二区三区高清不卡| 亚洲av成人av| 精品熟女少妇八av免费久了| 亚洲天堂国产精品一区在线| 少妇熟女aⅴ在线视频| 国产一区在线观看成人免费| 国产伦人伦偷精品视频| www国产在线视频色| 两性午夜刺激爽爽歪歪视频在线观看 | 免费观看精品视频网站| 999久久久国产精品视频| 美女高潮喷水抽搐中文字幕| 好男人在线观看高清免费视频 | 免费在线观看完整版高清| 青草久久国产| 久久国产精品人妻蜜桃| 一二三四在线观看免费中文在| 日韩精品免费视频一区二区三区| 欧美在线一区亚洲| 国产亚洲欧美精品永久| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 老鸭窝网址在线观看| 午夜成年电影在线免费观看| 老司机深夜福利视频在线观看| 村上凉子中文字幕在线| 国产精品香港三级国产av潘金莲| 一本大道久久a久久精品| 国产aⅴ精品一区二区三区波| 丝袜在线中文字幕| 宅男免费午夜| 久久久国产精品麻豆| 成年人黄色毛片网站| 男女那种视频在线观看| 中文亚洲av片在线观看爽| 久久精品国产清高在天天线| 老鸭窝网址在线观看| 伦理电影免费视频| 熟女电影av网| 俄罗斯特黄特色一大片| 日韩高清综合在线| 国产又黄又爽又无遮挡在线| 身体一侧抽搐| 女性生殖器流出的白浆| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 欧美+亚洲+日韩+国产| 丝袜美腿诱惑在线| 免费看日本二区| 国产黄片美女视频| 亚洲片人在线观看| 1024视频免费在线观看| 观看免费一级毛片| 久久国产精品影院| 亚洲成人国产一区在线观看| 国产精华一区二区三区| 国产精品野战在线观看| 男人舔女人的私密视频| 久久中文字幕人妻熟女| 国产单亲对白刺激| 免费无遮挡裸体视频| 黄色女人牲交| 国产色视频综合| 真人做人爱边吃奶动态| 午夜影院日韩av| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 欧美不卡视频在线免费观看 | 国产在线观看jvid| 欧美黑人巨大hd| 亚洲人成网站高清观看| ponron亚洲| 国内毛片毛片毛片毛片毛片| 少妇的丰满在线观看| 变态另类成人亚洲欧美熟女| 亚洲熟妇熟女久久| 欧美日韩一级在线毛片| 精品国产国语对白av| 欧美在线黄色| 18禁裸乳无遮挡免费网站照片 | 精品一区二区三区视频在线观看免费| 久久久水蜜桃国产精品网| 最新在线观看一区二区三区| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 午夜激情福利司机影院| 搡老熟女国产l中国老女人| 亚洲精品久久成人aⅴ小说| 俺也久久电影网| 波多野结衣巨乳人妻| 美女免费视频网站| 免费看十八禁软件| 怎么达到女性高潮| 欧美日本亚洲视频在线播放| 亚洲aⅴ乱码一区二区在线播放 | 午夜日韩欧美国产| 国产主播在线观看一区二区| 给我免费播放毛片高清在线观看| 亚洲av片天天在线观看| 国产在线观看jvid| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 99热只有精品国产| 麻豆成人午夜福利视频| 在线观看舔阴道视频| 人人妻,人人澡人人爽秒播| cao死你这个sao货| 欧美一级a爱片免费观看看 | 国产三级在线视频| 欧美黑人巨大hd| 色播在线永久视频| 久久精品夜夜夜夜夜久久蜜豆 | 女生性感内裤真人,穿戴方法视频| 桃色一区二区三区在线观看| 在线观看66精品国产| 精品久久久久久久毛片微露脸| 久久伊人香网站| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 一级作爱视频免费观看| 亚洲av成人一区二区三| 在线观看一区二区三区| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 色综合亚洲欧美另类图片| 国产极品粉嫩免费观看在线| 欧美国产精品va在线观看不卡| 天堂动漫精品| 精品午夜福利视频在线观看一区| 亚洲成人免费电影在线观看| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 伊人久久大香线蕉亚洲五| 亚洲七黄色美女视频| 人人澡人人妻人| 天天躁狠狠躁夜夜躁狠狠躁| www.www免费av| 国产精品亚洲美女久久久| 丰满的人妻完整版| 久久久精品国产亚洲av高清涩受| 国产精品98久久久久久宅男小说| 成人亚洲精品一区在线观看| 亚洲精品国产一区二区精华液| 久久久久久九九精品二区国产 | 黄色视频,在线免费观看| 中文字幕最新亚洲高清| 人人妻人人澡欧美一区二区| 免费看十八禁软件| 亚洲国产欧美网| 国产高清激情床上av| 午夜激情福利司机影院| 熟女电影av网| 免费女性裸体啪啪无遮挡网站| 日本三级黄在线观看| 午夜免费成人在线视频| www.www免费av| 久久久久免费精品人妻一区二区 | 成年人黄色毛片网站| 国产免费男女视频| 啦啦啦 在线观看视频| 亚洲成国产人片在线观看| 999久久久精品免费观看国产| 狠狠狠狠99中文字幕| 一区二区三区国产精品乱码| 99热只有精品国产| 国产单亲对白刺激| 老司机靠b影院| 亚洲av电影在线进入| 我的亚洲天堂| 亚洲国产看品久久| 久9热在线精品视频| 日韩国内少妇激情av| 19禁男女啪啪无遮挡网站| www.