• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Delay-Dependent Exponential Stability for Nonlinear Reaction-Diffusion Uncertain Cohen-Grossberg Neural Networks with Partially Known Transition Rates via Hardy-Poincar′e Inequality?

    2014-06-05 03:08:10RuofengRAO
    關(guān)鍵詞:蓋爾沙塵暴降雨量

    Ruofeng RAO

    1 Introduction

    It is well-known that Cohen-Grossberg in[1]proposed originally the CGNNs.Since then the CGNNs have founded its extensive applications in pattern recognition,image and signal processing,quadratic optimization,and aritifical intelligence(see[2–11]).However,these successful applications are greatly dependent on the stability of the neural networks,which is also a crucial feature in the design of the neural networks.In practice,both time delays and impulse are always inevitable,and cause probably some undesirable dynamic network behaviors such as oscillation and instability.Therefore,the stability analysis for delayed impulsive CGNNs has become a topic of great theoretic and practical importance in recent years(see[2–3,5–6]).Recently,the CGNNs with Markovian jumping parameters have been extensively studied,for the systems with Markovian jumping parameters are useful in modeling abrupt phenomena,suchas random failures,operating in different points of a nonlinear plant,and changing in the interconnections of subsystems(see[5–8]).Noise disturbance is unavoidable in real nervous systems,which is a major source of instability and poor performances in neural networks.A neural network can be stabilized or destabilized by certain stochastic inputs.The synaptic transmission in real neural networks can be viewed as a noisy process introduced by random fluctuations from the release of neurotransmitters and other probabilistic causes(see[12]).Hence,noise disturbance should be also taken into consideration in discussing the stability of neural networks(see[13–17]).On the other hand,diffusion phenomena can not be unavoidable in real world.Usually diffusion phenomena is simulated by linear Laplace diffusion for simplicity in many previous literatures(see[2,18–20]).However,diffusion behavior is so complicated that the nonlinear reaction-diffusion models were considered in several papers(see[3,21–24]).Even the nonlinearp-Laplace diffusion(p>1)was considered in simulating some diffusion behaviors(see[3,6,10]).Particularly,ifp=2,thep-Laplace diffusion was just the conventional linear Laplace diffusion in many previous papers(see[2,18–20]).In addition,neural networks may encounter various other factors and problems in the factual operations.In fact,there exist also parameter errors unavoidable in factual systems owing to aging of electronic component,external disturbance and parameter perturbations.It is equally important to ensure that system is stable with respect to these uncertainties(see[25–26]).Naturally,aging of electronic component,external disturbance and parameter perturbations always result in a side-effect of partially unknown Markovian transition rates.Some of recent literatures investigated the stability of neural networks with partially unknown Markovian transition rates(see[27–28]).As far as we know,stochastic stability for the delayed impulsive Markovian jumping Laplace diffusion CGNN with uncertain parameters has rarely been considered.Besides,the stochastic exponential stability always remains the key factor of concern owing to its importance in designing a neural network,and such a situation motivates our present study.Motivated by the above-mentioned literature,particularly by[2,29–30],we shall investigate the stochastic global exponential stability criteria for the above-mentioned CGNN via the LMIs approach.

    The rest of this paper is organized as follows.In Section 2,new CGNN models are formulated,and some preliminaries are given.In Section 3,new LMI-based stochastic global exponential stability criterion are presented for the CGNNs.And in Section 4,three numerical examples are provided to show the higher feasibility and less conservatism of the new criterion compared with those of[2–3,29–30].Finally,some conclusions are presented in Section 5.

    2 Model Description and Preliminaries

    In 2011,Zhang,Wu and Li in[2]considered the following Cohen-Grossberg neural networks under Dirichlet boundary condition:

    whereu=u(t,x)=(u1(t,x),u2(t,x),···,un(t,x))T,=,···,=···,

    Generally,there exist the following assumptions for the system(2.1)(see[2]):

    (H1)u(t,x))is a bounded,positive and continuous diagonal matrix,i.e.,there exist two positive definite diagonal matricessuch that 0<A≤

    (H2)(u(t,x))=,···,such that there exists a positive definite matrix=diag(satisfying

    (H3)There exist diagonal matrices

    such that

    and

    In this paper,we always assume≡0 for some rational reason(see Remark 2.3),and consider to replace(H3)with the following more flexible condition:

    (H3*)There exist constant diagonal matrices

    with

    such that

    According to[2,Definition 2.1],a constant vectoru?∈Rnis said to be an equilibrium point of system(2.1)if

    Letv=u?u?,then the system(2.1)with~h≡0 can be transformed into

    wherev=v(t,x)=···,u?=A(v(t,x))=(v(t,x)+u?)=(u(t,x)),

    and

    Then,according to[2,Definition 2.1],v≡0 is an equilibrium point of system(2.4).Hence,below we only need consider the stability of the null solution of Cohen-Grossberg neural networks.Naturally we propose the following hypotheses on the system(2.4)withh≡0,which are perhaps derived by the assumptions(H1)–(H2)and(H3*).

    (A1)A(v(t,x))is a bounded,positive and continuous diagonal matrix,i.e.,there exist two positive diagonal matricesandsuch that 0<≤A(v(t,x))≤

    (A2)B(v(t,x))=,···,,such that there exists a positive definite matrixB=diag(B1,B2,···,Bn)T∈Rnsatisfying

    (A3)There exist constant diagonal matrices

    withj=1,2,···,n,such that

    Remark 2.1In many previous literatures,e.g.[2],authors always assume

    which may be correspond to(H3).However,in(A3)may not be positive constants,and hence the functionsf,gare more generic.

    Remark 2.2It is obvious from(2.5)thatB(0)=0=f(0)=g(0),and thenB(0)?Cf(0)?Dg(0)=0.

