• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Delay-Dependent Exponential Stability for Nonlinear Reaction-Diffusion Uncertain Cohen-Grossberg Neural Networks with Partially Known Transition Rates via Hardy-Poincar′e Inequality?

    2014-06-05 03:08:10RuofengRAO
    關(guān)鍵詞:蓋爾沙塵暴降雨量

    Ruofeng RAO

    1 Introduction

    It is well-known that Cohen-Grossberg in[1]proposed originally the CGNNs.Since then the CGNNs have founded its extensive applications in pattern recognition,image and signal processing,quadratic optimization,and aritifical intelligence(see[2–11]).However,these successful applications are greatly dependent on the stability of the neural networks,which is also a crucial feature in the design of the neural networks.In practice,both time delays and impulse are always inevitable,and cause probably some undesirable dynamic network behaviors such as oscillation and instability.Therefore,the stability analysis for delayed impulsive CGNNs has become a topic of great theoretic and practical importance in recent years(see[2–3,5–6]).Recently,the CGNNs with Markovian jumping parameters have been extensively studied,for the systems with Markovian jumping parameters are useful in modeling abrupt phenomena,suchas random failures,operating in different points of a nonlinear plant,and changing in the interconnections of subsystems(see[5–8]).Noise disturbance is unavoidable in real nervous systems,which is a major source of instability and poor performances in neural networks.A neural network can be stabilized or destabilized by certain stochastic inputs.The synaptic transmission in real neural networks can be viewed as a noisy process introduced by random fluctuations from the release of neurotransmitters and other probabilistic causes(see[12]).Hence,noise disturbance should be also taken into consideration in discussing the stability of neural networks(see[13–17]).On the other hand,diffusion phenomena can not be unavoidable in real world.Usually diffusion phenomena is simulated by linear Laplace diffusion for simplicity in many previous literatures(see[2,18–20]).However,diffusion behavior is so complicated that the nonlinear reaction-diffusion models were considered in several papers(see[3,21–24]).Even the nonlinearp-Laplace diffusion(p>1)was considered in simulating some diffusion behaviors(see[3,6,10]).Particularly,ifp=2,thep-Laplace diffusion was just the conventional linear Laplace diffusion in many previous papers(see[2,18–20]).In addition,neural networks may encounter various other factors and problems in the factual operations.In fact,there exist also parameter errors unavoidable in factual systems owing to aging of electronic component,external disturbance and parameter perturbations.It is equally important to ensure that system is stable with respect to these uncertainties(see[25–26]).Naturally,aging of electronic component,external disturbance and parameter perturbations always result in a side-effect of partially unknown Markovian transition rates.Some of recent literatures investigated the stability of neural networks with partially unknown Markovian transition rates(see[27–28]).As far as we know,stochastic stability for the delayed impulsive Markovian jumping Laplace diffusion CGNN with uncertain parameters has rarely been considered.Besides,the stochastic exponential stability always remains the key factor of concern owing to its importance in designing a neural network,and such a situation motivates our present study.Motivated by the above-mentioned literature,particularly by[2,29–30],we shall investigate the stochastic global exponential stability criteria for the above-mentioned CGNN via the LMIs approach.

    The rest of this paper is organized as follows.In Section 2,new CGNN models are formulated,and some preliminaries are given.In Section 3,new LMI-based stochastic global exponential stability criterion are presented for the CGNNs.And in Section 4,three numerical examples are provided to show the higher feasibility and less conservatism of the new criterion compared with those of[2–3,29–30].Finally,some conclusions are presented in Section 5.

    2 Model Description and Preliminaries

    In 2011,Zhang,Wu and Li in[2]considered the following Cohen-Grossberg neural networks under Dirichlet boundary condition:

    whereu=u(t,x)=(u1(t,x),u2(t,x),···,un(t,x))T,=,···,=···,

    Generally,there exist the following assumptions for the system(2.1)(see[2]):

    (H1)u(t,x))is a bounded,positive and continuous diagonal matrix,i.e.,there exist two positive definite diagonal matricessuch that 0<A≤

    (H2)(u(t,x))=,···,such that there exists a positive definite matrix=diag(satisfying

    (H3)There exist diagonal matrices

    such that

    and

    In this paper,we always assume≡0 for some rational reason(see Remark 2.3),and consider to replace(H3)with the following more flexible condition:

    (H3*)There exist constant diagonal matrices

    with

    such that

    According to[2,Definition 2.1],a constant vectoru?∈Rnis said to be an equilibrium point of system(2.1)if

    Letv=u?u?,then the system(2.1)with~h≡0 can be transformed into

    wherev=v(t,x)=···,u?=A(v(t,x))=(v(t,x)+u?)=(u(t,x)),

    and

    Then,according to[2,Definition 2.1],v≡0 is an equilibrium point of system(2.4).Hence,below we only need consider the stability of the null solution of Cohen-Grossberg neural networks.Naturally we propose the following hypotheses on the system(2.4)withh≡0,which are perhaps derived by the assumptions(H1)–(H2)and(H3*).

    (A1)A(v(t,x))is a bounded,positive and continuous diagonal matrix,i.e.,there exist two positive diagonal matricesandsuch that 0<≤A(v(t,x))≤

    (A2)B(v(t,x))=,···,,such that there exists a positive definite matrixB=diag(B1,B2,···,Bn)T∈Rnsatisfying

    (A3)There exist constant diagonal matrices

    withj=1,2,···,n,such that

    Remark 2.1In many previous literatures,e.g.[2],authors always assume

    which may be correspond to(H3).However,in(A3)may not be positive constants,and hence the functionsf,gare more generic.

    Remark 2.2It is obvious from(2.5)thatB(0)=0=f(0)=g(0),and thenB(0)?Cf(0)?Dg(0)=0.

    Very recently,Wang,Rao and Zhong[3]studied stochastic CGNN with nonlinearp-Laplace diffusion(p>1)under Neumann boundary condition:

    Since stochastic noise disturbance and parameter errors are unavoidable in the practical neural networks,it is necessary to consider the stability of the null solution of the following Markovian jumping CGNN:

    The initial conditions and the boundary conditions are given by

    and

    respectively,wherep>1 is a given scalar,and Ω∈Rmis a bounded domain with a smooth boundary?Ω of classC2by Ω,v(t,x)=···,∈Rn,wherevi(t,x)is the state variable of theith neuron at timetand in space variablex.MatrixD(t,x,v)=satisfies(t,x,v)≥d>0 for allj,k,(t,x,v),where the smooth functionsare diffusion operators.Similarly as that of[3],we denoteAnd D(t,x,v)? ?pv=denotes the Hadamard product of matrixD(t,x,v)and?pv.For matrix Y=(Y1,···,Yn)TwithYi=(i=1,2,···,n),we denote?·Y=(?·Y1,?·Y2,···,?·Yn)T,where?·Particularly,?pv=?vifp=2.