熟女人妻精品国产| 999精品在线视频| 国产精品 国内视频| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影 | 国产乱人伦免费视频| 嫩草影院精品99| 国产成人啪精品午夜网站| 久久久久亚洲av毛片大全| 欧美乱妇无乱码| 中文字幕av电影在线播放| 国产av一区二区精品久久| 欧美丝袜亚洲另类 | 美女午夜性视频免费| 在线观看日韩欧美| 亚洲午夜精品一区,二区,三区| 在线天堂中文资源库| 午夜福利成人在线免费观看| 午夜福利在线在线| 国产男靠女视频免费网站| 日日干狠狠操夜夜爽| 成人一区二区视频在线观看| 母亲3免费完整高清在线观看| 九色国产91popny在线| 18禁黄网站禁片免费观看直播| 日本一区二区免费在线视频| 国产精品免费视频内射| 久久人妻福利社区极品人妻图片| 制服人妻中文乱码| 亚洲国产精品999在线| 免费在线观看黄色视频的| 亚洲色图av天堂| 久久久久久大精品| 日本一本二区三区精品| 日韩精品免费视频一区二区三区| 欧美色欧美亚洲另类二区| 亚洲中文字幕一区二区三区有码在线看 | 国产成人一区二区三区免费视频网站| 亚洲电影在线观看av| 久久久久久久精品吃奶| 女人爽到高潮嗷嗷叫在线视频| 黄色视频不卡| 久久午夜综合久久蜜桃| 久久狼人影院| 两人在一起打扑克的视频| 12—13女人毛片做爰片一| 黄片大片在线免费观看| 一边摸一边做爽爽视频免费| 黑丝袜美女国产一区| 观看免费一级毛片| 久热这里只有精品99| 精品久久蜜臀av无| 日韩精品青青久久久久久| 男人操女人黄网站| 变态另类成人亚洲欧美熟女| 男女之事视频高清在线观看| 日日夜夜操网爽| 亚洲成av片中文字幕在线观看| 国产aⅴ精品一区二区三区波| 草草在线视频免费看| 午夜激情福利司机影院| 国产爱豆传媒在线观看 | 中亚洲国语对白在线视频| 国产熟女xx| 亚洲精品粉嫩美女一区| 国产精品一区二区免费欧美| 国产精品久久久人人做人人爽| 色综合欧美亚洲国产小说| 午夜福利18| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看 | 99精品久久久久人妻精品| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o| 色老头精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| netflix在线观看网站| 黑丝袜美女国产一区| 人人妻人人看人人澡| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 亚洲自拍偷在线| xxxwww97欧美| 国产男靠女视频免费网站| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站 | 午夜福利18| 欧美丝袜亚洲另类 | 极品教师在线免费播放| 9191精品国产免费久久| 久久香蕉国产精品| 啦啦啦韩国在线观看视频| www.999成人在线观看| 国产精品一区二区免费欧美| 亚洲,欧美精品.| 欧美久久黑人一区二区| 91麻豆精品激情在线观看国产| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx| 久久国产精品男人的天堂亚洲| 成人国语在线视频| 欧美日本亚洲视频在线播放| 亚洲人成伊人成综合网2020| 国产精品影院久久| 久久这里只有精品19| 午夜免费成人在线视频| 欧美色欧美亚洲另类二区| 亚洲真实伦在线观看| 久久这里只有精品19| 老熟妇仑乱视频hdxx| 久久久国产成人免费| 国产高清视频在线播放一区| 欧美日韩一级在线毛片| ponron亚洲| 中文字幕精品亚洲无线码一区 | 亚洲精品国产精品久久久不卡| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 亚洲精品美女久久av网站| 窝窝影院91人妻| 在线天堂中文资源库| 国产精品野战在线观看| 淫秽高清视频在线观看| 国产精品亚洲美女久久久| 18禁美女被吸乳视频| 亚洲自偷自拍图片 自拍| 男女之事视频高清在线观看| 曰老女人黄片| 色播亚洲综合网| 国产视频一区二区在线看| 国产精华一区二区三区| 老汉色∧v一级毛片| 99国产精品一区二区三区| 极品教师在线免费播放| 欧美绝顶高潮抽搐喷水| 日本免费a在线| 亚洲一区中文字幕在线| а√天堂www在线а√下载| 老司机在亚洲福利影院| 国产成人影院久久av| 不卡一级毛片| 午夜精品久久久久久毛片777| 91字幕亚洲| 久久久久久亚洲精品国产蜜桃av| 亚洲国产精品sss在线观看| 老司机福利观看| 丰满的人妻完整版| 欧美一级a爱片免费观看看 | 国产一区二区激情短视频| 一级毛片高清免费大全| 精品国产乱码久久久久久男人| 岛国在线观看网站| 午夜福利在线观看吧| 一区二区三区激情视频| 国产精品美女特级片免费视频播放器 | 久久中文字幕人妻熟女| 欧美国产精品va在线观看不卡| 男女视频在线观看网站免费 | 亚洲欧美精品综合一区二区三区| 这个男人来自地球电影免费观看| 侵犯人妻中文字幕一二三四区| 在线观看免费日韩欧美大片| 日本免费一区二区三区高清不卡| 国产国语露脸激情在线看| 村上凉子中文字幕在线| 国产激情久久老熟女| 免费在线观看完整版高清| 99精品在免费线老司机午夜| 免费高清视频大片| 一区二区三区国产精品乱码| 精品国产乱码久久久久久男人| 老司机在亚洲福利影院| 久久性视频一级片| 男人舔奶头视频| 欧美成人免费av一区二区三区|