    Very recently,Wang,Rao and Zhong[3]studied stochastic CGNN with nonlinearp-Laplace diffusion(p>1)under Neumann boundary condition:

    Since stochastic noise disturbance and parameter errors are unavoidable in the practical neural networks,it is necessary to consider the stability of the null solution of the following Markovian jumping CGNN:

    The initial conditions and the boundary conditions are given by

    and

    respectively,wherep>1 is a given scalar,and Ω∈Rmis a bounded domain with a smooth boundary?Ω of classC2by Ω,v(t,x)=···,∈Rn,wherevi(t,x)is the state variable of theith neuron at timetand in space variablex.MatrixD(t,x,v)=satisfies(t,x,v)≥d>0 for allj,k,(t,x,v),where the smooth functionsare diffusion operators.Similarly as that of[3],we denoteAnd D(t,x,v)? ?pv=denotes the Hadamard product of matrixD(t,x,v)and?pv.For matrix Y=(Y1,···,Yn)TwithYi=(i=1,2,···,n),we denote?·Y=(?·Y1,?·Y2,···,?·Yn)T,where?·Particularly,?pv=?vifp=2.

    Denotew(t)=,···,,where(t)is scalar standard Brownian motion defined on a complete probability space(Ω?,F,P)with a natural filtrationNoise perturbationsσ:R+×Rn×Rn×S→is a Borel measurable function.{r(t),t≥0}is a right-continuous Markov process on the probability space which takes values in the finite spaceS={1,2,···,s}with the generator Π =given by

    where≥0 is transition probability rate fromitoj(j/i)and>0 and=0.In addition,the transition rates of the Markovian chain are considered to be partially available,namely,some elements in transition rates matrix Π are time-invariant but unknown.For instance,a system with three operation modes may have the transition rate matrix Π as follows:

    where “”represents the inaccessible element.For natation clarity,we denoteS=withis known}andis unknown,andji}for a giveni∈S.DenoteThe time-varying delayτ(t)satisfies 0≤ τ(t)≤ τwitht)≤ κ <1.

    whereaj(vj(t,x))represents an amplification function,andis an appropriately behavior function.C(r(t),t),D(r(t),t)are denoted byCi(t),Di(t)withCi(t)==respectively,anddenote the connection strengths of thekth neuron on thelth neuron at timetin the moder(t)=i,respectively.Denote vector functionsf(v(t,x))=···,g(v(t,x))=···,whereare neuron activation functions of thejth unit at timetand in space variablex.

    For any moder(t)=i∈S,we assume thatCi,Diare real constant matrices of appropriate dimensions,andare real-valued matrix functions which represent time-varying parameter uncertainties,satisfying

    In addition,we always assume thatt0=0,and=v(,x)for allk=1,2,···,wherev(,x)andv(,x)represent the left-hand and right-hand limits ofv(t,x)at,respectively.And each(k=1,2,···)is an impulsive moment,satisfying 0<t1<t2<···<tk<···and limtk=+∞.The boundary condition(2.7c)is called Dirichlet boundary condition if and Neumann boundary condition if B[(t,x)]=denotes the outward normal derivative on?Ω.It is well-known that the stability of neural networks with Neumann boundary condition has been widely studied.The Dirichlet boundary conditions describe the situation,where the space is totally surrounded by a region in which the states of the neuron equal zero on the boundary.And the stability analysis of delayed reaction-diffusion neural networks with the Dirichlet boundary conditions is very important in theories and applications,and also has attracted much attention(see[2,31–34]).So in this paper,we consider the CGNN under Neumann boundary condition and Dirichlet boundary condition,respectively.

    Remark 2.3If all stochastic factors and uncertain factors are ignored,the system(2.7)withp=2 was studied by[2]though there is a little difference between Dirichlet boundary condition and Neumann boundary condition.However,our impulsive assumptionis more natural than that of[2],which will result in some difference in methods(see,e.g.[3]).

    Particularly,ifp=2,the system(2.7)is reduced to the following CGNN:

    For convenience’s sake,we need introduce some standard notations.

    (1)L2(R×Ω):The space of real Lebesgue measurable functions of R×Ω,it is a Banach space for the 2-norm‖v(t)‖2=where|·|is the Euclid norm.

    (2)The family of allF0-measurableC([?τ,0]×Ω;Rn)-value random variableξ={ξ(θ,x):?τ≤θ≤0,x∈Ω}such that<∞,where E{·}stands for the mathematical expectation operator with respect to the given probability measureP.

    (3)Q=>0(<0):A positive(negative)definite matrix,i.e.,yTQy>0(<0)for any 0/y∈Rn.

    (4)Q=≥0(≤0):A semi-positive(semi-negative)definite matrix,i.e.,yTQy≥0(≤0)for anyy∈Rn.

    蓋爾達(dá)耶屬于炎熱的沙漠氣候,夏天極熱,冬天溫和,晝夜溫差很大,夏季和冬季為5~46℃不等。夏天的風(fēng)干燥、炎熱而強(qiáng)烈,冬天的風(fēng)溫暖而干燥。全年降雨量極少,總量?jī)H為75mm,夏季炎熱季節(jié)降雨量最少,全年有降雨的天數(shù)不足24d,導(dǎo)致7月份的相對(duì)濕度僅為22.3%,1月份達(dá)到54.7%,全年大部分時(shí)間干燥炎熱。此外,每年3~5月是沙塵暴肆掠的季節(jié)。

    (5)This meansis a semi-positive(semi-negative)definite matrix.

    (6)This meansis a positive(negative)definite matrix.

    (7)denote the largest and the smallest eigenvalues of matrix Φ,respectively.

    (8)Denote|C|=for any matrixC=

    for anyu(t,x)=(u1(t,x),u2(t,x),···,un(t,x))T.

    (9)I:Identity matrix with compatible dimension.

    (10)The symmetric terms in a symmetric matrix are denoted by?.

    Throughout this paper,we assume(A1)–(A3)and the following conditions hold:

    (A4)For any modei∈S,the parameter uncertainties considered here are norm-bounded and of the following forms:

    whereK(t)is an unknown matrix function satisfyingare known real constant matrices.

    (A5)There exist symmetrical matricesRj≥0 withj=1,2,such that for any modei∈S,

    (A6)σ(t,0,0,i)=0 for alli∈S.