    Denotew(t)=,···,,where(t)is scalar standard Brownian motion defined on a complete probability space(Ω?,F,P)with a natural filtrationNoise perturbationsσ:R+×Rn×Rn×S→is a Borel measurable function.{r(t),t≥0}is a right-continuous Markov process on the probability space which takes values in the finite spaceS={1,2,···,s}with the generator Π =given by

    where≥0 is transition probability rate fromitoj(j/i)and>0 and=0.In addition,the transition rates of the Markovian chain are considered to be partially available,namely,some elements in transition rates matrix Π are time-invariant but unknown.For instance,a system with three operation modes may have the transition rate matrix Π as follows:

    where “”represents the inaccessible element.For natation clarity,we denoteS=withis known}andis unknown,andji}for a giveni∈S.DenoteThe time-varying delayτ(t)satisfies 0≤ τ(t)≤ τwitht)≤ κ <1.

    whereaj(vj(t,x))represents an amplification function,andis an appropriately behavior function.C(r(t),t),D(r(t),t)are denoted byCi(t),Di(t)withCi(t)==respectively,anddenote the connection strengths of thekth neuron on thelth neuron at timetin the moder(t)=i,respectively.Denote vector functionsf(v(t,x))=···,g(v(t,x))=···,whereare neuron activation functions of thejth unit at timetand in space variablex.

    For any moder(t)=i∈S,we assume thatCi,Diare real constant matrices of appropriate dimensions,andare real-valued matrix functions which represent time-varying parameter uncertainties,satisfying

    In addition,we always assume thatt0=0,and=v(,x)for allk=1,2,···,wherev(,x)andv(,x)represent the left-hand and right-hand limits ofv(t,x)at,respectively.And each(k=1,2,···)is an impulsive moment,satisfying 0<t1<t2<···<tk<···and limtk=+∞.The boundary condition(2.7c)is called Dirichlet boundary condition if and Neumann boundary condition if B[(t,x)]=denotes the outward normal derivative on?Ω.It is well-known that the stability of neural networks with Neumann boundary condition has been widely studied.The Dirichlet boundary conditions describe the situation,where the space is totally surrounded by a region in which the states of the neuron equal zero on the boundary.And the stability analysis of delayed reaction-diffusion neural networks with the Dirichlet boundary conditions is very important in theories and applications,and also has attracted much attention(see[2,31–34]).So in this paper,we consider the CGNN under Neumann boundary condition and Dirichlet boundary condition,respectively.

    Remark 2.3If all stochastic factors and uncertain factors are ignored,the system(2.7)withp=2 was studied by[2]though there is a little difference between Dirichlet boundary condition and Neumann boundary condition.However,our impulsive assumptionis more natural than that of[2],which will result in some difference in methods(see,e.g.[3]).

    Particularly,ifp=2,the system(2.7)is reduced to the following CGNN:

    For convenience’s sake,we need introduce some standard notations.

    (1)L2(R×Ω):The space of real Lebesgue measurable functions of R×Ω,it is a Banach space for the 2-norm‖v(t)‖2=where|·|is the Euclid norm.

    (2)The family of allF0-measurableC([?τ,0]×Ω;Rn)-value random variableξ={ξ(θ,x):?τ≤θ≤0,x∈Ω}such that<∞,where E{·}stands for the mathematical expectation operator with respect to the given probability measureP.

    (3)Q=>0(<0):A positive(negative)definite matrix,i.e.,yTQy>0(<0)for any 0/y∈Rn.

    (4)Q=≥0(≤0):A semi-positive(semi-negative)definite matrix,i.e.,yTQy≥0(≤0)for anyy∈Rn.

    蓋爾達(dá)耶屬于炎熱的沙漠氣候,夏天極熱,冬天溫和,晝夜溫差很大,夏季和冬季為5~46℃不等。夏天的風(fēng)干燥、炎熱而強(qiáng)烈,冬天的風(fēng)溫暖而干燥。全年降雨量極少,總量?jī)H為75mm,夏季炎熱季節(jié)降雨量最少,全年有降雨的天數(shù)不足24d,導(dǎo)致7月份的相對(duì)濕度僅為22.3%,1月份達(dá)到54.7%,全年大部分時(shí)間干燥炎熱。此外,每年3~5月是沙塵暴肆掠的季節(jié)。

    (5)This meansis a semi-positive(semi-negative)definite matrix.

    (6)This meansis a positive(negative)definite matrix.

    (7)denote the largest and the smallest eigenvalues of matrix Φ,respectively.

    (8)Denote|C|=for any matrixC=

    for anyu(t,x)=(u1(t,x),u2(t,x),···,un(t,x))T.

    (9)I:Identity matrix with compatible dimension.

    (10)The symmetric terms in a symmetric matrix are denoted by?.

    Throughout this paper,we assume(A1)–(A3)and the following conditions hold:

    (A4)For any modei∈S,the parameter uncertainties considered here are norm-bounded and of the following forms:

    whereK(t)is an unknown matrix function satisfyingare known real constant matrices.

    (A5)There exist symmetrical matricesRj≥0 withj=1,2,such that for any modei∈S,

    (A6)σ(t,0,0,i)=0 for alli∈S.

    Remark 2.4The condition|H|=His not too stringent for a semi-positive definite matrixH=0.Indeed,allhij≥0 imply|H|=H.

    Similarly as that of[2,Definition 2.1],we can see from(A6)that the system(2.7)has the null solution as its equilibrium point.Letv(t,x;φ,i0)be the state trajectory from the initial conditionr(0)=on?τ≤θ≤0 inBelow,we always assume thatv(t,x;φ,i0)is a solution of system(2.7).

    Definition 2.1For any given scalar p>1,the null solution of system(2.7)is said to be stochastically globally exponentially stable in the mean square if for every initial condition φ∈r(0)=i0,there exist scalars β>0and γ>0such that for any solution v(t,x;φ,i0),

    Notice that ifp=2,the system(2.7)is just the system(2.9).And the following Poincar′e inequality lemma and Hardy-Poincar′e inequality lemma may play role in judging the stability of system(2.9).

    Lemma 2.1(see[35])(PoincarInequality)LetΩbe a bounded domain ofRmwith a smooth boundary?Ωof class C2byΩ.ψ(x)is a real-valued function belonging to(Ω)and satisfiesB[ψ(x)]|?Ω=0.Then

    where λ1is the lowest positive eigenvalue of the boundary value problem

    Notice that(Ω)is the Sobolev spacewithp=2,andis the completion of(Ω)with respect to the normThereby,the norm ofNote that we always denote theL2(Ω)-norm by‖ψ‖=

    Lemma 2.2(see[36])(Hardy-PoincarInequality)For any bounded domainΩinRm,any dimension m≥2and for every ψ(x)∈(Ω),we have

    where the constantΛ2is the first eigenvalue of the Laplacian in the unit ball in m=2,and ωm denotes the measure of the unit ball inRm.

    Lemma 2.3be a positive definite matrix for a given i,and v be a solution of system(2.7).Then we have

    ProofSincevis a solution of system(2.7),we can see it by Gauss formula and Dirichlet or Neumann boundary condition that

    Similarly,we can prove

    Lemma 2.4(see[37])Let ε>0be any given scalar,and M,Eand K be matrices with appropriate dimensions.If KTK≤I,then we have

    3 Main Results

    In order to compare with the main results of[2],we may give a prior consideration on the conventional linear Laplace diffusion system(2.9).