    Remark 2.4The condition|H|=His not too stringent for a semi-positive definite matrixH=0.Indeed,allhij≥0 imply|H|=H.

    Similarly as that of[2,Definition 2.1],we can see from(A6)that the system(2.7)has the null solution as its equilibrium point.Letv(t,x;φ,i0)be the state trajectory from the initial conditionr(0)=on?τ≤θ≤0 inBelow,we always assume thatv(t,x;φ,i0)is a solution of system(2.7).

    Definition 2.1For any given scalar p>1,the null solution of system(2.7)is said to be stochastically globally exponentially stable in the mean square if for every initial condition φ∈r(0)=i0,there exist scalars β>0and γ>0such that for any solution v(t,x;φ,i0),

    Notice that ifp=2,the system(2.7)is just the system(2.9).And the following Poincar′e inequality lemma and Hardy-Poincar′e inequality lemma may play role in judging the stability of system(2.9).

    Lemma 2.1(see[35])(PoincarInequality)LetΩbe a bounded domain ofRmwith a smooth boundary?Ωof class C2byΩ.ψ(x)is a real-valued function belonging to(Ω)and satisfiesB[ψ(x)]|?Ω=0.Then

    where λ1is the lowest positive eigenvalue of the boundary value problem

    Notice that(Ω)is the Sobolev spacewithp=2,andis the completion of(Ω)with respect to the normThereby,the norm ofNote that we always denote theL2(Ω)-norm by‖ψ‖=

    Lemma 2.2(see[36])(Hardy-PoincarInequality)For any bounded domainΩinRm,any dimension m≥2and for every ψ(x)∈(Ω),we have

    where the constantΛ2is the first eigenvalue of the Laplacian in the unit ball in m=2,and ωm denotes the measure of the unit ball inRm.

    Lemma 2.3be a positive definite matrix for a given i,and v be a solution of system(2.7).Then we have

    ProofSincevis a solution of system(2.7),we can see it by Gauss formula and Dirichlet or Neumann boundary condition that

    Similarly,we can prove

    Lemma 2.4(see[37])Let ε>0be any given scalar,and M,Eand K be matrices with appropriate dimensions.If KTK≤I,then we have

    3 Main Results

    In order to compare with the main results of[2],we may give a prior consideration on the conventional linear Laplace diffusion system(2.9).

    Theorem 3.1The null solution of system(2.9)is stochastically globally exponential stable in the mean square if there exist positive scalars λ≤λ1,β>0,a sequence of positive scalarsand positive definite diagonal matricesand Q such that the following LMI conditions hold:

    where

    ProofConsider the Lyapunov-Krasovskii functional

    where

    Then by Itformula,we get the following stochastic differential:

    Lis the weak infinitesimal operator such thatLV(t,v(t,x),i)=for any giveni∈S.Next,it follows by Lemma 2.3(p=2)and(2.9)that forttk,

    Here,v=v(t,x)is a solution of system(2.9).And fort/tk,

    Moreover,we can get by Poincarinequality and 0<λλ1,

    It follows by(A1)–(A2)that

    In addition,we have

    Similarly,

    From(A3),we have

    Fromπii<0 and the definition ofit is clear that

    (A5)derives

    Combining(3.5)–(3.14)results in

    where

    andζ(t,x)=(|vT(t,x)|,|vT(t?τ(t),x)|,|fT(v(t,x))|,|gT(v(t?τ(t),x))|)T.

    Next we claim that Ai<0.

    For convenience,we denote

    By applying Schur complement to(3.1),we can get from Lemma 2.4,

    which proves our claim.And thenLV(t,v(t,x),i)≤0.Define

    Then we haveV(t,v(t,x),i)=eβtV(t,v(t,x),i),satisfying

    Now,by applying the Dynkin formula,we can derive that for anyi∈S,

    In fact,due tov(,x)=v(tk,x),we might as well assume≤t<tkfor any givenk∈{1,2,···}.And then we have

    which proves(3.16).On the other hand,we claim

    Indeed,we can get by the assumptions onMjk:

    Thus,we prove the claim(3.17).Owing to(3.16)–(3.17),we get

    Hence,combining(3.16)and(3.18)implies

    Now,for anyφ(θ,x)([?τ,0]×Ω;Rn)and any system modei∈S,the solutionv(t,x,φ,i0)of system(2.9)with the initial valueφsatisfies

    or

    where scalarsγ=>0,β>0.Therefore,we can see it by(3.21)and Definition 2.1 that the null solution of system(2.9)is globally stochastically exponentially stable in the mean square.

    Remark 3.1In Theorem 3.1,the magnitude ofλ1is determined by the bounded domain Ω∈Rm.However,ifm≥3,the exact computation ofλ1is usually not possible.Nevertheless,we can estimate the value ofλ1.For instance,under the Dirichlet boundary assumption,we may fixλ=in Theorem 3.1 due to Hardy-Poincar′e inequality.In fact,fromλ1=we know that 0<λ≤λ1,satisfyingfor allψ∈(Ω).In many recent literatures(see[2,31–34]),Ω∈Rmis restricted to be a cube.Moreover,in their numerical examples,the dimensionmis restricted to be 1 or 2.Now,in this paper,we abolish these limitations thanks to the synthetic application of Poincarinequality and Hardy-Poincarinequality.Below,Example 4.3 will show the effectiveness of Theorem 3.1,where Ω is assumed to be a spheroid and not a sphere.Notice that if Ω is a ball,the constants of Hardy-Poincar′e inequality are optimal(see[36,Theorem 4.1]).But Theorem 3.1 admits actuallyλ<λ1,and then we may fixλ=So we need not assume in numerical examples that Ω is the similar ball as that of[29–30].To the best of our knowledge,it is the first time to apply both Poincarinequality and Hardy-Poincar′e inequality to stability analysis of the reaction-diffusion neural networks.

    Remark 3.2Below,Example 4.3 is given to show that Theorem 3.1 is more effective and less conservative than some existing results due to significant improvement in the allowable upper bounds of delays.

    IfD(t,x,v)≡Dis a diagonal constant matrix,the system(2.9)is perhaps reduced to the following system:

    where Δv(t,x)=(Δv1(t,x),Δv2(t,x),···,Δvn(t,x))T,and Δvj(t,x)

    Similarly to(3.7),we have

    where both constant matricesD=diag(D11,D22,···,Dnn)andP=diag(p11,p22,···,pnn)are positive definite.

    Hence,similarly to the proof of Theorem 3.1,we can prove the following similar result.

    Theorem 3.2The null solution of system(3.22)is stochastically globally exponential stable in the mean square if there exist positive scalars λ≤λ1,β>0,a sequence of positive scalars(i∈S)and positive definite diagonal matrices Pi=diag(pi1,pi2,···,pin)(i∈S),L1,L2and Q such that the following LMI conditions hold:

    where

    Consider the deterministic system(2.4)withh≡0,

    Then,from Theorem 3.2,we can deduce the following corollary.

    Corollary 3.3The null solution of system(3.23)is stochastically globally exponential stable in the mean square if there exist positive scalars λ≤λ1,β>0,and positive definite diagonal matrices P,L1,L2and Q such that the following LMI conditions hold:

    where

    Remark 3.3In[2,Theorem 3.1], Ω is restricted to be a cube Ω ={(x1,x2,···,xm)T∈Rm:|xj|<lj,j=1,2,···,m},andF1=G1are assumed to be 0.Under the Dirichlet boundary condition,the null solution of system(3.23)is exponentially stable if all(C1)–(C3)(see[2,Theorem 3.1])are satisfied,where

    andlHere,we point out that in comparison with Corollary 3.3,conditions(C1)–(C3)(see[2,Theorem 3.1])are too complicated to be satisfied.LMI condition(3.24)is more feasible than(C1)of[2,Theorem 2.1].Below we shall give a numerical example for it(see Example 4.1).

    Finally,we consider the LMI criterion for the system(2.7)withp-Laplace diffusion(p>1).

    Theorem 3.4The null solution of system(2.7)is stochastically globally exponential stable in the mean square if there exists a positive scalar β>0,a sequence of positive scalarsS)and positive definite diagonal matrices Pi=(i∈S),L1,L2and Q such that the following LMI conditions hold:

    where

    ProofFirst,we may construct the same Lyapunov-Krasovskii functional as that of the proof for Theorem 3.1.Second,we can get by Lemma 2.3:

    And then we have the similar inequality as(3.5):

    The rest of the proof is completely similar as that of Theorem 3.1.We can derive those similar inequalities as(3.6)–(3.21).And then,based on Definition 2.1,the null solution of system(2.7)is globally stochastically exponentially stable in the mean square.

    If Markovian jumping phenomena and parametric uncertainties are ignored,the system(2.7)is reduced to the following system:

    Then we get the following lemma from Theorem 3.4.

    Corollary 3.5The null solution of system(3.26)is stochastically globally exponential stable in the mean square if there exist positive scalars β>0,and positive definite diagonal matrices P,L1,L2and Q such that the following LMI conditions hold:

    where

    Remark 3.4In[3,Theorem 2.1],R2in(2.10)is assumed to be 0.In addition,F1=G1is also assumed to be 0.If there exist positive definite diagonal matricesP1,P2such that the following LMI holds:

    and other two complicated conditions similar to(C2)and(C3)in[2,Theorem 3.1].Below,Example 4.2 shows that Corollary 3.5 is better than[3,Theorem 2.1]due to less conservativeness and more feasibility.

    Remark 3.5The nonlinearp-Laplace diffusions in Theorem 3.4 bring a great difficulty establishing LMI conditions for the stability criterion.However,it is the first attempt to present the LMI-based criterion for the uncertain CGNNs with nonlinearp-Laplace diffusion.Below,Example 4.3 is given to show that Theorem 3.4 possesses less conservatism due to significant improvement in the allowable upper bounds of delays.

    4 Numerical Examples and Comparisons

    In this section,we shall give three numerical examples(Examples 4.1–4.3)for Corollaries 3.3 and 3.5 in comparison with[2,Theorem 3.1]and[3,Theorem 2.1].Finally,Example 4.3 is presented to illustrate that Theorems 3.1 and 3.4 possess more effectiveness and less conservatism due to significant improvement in the allowable upper bounds of delays.

    Example 4.1Comparing Corollary 3.3 with the main result of[2].

    Under the Dirichlet boundary condition,we consider the following system:

    wherev=∈R2,Ω=:|xj|<j=1,2},and thenl=1,λ1=π2=9.8696(see[35]).In addition,a1(v1)=0.13+0.07a2(v2)=0.14+0.06cos2(tx2),b1(v1)=0.02v1+2v1b2(v2)=0.016v2+12v2sin2(t2+x2),f(v)=g(v)=(0.1v1,0.1v2+0.1v2sin2(tx2))T,and

    and hence

    We might as well assume thatλ=9.8<λ1,β=0.01,=0.525,τ(t)≡0.65=τand thenκ=0 for allt≥t0.We may takeλ=9.8.Now,by using Matlab LMI toolbox to solve the LMI(C1),we gettmin=0.0144>0,which implies the LMI(C1)is found infeasible.But by using Matlab LMI toolbox to solve the LMIs(3.24)and(3.25),the result istmin=?0.1182<0,and

    Hence,Corollary 3.3 derives that the null solution of system(4.1)is stochastically globally exponential stable in the mean square(see Figures 1–3).

    Figure 1 Computer simulations of the states v1(t,x)and v2(t,x)

    Remark 4.1The stability of the null solution of system(4.1)can not be judged by[2,Theorem 3.1],for the first LMI(C1)of three conditions(C1)–(C3)is found infeasible.But all LMI conditions are only sufficient ones,not necessary for the stability.Corollary 3.3 shows that the null solution of system(4.1)is stochastically globally exponential stable in the mean square.Hence,Corollary 3.3 is really effective and less conservative than[2,Theorem 3.1].