    Theorem 3.1The null solution of system(2.9)is stochastically globally exponential stable in the mean square if there exist positive scalars λ≤λ1,β>0,a sequence of positive scalarsand positive definite diagonal matricesand Q such that the following LMI conditions hold:

    where

    ProofConsider the Lyapunov-Krasovskii functional

    where

    Then by Itformula,we get the following stochastic differential:

    Lis the weak infinitesimal operator such thatLV(t,v(t,x),i)=for any giveni∈S.Next,it follows by Lemma 2.3(p=2)and(2.9)that forttk,

    Here,v=v(t,x)is a solution of system(2.9).And fort/tk,

    Moreover,we can get by Poincarinequality and 0<λλ1,

    It follows by(A1)–(A2)that

    In addition,we have

    Similarly,

    From(A3),we have

    Fromπii<0 and the definition ofit is clear that

    (A5)derives

    Combining(3.5)–(3.14)results in

    where

    andζ(t,x)=(|vT(t,x)|,|vT(t?τ(t),x)|,|fT(v(t,x))|,|gT(v(t?τ(t),x))|)T.

    Next we claim that Ai<0.

    For convenience,we denote

    By applying Schur complement to(3.1),we can get from Lemma 2.4,

    which proves our claim.And thenLV(t,v(t,x),i)≤0.Define

    Then we haveV(t,v(t,x),i)=eβtV(t,v(t,x),i),satisfying

    Now,by applying the Dynkin formula,we can derive that for anyi∈S,

    In fact,due tov(,x)=v(tk,x),we might as well assume≤t<tkfor any givenk∈{1,2,···}.And then we have

    which proves(3.16).On the other hand,we claim

    Indeed,we can get by the assumptions onMjk:

    Thus,we prove the claim(3.17).Owing to(3.16)–(3.17),we get

    Hence,combining(3.16)and(3.18)implies

    Now,for anyφ(θ,x)([?τ,0]×Ω;Rn)and any system modei∈S,the solutionv(t,x,φ,i0)of system(2.9)with the initial valueφsatisfies

    or

    where scalarsγ=>0,β>0.Therefore,we can see it by(3.21)and Definition 2.1 that the null solution of system(2.9)is globally stochastically exponentially stable in the mean square.

    Remark 3.1In Theorem 3.1,the magnitude ofλ1is determined by the bounded domain Ω∈Rm.However,ifm≥3,the exact computation ofλ1is usually not possible.Nevertheless,we can estimate the value ofλ1.For instance,under the Dirichlet boundary assumption,we may fixλ=in Theorem 3.1 due to Hardy-Poincar′e inequality.In fact,fromλ1=we know that 0<λ≤λ1,satisfyingfor allψ∈(Ω).In many recent literatures(see[2,31–34]),Ω∈Rmis restricted to be a cube.Moreover,in their numerical examples,the dimensionmis restricted to be 1 or 2.Now,in this paper,we abolish these limitations thanks to the synthetic application of Poincarinequality and Hardy-Poincarinequality.Below,Example 4.3 will show the effectiveness of Theorem 3.1,where Ω is assumed to be a spheroid and not a sphere.Notice that if Ω is a ball,the constants of Hardy-Poincar′e inequality are optimal(see[36,Theorem 4.1]).But Theorem 3.1 admits actuallyλ<λ1,and then we may fixλ=So we need not assume in numerical examples that Ω is the similar ball as that of[29–30].To the best of our knowledge,it is the first time to apply both Poincarinequality and Hardy-Poincar′e inequality to stability analysis of the reaction-diffusion neural networks.

    Remark 3.2Below,Example 4.3 is given to show that Theorem 3.1 is more effective and less conservative than some existing results due to significant improvement in the allowable upper bounds of delays.

    IfD(t,x,v)≡Dis a diagonal constant matrix,the system(2.9)is perhaps reduced to the following system:

    where Δv(t,x)=(Δv1(t,x),Δv2(t,x),···,Δvn(t,x))T,and Δvj(t,x)

    Similarly to(3.7),we have

    where both constant matricesD=diag(D11,D22,···,Dnn)andP=diag(p11,p22,···,pnn)are positive definite.

    Hence,similarly to the proof of Theorem 3.1,we can prove the following similar result.

    Theorem 3.2The null solution of system(3.22)is stochastically globally exponential stable in the mean square if there exist positive scalars λ≤λ1,β>0,a sequence of positive scalars(i∈S)and positive definite diagonal matrices Pi=diag(pi1,pi2,···,pin)(i∈S),L1,L2and Q such that the following LMI conditions hold:

    where

    Consider the deterministic system(2.4)withh≡0,

    Then,from Theorem 3.2,we can deduce the following corollary.

    Corollary 3.3The null solution of system(3.23)is stochastically globally exponential stable in the mean square if there exist positive scalars λ≤λ1,β>0,and positive definite diagonal matrices P,L1,L2and Q such that the following LMI conditions hold:

    where

    Remark 3.3In[2,Theorem 3.1], Ω is restricted to be a cube Ω ={(x1,x2,···,xm)T∈Rm:|xj|<lj,j=1,2,···,m},andF1=G1are assumed to be 0.Under the Dirichlet boundary condition,the null solution of system(3.23)is exponentially stable if all(C1)–(C3)(see[2,Theorem 3.1])are satisfied,where

    andlHere,we point out that in comparison with Corollary 3.3,conditions(C1)–(C3)(see[2,Theorem 3.1])are too complicated to be satisfied.LMI condition(3.24)is more feasible than(C1)of[2,Theorem 2.1].Below we shall give a numerical example for it(see Example 4.1).

    Finally,we consider the LMI criterion for the system(2.7)withp-Laplace diffusion(p>1).

    Theorem 3.4The null solution of system(2.7)is stochastically globally exponential stable in the mean square if there exists a positive scalar β>0,a sequence of positive scalarsS)and positive definite diagonal matrices Pi=(i∈S),L1,L2and Q such that the following LMI conditions hold:

    where

    ProofFirst,we may construct the same Lyapunov-Krasovskii functional as that of the proof for Theorem 3.1.Second,we can get by Lemma 2.3:

    And then we have the similar inequality as(3.5):

    The rest of the proof is completely similar as that of Theorem 3.1.We can derive those similar inequalities as(3.6)–(3.21).And then,based on Definition 2.1,the null solution of system(2.7)is globally stochastically exponentially stable in the mean square.

    If Markovian jumping phenomena and parametric uncertainties are ignored,the system(2.7)is reduced to the following system:

    Then we get the following lemma from Theorem 3.4.

    Corollary 3.5The null solution of system(3.26)is stochastically globally exponential stable in the mean square if there exist positive scalars β>0,and positive definite diagonal matrices P,L1,L2and Q such that the following LMI conditions hold:

    where

    Remark 3.4In[3,Theorem 2.1],R2in(2.10)is assumed to be 0.In addition,F1=G1is also assumed to be 0.If there exist positive definite diagonal matricesP1,P2such that the following LMI holds:

    and other two complicated conditions similar to(C2)and(C3)in[2,Theorem 3.1].Below,Example 4.2 shows that Corollary 3.5 is better than[3,Theorem 2.1]due to less conservativeness and more feasibility.

    Remark 3.5The nonlinearp-Laplace diffusions in Theorem 3.4 bring a great difficulty establishing LMI conditions for the stability criterion.However,it is the first attempt to present the LMI-based criterion for the uncertain CGNNs with nonlinearp-Laplace diffusion.Below,Example 4.3 is given to show that Theorem 3.4 possesses less conservatism due to significant improvement in the allowable upper bounds of delays.