    Example 4.2Comparing Corollary 3.5 with the main result of[3].

    Under the Neumann boundary condition and the initial condition(4.2),we consider the system(3.26)with the following parameters:

    Figure 2 Sectional curve of the state variable v1(t,x)

    Figure 3 Sectional curve of the state variable v2(t,x)

    Assume,in addition,β=0.01,τ=0.65,k=0.

    By using Matlab LMI toolbox to solve the LMI(C1*),the result istmin=0.0050>0,which implies the LMI(C1*)is found infeasible.But by solving LMIs(3.1**)–(3.4**),one can obtaintmin=?0.0037<0,and=2.1189,=7.6303,

    Hence,Corollary 3.5 derives that the null solution of system(3.26)is stochastically globally exponential stable in the mean square.

    Remark 4.2The stability of the null solution of system(3.26)with the above mentioned data can not be judged by[3,Theorem 2.1],for the first LMI(C1)of three conditions(C1)–(C3)is found infeasible.But all LMI conditions are only sufficient ones,not necessary for the stability.Hence,Corollary 3.5 is really more effective and less conservative than[3,Theorem 2.1]for the same reason as that of Remark 4.1.

    Example 4.3Comparing the allowable upper bound of Theorem 3.1(p>1)with that of Theorem 3.4(p=2).

    Under the Dirichlet boundary condition,we consider the system(2.7)with the following parameters:

    The transition matrix is considered as

    Then we haved=0.003,0.7.Assume,in addition,β=0.01.Denotev=v(t,x)=(v1(t,x),v2(t,x))T,andx=∈Ω=A direct computation yields Λ2=5.7832,meas(Ω)=4.8842,and thenλ==5.2203.

    Letτ(t)≡100.29,and thenκ=0.Now we use the Matlab LMI toolbox to solve the LMIs(3.1?)–(3.4?).The results showtmin=?0.0418<0,and=1.8714,=0.7246,=1.9114,=0.7669,=1.8892,=0.7450,

    Then we can conclude from Theorem 3.4 that the null solution of system(2.7)is stochastically globally exponential stable in the mean square for the maximum allowable upper boundsτ=100.29.This shows that the approach developed in Theorem 3.4 is effective and less conservative than some existing results.

    Particularly,ifp=2 in the system(2.7),τ(t)≡100.59,andκ=0,one can solve LMIs(3.1)–(3.4),and obtaintmin=?0.0426<0,and=1.8760,=0.7331,=1.9165,=0.7825=1.8945,=0.7616,

    Then we can conclude from Theorem 3.1 that the null solution of system(2.9)(or system(2.7)withp=2)is stochastically globally exponential stable in the mean square for the maximum allowable upper boundsτ=100.59,which shows that Theorem3.1 is effective and less conservative than some existing results.

    Table 1 Allowable upper bound of τ for Theorems 3.1 and 3.4

    Remark 4.3In this numerical example,Ω is an ellipsoid in R3.But in recent related literatures(see[29–30]),only the sphere is considered in their numerical examples.Moreover,in many recent literatures(see[32–36]),Ω is restricted to be a cube in R1or R2in their numerical examples.Now in this paper,due to the synthetic application of Poincar′e inequality and Hardy-Poincar′e inequality,we abolish these limitations.As far as we know,it is the first time to consider an ellipsoid in numerical simulation.

    Remark 4.4Table 1 in this numerical example shows that the allowable upper bound ofτfor Theorem 3.1 is bigger than that of Theorem 3.4(withp=2),which implies the diffusion item plays an active role in the stability criterion.

    Remark 4.5Example 4.3 illustrates that the allowable upper bound of time delays for Theorem 3.1 or Theorem 3.4 is far greater than that of any recent literatures related to delaydependent stability criteria(see[27,38–43]).

    5 Conclusions

    In this paper,the stochastic global exponential stability for delayed impulsive Markovian jumping reaction-diffusion Cohen-Grossberg neural networks is investigated,in which uncertain parameters and partially unknown transition rates and even the nonlinearp-Laplace diffusion bring a great difficulty in judging the stability.By using a novel Lyapunov-Krasovskii functional approach,linear matrix inequality technique,It?o formula,some new stability criteria are obtained.Particularly,the synthetic application of Poincar′e inequality and Hardy-Poincar′e inequality admits ellipsoid domains to be considered in numeral simulation(see Remarks 3.1 and 4.3).Note that ifp=2,thep-Laplace diffusion is just the conventional linear Laplace diffusion studied by many previous literatures.And even ifp=2,the LMI-based criteria have advantages over some previous ones thanks to the less conservatism and higher computational efficiency(see Remark 4.3).The diffusion item plays an active role in judging the stability(see Remark 4.4).As pointed out in Remarks 3.1 and 4.3,Poincar′e inequality and Hardy-Poincar′e inequality are linked judiciously in judging the stability of reaction-diffusion neural networks for the first time so that Ω can be a spheroid and not a sphere in numerical examples.In addition,the feasibility of the LMI conditions of new criteria can be easily checked by the Matlab LMI toolbox.Examples 4.1–4.2 show that corollaries of the main results obtained in this paper are more feasible and effective than the main results of some recent related literatures(see Remarks 4.1–4.2).Finally,Example 4.3 illustrates that the allowable upper bound of time delays for Theorem 3.1 or Theorem 3.4 is far greater than that of any previous related literature(see Remark 4.5).All these numerical examples show the effectiveness and the less conservatism of all the proposed methods.

    AcknowledgementThe author thanks the anonymous reviewers for their valuable suggestions and comments which have led to a much improved paper.

    [1]Cohen,M.and Grossberg,S.,Absolute stability and global pattern formation and parallel memory storage by competitive neural networks,IEEE Trans.Systems Man Cybernt.,13,1983,815–826.

    [2]Zhang,X.,Wu,S.and Li,K.,Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms,Commun.Nonlinear Sci.Numer.Simulat.,16,2011,1524–1532.

    [3]Wang,X.R.,Rao,R.F.and Zhong,S.M.,LMI approach to stability analysis of Cohen-Grossberg neural networks withp-Laplace diffusion,J.App.Math.,2012,523812,12 pages.

    [4]Rong,L.B.,Lu,W.L.and Chen,T.P.,Global exponential stability in Hopfield and bidirectional associative memory neural networks with time delays,Chin.Ann.Math.Ser.B,25(2),2004,255–262.

    [5]Rakkiyappan,R.and Balasubramaniam,P.,Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays,Nonlinear Anal.Hybrid Syst.,3,2009,408–417.

    [6]Rao,R.F.and Pu,Z.L.,Stability analysis for impulsive stochastic fuzzyp-Laplace dynamic equations under Neumann or Dirichlet boundary condition,Bound.Value Probl.,2013,2013:133,14 pages.

    [7]Balasubramaniam,P.and Rakkiyappan,R.,Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays,Nonlinear Anal.Hybrid Syst.,3,2009,207–214.

    [8]Zhang,H.and Wang,Y.,Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays,IEEE Trans.Neural Networks,19,2008,366–370.

    [9]Song,Q.K.and Cao J.D.,Stability analysis of Cohen-Grossberg neural network with both time-varying and continuously distributed delays,J.Comp.Appl.Math.,197,2006,188–203.

    [10]Rao,R.F.,Wang,X.R.,Zhong,S.M.and Pu,Z.L.,LMI approach to exponential stability and almost sure exponential stability for stochastic fuzzy Markovian jumping Cohen-Grossberg neural networks with nonlinearp-Laplace diffusion,J.Appl.Math.,2013,396903,21 pages.

    [11]Jiang,M.,Shen,Y.and Liao,X.,Boundedness and global exponential stability for generalized Cohen-Grossberg neural networks with variable delay,Appl.Math.Comp.,172,2006,379–393.

    [12]Haykin,S.,Neural Networks,Prentice-Hall,Upper Saddle River,NJ,USA,1994.

    [13]Zhu,Q.and Cao,J.,Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays,IEEE Trans.System,Man,and Cybernt.,41,2011,341–353.

    [14]Zhu,Q.and Cao,J.,Stability analysis for stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays,Neurocomp.,73,2010,2671–2680.

    [15]Zhu,Q.,Yang,X.and Wang,H.,Stochastically asymptotic stability of delayed recurrent neural networks with both Markovian jump parameters and nonlinear disturbances,J.Franklin Inst.,347,2010,1489–1510.

    [16]Zhu,Q.and Cao,J.,Stochastic stability of neural networks with both Markovian jump parameters and continuously distributed delays,Discrete Dyn.Nat.Soc.,2009,490515,20 pages.

    [17]Zhu,Q.and Cao,J.,Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays,IEEE Trans.Neural Networks,21,2010,1314–1325.

    [18]Liang X.and Wang,L.S.,Exponential stability for a class of stochastic reaction-diffusion Hopfield neural networks with delays,J.Appl.Math.,2012,693163,12 pages.

    [19]Zhang,Y.T.,Asymptotic stability of impulsive reaction-diffusion cellular neural networks with timevarying delays,J.Appl.Math.,2012,501891,17 pages.

    [20]Abdelmalek,S.,Invariant regions and global existence of solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous boundary conditions,J.Appl.Math.,2007,12375,15 pages.

    [21]Higham,D.J.and Sardar,T.,Existence and stability of fixed points for a discretised nonlinear reactiondiffusion equation with delay,Appl.Numer.Math.,18,1995,155–173.

    [22]Baranwal,V.K.,Pandey,R.K.,Tripathi,M.P.and Singh,O.P.,An analytic algorithm for time fractional nonlinear reaction-diffusion equation based on a new iterative method,Commun.Nonlinear Sci.Numer.Simul.,17,2012,3906–3921.

    [23]Meral,G.and Tezer-Sezgin,M.,The comparison between the DRBEM and DQM solution of nonlinear reaction-diffusion equation,Commun.Nonlinear Sci.Numer.Simul.,16,2011,3990–4005.

    [24]Liang,G.,Blow-up and global solutions for nonlinear reaction-diffusion equations with nonlinear boundary condition,Appl.Math.Comput.,218,2011,3993–3999.

    [25]Chen,H.,Zhang,Y.and Zhao,Y.,Stability analysis for uncertain neutral systems with discrete and distributed delays,Appl.Math.Comput.,218,2012,11351–11361.

    [26]Sheng,L.and Yang,H.,Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays,Chaos,Sol.&Frac.,40,2009,2102–2113.

    [27]Tian,J.K.,Li,Y.,Zhao,J.and Zhong,S.M.,Delay-dependent stochastic stability criteria for Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates,Appl.Math.Comput.,218,2012,5769–5781.

    [28]Rao,R.F.,Zhong,S.M.and Wang,X.R.,Delay-dependent exponential stability for Markovian jumping stochastic Cohen-Grossberg neural networks withp-Laplace diffusion and partially known transition rates via a differential inequality,Adv.Diff.Equations,2013,2013:183.

    [29]Zhang,Y.and Luo,Q.,Novel stability criteria for impulsive delayed reaction-diffusion Cohen-Grossberg neural networks via Hardy-Poincar′e inequality,Chaos,Sol.&Frac.,45,2012,1033–1040.

    [30]Zhang,Y.and Luo,Q.,Global exponential stability of impulsive delayed reaction-diffusion neural networks via Hardy-Poincar′e inequality,Neurocomp.,83,2012,198–204.

    [31]Li,Y.and Zhao,K.,Robust stability of delayed reaction-diffusion recurrent neural networks with Dirichlet boundary conditions on time scales,Neurocomp.,74,2011,1632–1637.

    [32]Wang,K.,Teng,Z.and Jiang,H.,Global exponential synchronization in delayed reaction-diffusion cellular neural networks with the Dirichlet boundary conditions,Math.Comp.Modelling,52,2010,12–24.

    [33]Wang,Z.,Zhang,H.and Li,P.,An LMI approach to stability analysis of reaction-diffusion Cohen-Grossberg neural networks concerning Dirichlet boundary conditions and distributed delays,IEEE Trans.System,Man,and Cybern.,40,2010,1596–1606.