    4 Numerical Examples and Comparisons

    In this section,we shall give three numerical examples(Examples 4.1–4.3)for Corollaries 3.3 and 3.5 in comparison with[2,Theorem 3.1]and[3,Theorem 2.1].Finally,Example 4.3 is presented to illustrate that Theorems 3.1 and 3.4 possess more effectiveness and less conservatism due to significant improvement in the allowable upper bounds of delays.

    Example 4.1Comparing Corollary 3.3 with the main result of[2].

    Under the Dirichlet boundary condition,we consider the following system:

    wherev=∈R2,Ω=:|xj|<j=1,2},and thenl=1,λ1=π2=9.8696(see[35]).In addition,a1(v1)=0.13+0.07a2(v2)=0.14+0.06cos2(tx2),b1(v1)=0.02v1+2v1b2(v2)=0.016v2+12v2sin2(t2+x2),f(v)=g(v)=(0.1v1,0.1v2+0.1v2sin2(tx2))T,and

    and hence

    We might as well assume thatλ=9.8<λ1,β=0.01,=0.525,τ(t)≡0.65=τand thenκ=0 for allt≥t0.We may takeλ=9.8.Now,by using Matlab LMI toolbox to solve the LMI(C1),we gettmin=0.0144>0,which implies the LMI(C1)is found infeasible.But by using Matlab LMI toolbox to solve the LMIs(3.24)and(3.25),the result istmin=?0.1182<0,and

    Hence,Corollary 3.3 derives that the null solution of system(4.1)is stochastically globally exponential stable in the mean square(see Figures 1–3).

    Figure 1 Computer simulations of the states v1(t,x)and v2(t,x)

    Remark 4.1The stability of the null solution of system(4.1)can not be judged by[2,Theorem 3.1],for the first LMI(C1)of three conditions(C1)–(C3)is found infeasible.But all LMI conditions are only sufficient ones,not necessary for the stability.Corollary 3.3 shows that the null solution of system(4.1)is stochastically globally exponential stable in the mean square.Hence,Corollary 3.3 is really effective and less conservative than[2,Theorem 3.1].

    Example 4.2Comparing Corollary 3.5 with the main result of[3].

    Under the Neumann boundary condition and the initial condition(4.2),we consider the system(3.26)with the following parameters:

    Figure 2 Sectional curve of the state variable v1(t,x)

    Figure 3 Sectional curve of the state variable v2(t,x)

    Assume,in addition,β=0.01,τ=0.65,k=0.

    By using Matlab LMI toolbox to solve the LMI(C1*),the result istmin=0.0050>0,which implies the LMI(C1*)is found infeasible.But by solving LMIs(3.1**)–(3.4**),one can obtaintmin=?0.0037<0,and=2.1189,=7.6303,

    Hence,Corollary 3.5 derives that the null solution of system(3.26)is stochastically globally exponential stable in the mean square.

    Remark 4.2The stability of the null solution of system(3.26)with the above mentioned data can not be judged by[3,Theorem 2.1],for the first LMI(C1)of three conditions(C1)–(C3)is found infeasible.But all LMI conditions are only sufficient ones,not necessary for the stability.Hence,Corollary 3.5 is really more effective and less conservative than[3,Theorem 2.1]for the same reason as that of Remark 4.1.

    Example 4.3Comparing the allowable upper bound of Theorem 3.1(p>1)with that of Theorem 3.4(p=2).

    Under the Dirichlet boundary condition,we consider the system(2.7)with the following parameters:

    The transition matrix is considered as

    Then we haved=0.003,0.7.Assume,in addition,β=0.01.Denotev=v(t,x)=(v1(t,x),v2(t,x))T,andx=∈Ω=A direct computation yields Λ2=5.7832,meas(Ω)=4.8842,and thenλ==5.2203.

    Letτ(t)≡100.29,and thenκ=0.Now we use the Matlab LMI toolbox to solve the LMIs(3.1?)–(3.4?).The results showtmin=?0.0418<0,and=1.8714,=0.7246,=1.9114,=0.7669,=1.8892,=0.7450,

    Then we can conclude from Theorem 3.4 that the null solution of system(2.7)is stochastically globally exponential stable in the mean square for the maximum allowable upper boundsτ=100.29.This shows that the approach developed in Theorem 3.4 is effective and less conservative than some existing results.

    Particularly,ifp=2 in the system(2.7),τ(t)≡100.59,andκ=0,one can solve LMIs(3.1)–(3.4),and obtaintmin=?0.0426<0,and=1.8760,=0.7331,=1.9165,=0.7825=1.8945,=0.7616,

    Then we can conclude from Theorem 3.1 that the null solution of system(2.9)(or system(2.7)withp=2)is stochastically globally exponential stable in the mean square for the maximum allowable upper boundsτ=100.59,which shows that Theorem3.1 is effective and less conservative than some existing results.

    Table 1 Allowable upper bound of τ for Theorems 3.1 and 3.4

    Remark 4.3In this numerical example,Ω is an ellipsoid in R3.But in recent related literatures(see[29–30]),only the sphere is considered in their numerical examples.Moreover,in many recent literatures(see[32–36]),Ω is restricted to be a cube in R1or R2in their numerical examples.Now in this paper,due to the synthetic application of Poincar′e inequality and Hardy-Poincar′e inequality,we abolish these limitations.As far as we know,it is the first time to consider an ellipsoid in numerical simulation.

    Remark 4.4Table 1 in this numerical example shows that the allowable upper bound ofτfor Theorem 3.1 is bigger than that of Theorem 3.4(withp=2),which implies the diffusion item plays an active role in the stability criterion.

    Remark 4.5Example 4.3 illustrates that the allowable upper bound of time delays for Theorem 3.1 or Theorem 3.4 is far greater than that of any recent literatures related to delaydependent stability criteria(see[27,38–43]).

    5 Conclusions

    In this paper,the stochastic global exponential stability for delayed impulsive Markovian jumping reaction-diffusion Cohen-Grossberg neural networks is investigated,in which uncertain parameters and partially unknown transition rates and even the nonlinearp-Laplace diffusion bring a great difficulty in judging the stability.By using a novel Lyapunov-Krasovskii functional approach,linear matrix inequality technique,It?o formula,some new stability criteria are obtained.Particularly,the synthetic application of Poincar′e inequality and Hardy-Poincar′e inequality admits ellipsoid domains to be considered in numeral simulation(see Remarks 3.1 and 4.3).Note that ifp=2,thep-Laplace diffusion is just the conventional linear Laplace diffusion studied by many previous literatures.And even ifp=2,the LMI-based criteria have advantages over some previous ones thanks to the less conservatism and higher computational efficiency(see Remark 4.3).The diffusion item plays an active role in judging the stability(see Remark 4.4).As pointed out in Remarks 3.1 and 4.3,Poincar′e inequality and Hardy-Poincar′e inequality are linked judiciously in judging the stability of reaction-diffusion neural networks for the first time so that Ω can be a spheroid and not a sphere in numerical examples.In addition,the feasibility of the LMI conditions of new criteria can be easily checked by the Matlab LMI toolbox.Examples 4.1–4.2 show that corollaries of the main results obtained in this paper are more feasible and effective than the main results of some recent related literatures(see Remarks 4.1–4.2).Finally,Example 4.3 illustrates that the allowable upper bound of time delays for Theorem 3.1 or Theorem 3.4 is far greater than that of any previous related literature(see Remark 4.5).All these numerical examples show the effectiveness and the less conservatism of all the proposed methods.