    [34]Wu,A.L.and Fu,C.J.,Global exponential stability of non-autonomous FCNNs with Dirichlet boundary conditions and reaction-diffusion terms,Appl.Math.Modelling,34,2010,3022–3029.

    [35]Pan,J.and Zhong,S.M.,Dynamic analysis of stochastic reaction-diffusion Cohen-Grossberg neural networks with delays,Adv.Diff.Equations,2009,410823,18 pages.

    [36]Brezis,H.and Vazquez,J.L.,Blow-up solutions of some nonlinear elliptic problems,Rev.Mat.Univ.Comp.Mad.,10,1997,443–469.

    [37]Wang,Y.,Xie,L.and de Souza,C.E.,Robust control of a class of uncertain nonlinear system,Systems Control Lett.,19,1992,139–149.

    [38]Kao,Y.G.,Guo,J.F.,Wang C.H.and Sun,X.Q.,Delay-dependent robust exponential stability of Markovian jumping reaction-diffusion Cohen-Grossberg neural networks with mixed delays,J.Franklin Inst.,349(6),2012,1972–1988.

    [39]Rakkiyappan,R.and Balasubramaniam,P.,Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays,Nonlinear Anal.Hyb.Syst.,3,2009,408–417.

    [40]Rao,R.F.,Pu,Z.L.,Zhong,S.M.and Huang,J.L.,On the role of diffusion behaviors in stability criterion forp-Laplace dynamical equations with infinite delay and partial fuzzy parameters under Dirichlet boundary value,J.Appl.Math.,2013,940845,8 pages.

    [41]Rao,R.F.,Zhong,S.M.and Wang,X.R.,Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reactiondiffusion,Commun.Nonlinear Sci.Numer.Simulat.,19(1),2014,258–273.

    [42]Rao,R.F.and Pu,Z.L.,LMI-based stability criterion of impulsive TS fuzzy dynamic equations via fixed point theory,Abstract and Applied Analysis,2013,261353,9 pages.

    [43]Pu,Z.L.and Rao,R.F.,Exponential robust stability of TS fuzzy stochasticp-Laplace PDEs under zero-boundary condition,Bound.Value Probl.,2013,2013:264,14 pages.