    AcknowledgementThe author thanks the anonymous reviewers for their valuable suggestions and comments which have led to a much improved paper.

    [1]Cohen,M.and Grossberg,S.,Absolute stability and global pattern formation and parallel memory storage by competitive neural networks,IEEE Trans.Systems Man Cybernt.,13,1983,815–826.

    [2]Zhang,X.,Wu,S.and Li,K.,Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms,Commun.Nonlinear Sci.Numer.Simulat.,16,2011,1524–1532.

    [3]Wang,X.R.,Rao,R.F.and Zhong,S.M.,LMI approach to stability analysis of Cohen-Grossberg neural networks withp-Laplace diffusion,J.App.Math.,2012,523812,12 pages.

    [4]Rong,L.B.,Lu,W.L.and Chen,T.P.,Global exponential stability in Hopfield and bidirectional associative memory neural networks with time delays,Chin.Ann.Math.Ser.B,25(2),2004,255–262.

    [5]Rakkiyappan,R.and Balasubramaniam,P.,Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays,Nonlinear Anal.Hybrid Syst.,3,2009,408–417.

    [6]Rao,R.F.and Pu,Z.L.,Stability analysis for impulsive stochastic fuzzyp-Laplace dynamic equations under Neumann or Dirichlet boundary condition,Bound.Value Probl.,2013,2013:133,14 pages.

    [7]Balasubramaniam,P.and Rakkiyappan,R.,Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays,Nonlinear Anal.Hybrid Syst.,3,2009,207–214.

    [8]Zhang,H.and Wang,Y.,Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays,IEEE Trans.Neural Networks,19,2008,366–370.

    [9]Song,Q.K.and Cao J.D.,Stability analysis of Cohen-Grossberg neural network with both time-varying and continuously distributed delays,J.Comp.Appl.Math.,197,2006,188–203.

    [10]Rao,R.F.,Wang,X.R.,Zhong,S.M.and Pu,Z.L.,LMI approach to exponential stability and almost sure exponential stability for stochastic fuzzy Markovian jumping Cohen-Grossberg neural networks with nonlinearp-Laplace diffusion,J.Appl.Math.,2013,396903,21 pages.

    [11]Jiang,M.,Shen,Y.and Liao,X.,Boundedness and global exponential stability for generalized Cohen-Grossberg neural networks with variable delay,Appl.Math.Comp.,172,2006,379–393.

    [12]Haykin,S.,Neural Networks,Prentice-Hall,Upper Saddle River,NJ,USA,1994.

    [13]Zhu,Q.and Cao,J.,Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays,IEEE Trans.System,Man,and Cybernt.,41,2011,341–353.

    [14]Zhu,Q.and Cao,J.,Stability analysis for stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays,Neurocomp.,73,2010,2671–2680.

    [15]Zhu,Q.,Yang,X.and Wang,H.,Stochastically asymptotic stability of delayed recurrent neural networks with both Markovian jump parameters and nonlinear disturbances,J.Franklin Inst.,347,2010,1489–1510.

    [16]Zhu,Q.and Cao,J.,Stochastic stability of neural networks with both Markovian jump parameters and continuously distributed delays,Discrete Dyn.Nat.Soc.,2009,490515,20 pages.

    [17]Zhu,Q.and Cao,J.,Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays,IEEE Trans.Neural Networks,21,2010,1314–1325.

    [18]Liang X.and Wang,L.S.,Exponential stability for a class of stochastic reaction-diffusion Hopfield neural networks with delays,J.Appl.Math.,2012,693163,12 pages.

    [19]Zhang,Y.T.,Asymptotic stability of impulsive reaction-diffusion cellular neural networks with timevarying delays,J.Appl.Math.,2012,501891,17 pages.

    [20]Abdelmalek,S.,Invariant regions and global existence of solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous boundary conditions,J.Appl.Math.,2007,12375,15 pages.

    [21]Higham,D.J.and Sardar,T.,Existence and stability of fixed points for a discretised nonlinear reactiondiffusion equation with delay,Appl.Numer.Math.,18,1995,155–173.

    [22]Baranwal,V.K.,Pandey,R.K.,Tripathi,M.P.and Singh,O.P.,An analytic algorithm for time fractional nonlinear reaction-diffusion equation based on a new iterative method,Commun.Nonlinear Sci.Numer.Simul.,17,2012,3906–3921.

    [23]Meral,G.and Tezer-Sezgin,M.,The comparison between the DRBEM and DQM solution of nonlinear reaction-diffusion equation,Commun.Nonlinear Sci.Numer.Simul.,16,2011,3990–4005.

    [24]Liang,G.,Blow-up and global solutions for nonlinear reaction-diffusion equations with nonlinear boundary condition,Appl.Math.Comput.,218,2011,3993–3999.

    [25]Chen,H.,Zhang,Y.and Zhao,Y.,Stability analysis for uncertain neutral systems with discrete and distributed delays,Appl.Math.Comput.,218,2012,11351–11361.

    [26]Sheng,L.and Yang,H.,Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays,Chaos,Sol.&Frac.,40,2009,2102–2113.

    [27]Tian,J.K.,Li,Y.,Zhao,J.and Zhong,S.M.,Delay-dependent stochastic stability criteria for Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates,Appl.Math.Comput.,218,2012,5769–5781.

    [28]Rao,R.F.,Zhong,S.M.and Wang,X.R.,Delay-dependent exponential stability for Markovian jumping stochastic Cohen-Grossberg neural networks withp-Laplace diffusion and partially known transition rates via a differential inequality,Adv.Diff.Equations,2013,2013:183.

    [29]Zhang,Y.and Luo,Q.,Novel stability criteria for impulsive delayed reaction-diffusion Cohen-Grossberg neural networks via Hardy-Poincar′e inequality,Chaos,Sol.&Frac.,45,2012,1033–1040.

    [30]Zhang,Y.and Luo,Q.,Global exponential stability of impulsive delayed reaction-diffusion neural networks via Hardy-Poincar′e inequality,Neurocomp.,83,2012,198–204.

    [31]Li,Y.and Zhao,K.,Robust stability of delayed reaction-diffusion recurrent neural networks with Dirichlet boundary conditions on time scales,Neurocomp.,74,2011,1632–1637.

    [32]Wang,K.,Teng,Z.and Jiang,H.,Global exponential synchronization in delayed reaction-diffusion cellular neural networks with the Dirichlet boundary conditions,Math.Comp.Modelling,52,2010,12–24.

    [33]Wang,Z.,Zhang,H.and Li,P.,An LMI approach to stability analysis of reaction-diffusion Cohen-Grossberg neural networks concerning Dirichlet boundary conditions and distributed delays,IEEE Trans.System,Man,and Cybern.,40,2010,1596–1606.

    [34]Wu,A.L.and Fu,C.J.,Global exponential stability of non-autonomous FCNNs with Dirichlet boundary conditions and reaction-diffusion terms,Appl.Math.Modelling,34,2010,3022–3029.

    [35]Pan,J.and Zhong,S.M.,Dynamic analysis of stochastic reaction-diffusion Cohen-Grossberg neural networks with delays,Adv.Diff.Equations,2009,410823,18 pages.

    [36]Brezis,H.and Vazquez,J.L.,Blow-up solutions of some nonlinear elliptic problems,Rev.Mat.Univ.Comp.Mad.,10,1997,443–469.

    [37]Wang,Y.,Xie,L.and de Souza,C.E.,Robust control of a class of uncertain nonlinear system,Systems Control Lett.,19,1992,139–149.

    [38]Kao,Y.G.,Guo,J.F.,Wang C.H.and Sun,X.Q.,Delay-dependent robust exponential stability of Markovian jumping reaction-diffusion Cohen-Grossberg neural networks with mixed delays,J.Franklin Inst.,349(6),2012,1972–1988.

    [39]Rakkiyappan,R.and Balasubramaniam,P.,Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays,Nonlinear Anal.Hyb.Syst.,3,2009,408–417.

    [40]Rao,R.F.,Pu,Z.L.,Zhong,S.M.and Huang,J.L.,On the role of diffusion behaviors in stability criterion forp-Laplace dynamical equations with infinite delay and partial fuzzy parameters under Dirichlet boundary value,J.Appl.Math.,2013,940845,8 pages.

    [41]Rao,R.F.,Zhong,S.M.and Wang,X.R.,Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reactiondiffusion,Commun.Nonlinear Sci.Numer.Simulat.,19(1),2014,258–273.

    [42]Rao,R.F.and Pu,Z.L.,LMI-based stability criterion of impulsive TS fuzzy dynamic equations via fixed point theory,Abstract and Applied Analysis,2013,261353,9 pages.

    [43]Pu,Z.L.and Rao,R.F.,Exponential robust stability of TS fuzzy stochasticp-Laplace PDEs under zero-boundary condition,Bound.Value Probl.,2013,2013:264,14 pages.

    猜你喜歡
    蓋爾沙塵暴降雨量
    走丟的車輪奶酪
    可怕的沙塵暴
    降雨量與面積的關(guān)系
    迷霧中的蓋爾瑪
    暴力之旅——伊恩·麥克蓋爾訪談錄
    蓋爾瑪 百年老企轉(zhuǎn)戰(zhàn)直銷
    大話西游之沙塵暴
    天外來客:火星沙塵暴
    洞庭湖區(qū)降雨特性分析
    羅甸縣各鄉(xiāng)鎮(zhèn)實(shí)測(cè)降雨量分析及應(yīng)用研究
    人妻 亚洲 视频| 日韩中字成人| 色哟哟·www| 久久午夜福利片| 女人被躁到高潮嗷嗷叫费观| 最近的中文字幕免费完整| 女人被躁到高潮嗷嗷叫费观| 欧美激情极品国产一区二区三区| 久久精品久久久久久噜噜老黄| 国产精品免费大片| av女优亚洲男人天堂| 丝瓜视频免费看黄片| 欧美日本中文国产一区发布| 亚洲精品,欧美精品| 亚洲 欧美一区二区三区| 在线免费观看不下载黄p国产| 精品一区二区三卡| 老鸭窝网址在线观看| 成年女人毛片免费观看观看9 | 如日韩欧美国产精品一区二区三区| 国产亚洲午夜精品一区二区久久| 国产精品免费视频内射| 蜜桃在线观看..| 久久免费观看电影| 中国国产av一级| 日韩 亚洲 欧美在线| 美女午夜性视频免费| 欧美日韩一区二区视频在线观看视频在线| 国产一区亚洲一区在线观看| 曰老女人黄片| 极品少妇高潮喷水抽搐| 成人亚洲欧美一区二区av| 日本wwww免费看| 日日爽夜夜爽网站| 飞空精品影院首页| 国产成人精品在线电影| 一级毛片 在线播放| 亚洲婷婷狠狠爱综合网| 少妇精品久久久久久久| 黄频高清免费视频| 国产精品免费大片| 热re99久久精品国产66热6| 久久久欧美国产精品| 男女边摸边吃奶| 多毛熟女@视频| 亚洲国产色片| 国产精品国产av在线观看| 精品福利永久在线观看| 在线观看国产h片| 少妇 在线观看| 两个人免费观看高清视频| 纵有疾风起免费观看全集完整版| 久久午夜综合久久蜜桃| 久久久久久人人人人人| 国产高清不卡午夜福利| 大片电影免费在线观看免费| 人妻人人澡人人爽人人| 久久精品久久久久久久性| 亚洲国产毛片av蜜桃av| 日韩在线高清观看一区二区三区| 日韩一本色道免费dvd| 亚洲欧洲日产国产| 亚洲国产欧美日韩在线播放| 永久免费av网站大全| 99热网站在线观看| av女优亚洲男人天堂| 一区二区日韩欧美中文字幕| 亚洲精品视频女| 日本av手机在线免费观看| 国产精品嫩草影院av在线观看| 免费黄频网站在线观看国产| 日韩人妻精品一区2区三区| 久久久久国产一级毛片高清牌| 我要看黄色一级片免费的| 在线观看一区二区三区激情| 亚洲精品视频女| 亚洲国产精品一区三区| 亚洲图色成人| 免费观看av网站的网址| 一级毛片电影观看| 如何舔出高潮| 香蕉丝袜av| 中文字幕色久视频| 国产片特级美女逼逼视频| 成年女人在线观看亚洲视频| 久久精品亚洲av国产电影网| 精品卡一卡二卡四卡免费| 亚洲少妇的诱惑av| 欧美激情高清一区二区三区 | 9191精品国产免费久久| 精品一区二区三卡| 国产黄频视频在线观看| 亚洲国产最新在线播放| 日本91视频免费播放| 精品国产乱码久久久久久男人| 色吧在线观看| 一二三四在线观看免费中文在| 欧美变态另类bdsm刘玥| 最黄视频免费看| 美女福利国产在线| 久久久国产欧美日韩av| 男女啪啪激烈高潮av片| 国产av国产精品国产| 亚洲精品国产av蜜桃| 老司机影院毛片| 亚洲成国产人片在线观看| 在线 av 中文字幕| 人人妻人人爽人人添夜夜欢视频| 久久这里只有精品19| 一本大道久久a久久精品| 欧美97在线视频| 日韩人妻精品一区2区三区| 久久热在线av| 国产乱人偷精品视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产色婷婷电影| 天堂俺去俺来也www色官网| 不卡视频在线观看欧美| 少妇的丰满在线观看| 国产精品嫩草影院av在线观看| 午夜福利一区二区在线看| 久久99蜜桃精品久久| 久久久久久久精品精品| 天天影视国产精品| 午夜av观看不卡| 日日摸夜夜添夜夜爱| 国产在线一区二区三区精| 亚洲第一区二区三区不卡| 2018国产大陆天天弄谢| 亚洲三区欧美一区| 老司机影院毛片| 亚洲国产欧美在线一区| 国产一级毛片在线| 亚洲欧美精品自产自拍| 国产成人av激情在线播放| 九九爱精品视频在线观看| 免费观看av网站的网址| 欧美精品av麻豆av| 老熟女久久久| 国产精品国产三级专区第一集| 人人妻人人添人人爽欧美一区卜| 久久久国产欧美日韩av| 亚洲精品,欧美精品| 久久韩国三级中文字幕| 考比视频在线观看| 久久久久精品久久久久真实原创| 国产成人aa在线观看| 日韩一本色道免费dvd| 色视频在线一区二区三区| 伊人久久大香线蕉亚洲五| 日本免费在线观看一区| 中文字幕最新亚洲高清| 亚洲伊人色综图| 满18在线观看网站| 亚洲色图综合在线观看| 青春草视频在线免费观看| 丝袜人妻中文字幕| 国产免费一区二区三区四区乱码| 国产成人午夜福利电影在线观看| 日本vs欧美在线观看视频| 午夜激情av网站| 99国产精品免费福利视频| 菩萨蛮人人尽说江南好唐韦庄| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 大片电影免费在线观看免费| 久久人人97超碰香蕉20202| 肉色欧美久久久久久久蜜桃| 国产综合精华液| 女人高潮潮喷娇喘18禁视频| 免费高清在线观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 久久婷婷青草| 亚洲伊人久久精品综合| 国产精品久久久久久精品电影小说| 亚洲第一青青草原| 国产麻豆69| 亚洲精品日本国产第一区| 午夜福利,免费看| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 国产免费现黄频在线看| 精品一区在线观看国产| av在线老鸭窝| 婷婷色综合大香蕉| 水蜜桃什么品种好| 亚洲成色77777| 大片电影免费在线观看免费| 老熟女久久久| 日本av免费视频播放| 一级毛片我不卡| 国产又色又爽无遮挡免| 精品久久蜜臀av无| 亚洲国产成人一精品久久久| 亚洲精品aⅴ在线观看| 天堂8中文在线网| 国产野战对白在线观看| 最新的欧美精品一区二区| 精品少妇内射三级| 欧美老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 免费黄色在线免费观看| 美女高潮到喷水免费观看| 亚洲内射少妇av| 国产欧美日韩一区二区三区在线| 1024视频免费在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲视频免费观看视频| 777米奇影视久久| 丝袜在线中文字幕| 这个男人来自地球电影免费观看 | 韩国精品一区二区三区| 亚洲精品,欧美精品| 日韩免费高清中文字幕av| kizo精华| 国产男女内射视频| videos熟女内射| 久久99蜜桃精品久久| 我要看黄色一级片免费的| 欧美+日韩+精品| 亚洲成国产人片在线观看| 国产精品久久久久久精品古装| 国产有黄有色有爽视频| 久久精品久久精品一区二区三区| 午夜免费男女啪啪视频观看| 在线观看三级黄色| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久久久久婷婷小说| 9191精品国产免费久久| 看免费成人av毛片| 成人18禁高潮啪啪吃奶动态图| 日本91视频免费播放| 制服诱惑二区| 欧美日韩精品网址| 看十八女毛片水多多多| xxxhd国产人妻xxx| 国产xxxxx性猛交| 婷婷色综合大香蕉| 久久久精品区二区三区| 国产免费福利视频在线观看| 嫩草影院入口| 免费大片黄手机在线观看| 国产精品 欧美亚洲| 久久久久久人妻| 婷婷色麻豆天堂久久| 亚洲国产最新在线播放| 女性生殖器流出的白浆| 国产综合精华液| 国产淫语在线视频| 久久这里只有精品19| 建设人人有责人人尽责人人享有的| 日本-黄色视频高清免费观看| 免费观看性生交大片5| 午夜福利乱码中文字幕| 亚洲av男天堂| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 美女福利国产在线| 黄色配什么色好看| 成人影院久久| 亚洲少妇的诱惑av| 寂寞人妻少妇视频99o| 夫妻午夜视频| videos熟女内射| 观看av在线不卡| 免费黄色在线免费观看| 母亲3免费完整高清在线观看 | 亚洲在久久综合| 国产亚洲欧美精品永久| 日本91视频免费播放| 美女主播在线视频| 蜜桃国产av成人99| 成人手机av| 在线 av 中文字幕| 寂寞人妻少妇视频99o| 91精品伊人久久大香线蕉| 亚洲国产精品999| 又粗又硬又长又爽又黄的视频| 久久精品国产亚洲av天美| 视频在线观看一区二区三区| 欧美国产精品va在线观看不卡| 国产精品.久久久| 黑人欧美特级aaaaaa片| 日韩在线高清观看一区二区三区| www.熟女人妻精品国产| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| xxx大片免费视频| 飞空精品影院首页| 一区在线观看完整版| 亚洲欧美日韩另类电影网站| 纵有疾风起免费观看全集完整版| 老司机影院成人| 老司机影院毛片| 91在线精品国自产拍蜜月| 国产av一区二区精品久久| 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 日韩av不卡免费在线播放| 又黄又粗又硬又大视频| 久久久久久久久久人人人人人人| 色播在线永久视频| 人人妻人人澡人人爽人人夜夜| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 亚洲欧洲精品一区二区精品久久久 | av网站在线播放免费| 男的添女的下面高潮视频| 99久久综合免费| 久久久久精品人妻al黑| 校园人妻丝袜中文字幕| 亚洲精品美女久久久久99蜜臀 | 各种免费的搞黄视频| 亚洲图色成人| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 免费在线观看黄色视频的| 久久精品久久久久久久性| 1024视频免费在线观看| 一级黄片播放器| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 伊人亚洲综合成人网| 在现免费观看毛片| 亚洲国产精品一区二区三区在线| 老司机影院成人| 狠狠婷婷综合久久久久久88av| 嫩草影院入口| 色网站视频免费| 久久97久久精品| 亚洲久久久国产精品| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产av蜜桃| 国产精品一国产av| 如何舔出高潮| 欧美日韩精品成人综合77777| 性色av一级| 麻豆av在线久日| 日韩 亚洲 欧美在线| 人成视频在线观看免费观看| 777久久人妻少妇嫩草av网站| 国产福利在线免费观看视频| 亚洲四区av| 你懂的网址亚洲精品在线观看| 99九九在线精品视频| 国产成人精品福利久久| 国产免费视频播放在线视频| 久久99一区二区三区| 观看av在线不卡| 侵犯人妻中文字幕一二三四区| 你懂的网址亚洲精品在线观看| 久久精品国产综合久久久| 久久精品人人爽人人爽视色| 毛片一级片免费看久久久久| 免费看av在线观看网站| 电影成人av| 亚洲国产色片| 日韩av在线免费看完整版不卡| 国产黄色视频一区二区在线观看| 天天躁夜夜躁狠狠久久av| 亚洲欧美中文字幕日韩二区| 男女啪啪激烈高潮av片| 三级国产精品片| 最新的欧美精品一区二区| 亚洲精品第二区| 电影成人av| 国产精品99久久99久久久不卡 | 欧美日韩精品成人综合77777| 美女视频免费永久观看网站| 又大又黄又爽视频免费| 欧美成人午夜免费资源| av免费在线看不卡| 欧美av亚洲av综合av国产av | a级毛片黄视频| 边亲边吃奶的免费视频| 狂野欧美激情性bbbbbb| 亚洲av国产av综合av卡| 黄网站色视频无遮挡免费观看| 欧美xxⅹ黑人| www日本在线高清视频| 成年美女黄网站色视频大全免费| a 毛片基地| 亚洲精品aⅴ在线观看| a 毛片基地| 男女边摸边吃奶| 一级黄片播放器| 欧美日韩成人在线一区二区| 久热久热在线精品观看| 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡| 国产亚洲欧美精品永久| 久久毛片免费看一区二区三区| 国产视频首页在线观看| 91精品三级在线观看| 日本爱情动作片www.在线观看| 99国产精品免费福利视频| 啦啦啦中文免费视频观看日本| 久久久久国产网址| 日韩电影二区| 国产亚洲欧美精品永久| 蜜桃在线观看..| 人人澡人人妻人| 日韩,欧美,国产一区二区三区| 啦啦啦视频在线资源免费观看| av有码第一页| 亚洲欧美清纯卡通| 国产福利在线免费观看视频| 侵犯人妻中文字幕一二三四区| 久久99精品国语久久久| 在线亚洲精品国产二区图片欧美| 亚洲av男天堂| 久久精品熟女亚洲av麻豆精品| 免费久久久久久久精品成人欧美视频| 热99久久久久精品小说推荐| 日本爱情动作片www.在线观看| 伦理电影大哥的女人| 99九九在线精品视频| 狠狠婷婷综合久久久久久88av| 亚洲精品日本国产第一区| 天天躁夜夜躁狠狠久久av| 少妇熟女欧美另类| 哪个播放器可以免费观看大片| 三上悠亚av全集在线观看| 成人国产麻豆网| 免费黄频网站在线观看国产| √禁漫天堂资源中文www| 宅男免费午夜| 少妇猛男粗大的猛烈进出视频| 波野结衣二区三区在线| www日本在线高清视频| 亚洲激情五月婷婷啪啪| 如何舔出高潮| 中国三级夫妇交换| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 久久久久精品人妻al黑| 咕卡用的链子| 国产成人精品久久二区二区91 | 久久久久久久大尺度免费视频| 免费在线观看黄色视频的| 极品少妇高潮喷水抽搐| 有码 亚洲区| 宅男免费午夜| 亚洲成人手机| 边亲边吃奶的免费视频| 久久久久久免费高清国产稀缺| 26uuu在线亚洲综合色| 国产亚洲av片在线观看秒播厂| 大码成人一级视频| 免费看不卡的av| 日本爱情动作片www.在线观看| 欧美最新免费一区二区三区| 下体分泌物呈黄色| 成人手机av| 纯流量卡能插随身wifi吗| 国产97色在线日韩免费| 另类亚洲欧美激情| 久久精品久久精品一区二区三区| 久久影院123| 国产淫语在线视频| 精品第一国产精品| 女人久久www免费人成看片| 亚洲国产欧美网| 亚洲av熟女| 亚洲人成网站在线播放欧美日韩| 久久精品亚洲av国产电影网| 欧美+亚洲+日韩+国产| 久久久国产成人精品二区 | 免费在线观看日本一区| 黑丝袜美女国产一区| 99国产精品一区二区三区| 又大又爽又粗| 精品电影一区二区在线| 中文字幕色久视频| 免费在线观看完整版高清| 亚洲中文日韩欧美视频| 久久99一区二区三区| 亚洲三区欧美一区| 免费在线观看亚洲国产| 两个人免费观看高清视频| 91老司机精品| 中文字幕另类日韩欧美亚洲嫩草| 黄色成人免费大全| 国产欧美日韩综合在线一区二区| 国产一区在线观看成人免费| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区在线臀色熟女 | 成年人黄色毛片网站| 韩国精品一区二区三区| 欧美中文综合在线视频| 亚洲精品美女久久av网站| 久久精品亚洲精品国产色婷小说| www.www免费av| 97碰自拍视频| 欧美日韩亚洲国产一区二区在线观看| 欧美黑人欧美精品刺激| 国产伦一二天堂av在线观看| 十八禁人妻一区二区| 亚洲av成人不卡在线观看播放网| 午夜成年电影在线免费观看| av有码第一页| 欧美日韩av久久| 欧美成狂野欧美在线观看| 99国产极品粉嫩在线观看| 亚洲avbb在线观看| 亚洲熟妇中文字幕五十中出 | 久久精品91无色码中文字幕| 好男人电影高清在线观看| 国产亚洲欧美精品永久| 啦啦啦 在线观看视频| 国产精品久久久久成人av| 中国美女看黄片| 97碰自拍视频| 男女高潮啪啪啪动态图| 视频区欧美日本亚洲| 精品福利观看| 在线观看日韩欧美| 一区福利在线观看| 91精品国产国语对白视频| 狠狠狠狠99中文字幕| 国产一区二区三区视频了| 国产成人欧美在线观看| 国产精品免费一区二区三区在线| 亚洲av成人一区二区三| 丝袜人妻中文字幕| 新久久久久国产一级毛片| 搡老乐熟女国产| 一个人免费在线观看的高清视频| 一级黄色大片毛片| 热99re8久久精品国产| 在线观看免费视频网站a站| 免费观看精品视频网站| 最近最新中文字幕大全免费视频| 少妇粗大呻吟视频| 欧美成人免费av一区二区三区| 亚洲男人天堂网一区| 搡老熟女国产l中国老女人| 超色免费av| 村上凉子中文字幕在线| 久久影院123| 久久中文字幕一级| 亚洲三区欧美一区| 国产单亲对白刺激| 深夜精品福利| 女性被躁到高潮视频| 99香蕉大伊视频| 精品一区二区三卡| 久久 成人 亚洲| 最近最新免费中文字幕在线| 神马国产精品三级电影在线观看 | 黄色视频,在线免费观看| 国产精品免费视频内射| aaaaa片日本免费| 1024香蕉在线观看| av电影中文网址| 久久午夜亚洲精品久久| 日韩 欧美 亚洲 中文字幕| 怎么达到女性高潮| 免费女性裸体啪啪无遮挡网站| 丰满饥渴人妻一区二区三| 中文字幕色久视频| 日韩三级视频一区二区三区| 水蜜桃什么品种好| 美女 人体艺术 gogo| 亚洲精品一二三| 搡老熟女国产l中国老女人| 青草久久国产| 成人三级黄色视频| 可以在线观看毛片的网站| 一级片免费观看大全| 人人妻,人人澡人人爽秒播| 国产aⅴ精品一区二区三区波| 日本免费a在线| 少妇粗大呻吟视频| 国产精品永久免费网站| 亚洲九九香蕉| 超碰97精品在线观看| 精品欧美一区二区三区在线| 19禁男女啪啪无遮挡网站| 国产精品1区2区在线观看.| av片东京热男人的天堂| 久热这里只有精品99| 欧美日韩国产mv在线观看视频| 十八禁人妻一区二区| 在线观看一区二区三区激情| 中文字幕av电影在线播放| a级毛片在线看网站| 国产亚洲精品第一综合不卡| 免费在线观看日本一区| 日韩人妻精品一区2区三区| 国产av在哪里看| 黑人欧美特级aaaaaa片| 大型av网站在线播放| 国产精品影院久久| 亚洲在线自拍视频| 亚洲黑人精品在线| 日韩精品青青久久久久久| 精品第一国产精品| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久成人av| 精品久久久久久久毛片微露脸| 成年版毛片免费区| 欧美色视频一区免费| 亚洲自拍偷在线| 精品国产乱子伦一区二区三区| 亚洲国产欧美一区二区综合| 色哟哟哟哟哟哟| 亚洲一区高清亚洲精品| 精品国产美女av久久久久小说| 成人永久免费在线观看视频| 久9热在线精品视频| 他把我摸到了高潮在线观看| 99国产精品一区二区三区|