    猜你喜歡
    蓋爾沙塵暴降雨量
    走丟的車輪奶酪
    可怕的沙塵暴
    降雨量與面積的關(guān)系
    迷霧中的蓋爾瑪
    暴力之旅——伊恩·麥克蓋爾訪談錄
    蓋爾瑪 百年老企轉(zhuǎn)戰(zhàn)直銷
    大話西游之沙塵暴
    天外來客:火星沙塵暴
    洞庭湖區(qū)降雨特性分析
    羅甸縣各鄉(xiāng)鎮(zhèn)實(shí)測(cè)降雨量分析及應(yīng)用研究
    久久久久国产一级毛片高清牌| 免费高清在线观看日韩| 丁香六月天网| 日韩一区二区三区影片| 午夜福利视频精品| 国产av国产精品国产| svipshipincom国产片| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久久人妻精品电影 | 久久亚洲精品不卡| 人妻 亚洲 视频| 国产又色又爽无遮挡免| 国产欧美日韩精品亚洲av| 久久女婷五月综合色啪小说| 日本a在线网址| 伊人亚洲综合成人网| 丝袜人妻中文字幕| 丝袜人妻中文字幕| 最黄视频免费看| 免费不卡黄色视频| 大片电影免费在线观看免费| 亚洲情色 制服丝袜| 精品卡一卡二卡四卡免费| av网站在线播放免费| 欧美中文综合在线视频| 高清av免费在线| 欧美另类一区| 免费在线观看日本一区| 精品卡一卡二卡四卡免费| 热99国产精品久久久久久7| a级毛片黄视频| 侵犯人妻中文字幕一二三四区| 亚洲精品中文字幕在线视频| 成人av一区二区三区在线看 | 亚洲欧美成人综合另类久久久| 亚洲国产欧美在线一区| 久久午夜综合久久蜜桃| 午夜免费鲁丝| 高潮久久久久久久久久久不卡| 热re99久久国产66热| 无限看片的www在线观看| 国产精品一区二区精品视频观看| 亚洲精品第二区| 国产视频一区二区在线看| 午夜福利免费观看在线| 美女高潮到喷水免费观看| 性色av乱码一区二区三区2| 欧美日韩成人在线一区二区| 精品一区二区三区四区五区乱码| 欧美日韩亚洲国产一区二区在线观看 | 制服人妻中文乱码| 啦啦啦中文免费视频观看日本| 久久国产亚洲av麻豆专区| 无限看片的www在线观看| 又紧又爽又黄一区二区| 黄色 视频免费看| 不卡一级毛片| 蜜桃国产av成人99| 亚洲一区中文字幕在线| 秋霞在线观看毛片| 天天躁夜夜躁狠狠躁躁| 精品一品国产午夜福利视频| 深夜精品福利| 黄色视频不卡| 两人在一起打扑克的视频| 91精品伊人久久大香线蕉| 久久人人97超碰香蕉20202| 老汉色av国产亚洲站长工具| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 男女床上黄色一级片免费看| 日本wwww免费看| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放| 俄罗斯特黄特色一大片| 欧美一级毛片孕妇| 秋霞在线观看毛片| 精品少妇黑人巨大在线播放| 极品人妻少妇av视频| 99久久综合免费| 亚洲精品一区蜜桃| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 午夜两性在线视频| 19禁男女啪啪无遮挡网站| tocl精华| 一区二区三区四区激情视频| 精品亚洲成a人片在线观看| 亚洲性夜色夜夜综合| 国产极品粉嫩免费观看在线| 久久精品亚洲熟妇少妇任你| av在线老鸭窝| 老鸭窝网址在线观看| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 亚洲精品美女久久久久99蜜臀| 国产一区二区三区av在线| 两个人看的免费小视频| 91字幕亚洲| 精品久久久久久久毛片微露脸 | 亚洲成人免费电影在线观看| 久热这里只有精品99| 国产欧美亚洲国产| 一级黄色大片毛片| 蜜桃国产av成人99| 久久天堂一区二区三区四区| 亚洲国产精品一区二区三区在线| 国产极品粉嫩免费观看在线| 欧美精品av麻豆av| 亚洲av片天天在线观看| 欧美成人午夜精品| 啦啦啦免费观看视频1| 91av网站免费观看| 91国产中文字幕| 高清在线国产一区| 免费在线观看视频国产中文字幕亚洲 | 成年av动漫网址| 91成人精品电影| 亚洲精品粉嫩美女一区| 这个男人来自地球电影免费观看| 老司机午夜福利在线观看视频 | 日韩一卡2卡3卡4卡2021年| 欧美另类一区| 日日夜夜操网爽| 久久99热这里只频精品6学生| 欧美性长视频在线观看| 少妇 在线观看| www日本在线高清视频| 国产精品免费视频内射| 一本久久精品| 国产亚洲一区二区精品| 三上悠亚av全集在线观看| 在线观看一区二区三区激情| 精品一区二区三卡| www.999成人在线观看| 国产伦人伦偷精品视频| 欧美精品一区二区免费开放| 99久久精品国产亚洲精品| 久久人人爽av亚洲精品天堂| 热99国产精品久久久久久7| 黑人巨大精品欧美一区二区蜜桃| 在线观看一区二区三区激情| 精品亚洲成国产av| 精品人妻在线不人妻| 国产在线免费精品| 天天添夜夜摸| 免费在线观看黄色视频的| 国产成人啪精品午夜网站| 亚洲精品国产色婷婷电影| xxxhd国产人妻xxx| 亚洲av片天天在线观看| 9热在线视频观看99| 男人舔女人的私密视频| 国产成人系列免费观看| 国产伦理片在线播放av一区| 中文字幕另类日韩欧美亚洲嫩草| 高清av免费在线| 中文字幕av电影在线播放| 91字幕亚洲| 久久人妻福利社区极品人妻图片| 青春草亚洲视频在线观看| 丝袜在线中文字幕| 精品免费久久久久久久清纯 | 国内毛片毛片毛片毛片毛片| 国产男女内射视频| 国产亚洲一区二区精品| 亚洲性夜色夜夜综合| 2018国产大陆天天弄谢| 美女视频免费永久观看网站| 91av网站免费观看| 国产片内射在线| 999久久久精品免费观看国产| 亚洲精品国产精品久久久不卡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人手机| 国产老妇伦熟女老妇高清| 天天影视国产精品| 老司机影院毛片| 首页视频小说图片口味搜索| 一本综合久久免费| 免费黄频网站在线观看国产| 国内毛片毛片毛片毛片毛片| 女警被强在线播放| 中文字幕高清在线视频| 日韩制服丝袜自拍偷拍| 日韩视频一区二区在线观看| 可以免费在线观看a视频的电影网站| 美国免费a级毛片| 亚洲伊人色综图| 国产一卡二卡三卡精品| 久久人妻福利社区极品人妻图片| 人人妻人人澡人人看| 欧美久久黑人一区二区| 丝袜脚勾引网站| 国产一区有黄有色的免费视频| 国产男女超爽视频在线观看| 美女主播在线视频| 欧美另类一区| 老司机在亚洲福利影院| 欧美在线黄色| 大陆偷拍与自拍| 中文字幕人妻丝袜制服| 欧美精品一区二区大全| 女人精品久久久久毛片| 亚洲自偷自拍图片 自拍| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩精品亚洲av| 黑丝袜美女国产一区| 人妻 亚洲 视频| 欧美精品av麻豆av| 久久久久视频综合| 三级毛片av免费| 午夜老司机福利片| 操出白浆在线播放| 中文精品一卡2卡3卡4更新| 2018国产大陆天天弄谢| 搡老乐熟女国产| 丰满迷人的少妇在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 1024香蕉在线观看| 久久久久久久久久久久大奶| 亚洲精品国产一区二区精华液| 五月天丁香电影| 少妇被粗大的猛进出69影院| 亚洲免费av在线视频| 亚洲中文字幕日韩| 永久免费av网站大全| 一区二区三区四区激情视频| 久久狼人影院| 99久久精品国产亚洲精品| 亚洲成人免费电影在线观看| 交换朋友夫妻互换小说| 亚洲av片天天在线观看| 国产欧美日韩精品亚洲av| 国产男人的电影天堂91| 人人妻,人人澡人人爽秒播| 最近最新免费中文字幕在线| 久久精品亚洲熟妇少妇任你| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 久久毛片免费看一区二区三区| 午夜老司机福利片| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 下体分泌物呈黄色| 久久人妻熟女aⅴ| 精品国内亚洲2022精品成人 | 岛国在线观看网站| 大陆偷拍与自拍| 久久人人爽av亚洲精品天堂| 另类亚洲欧美激情| 女人精品久久久久毛片| 成年av动漫网址| 亚洲av国产av综合av卡| 9热在线视频观看99| 91成年电影在线观看| www.熟女人妻精品国产| 啦啦啦免费观看视频1| 日韩有码中文字幕| 精品国产超薄肉色丝袜足j| 男女免费视频国产| 黑人操中国人逼视频| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区 | 国产在线观看jvid| 99国产精品一区二区蜜桃av | 国产欧美亚洲国产| 亚洲伊人久久精品综合| 不卡av一区二区三区| 两个人免费观看高清视频| 成人手机av| 国产成人精品久久二区二区免费| av在线app专区| 久久免费观看电影| 日日爽夜夜爽网站| 国产亚洲av片在线观看秒播厂| 欧美日韩中文字幕国产精品一区二区三区 | 午夜91福利影院| 青春草视频在线免费观看| 久久精品亚洲av国产电影网| 热re99久久国产66热| 日本欧美视频一区| cao死你这个sao货| 国产高清videossex| 丰满饥渴人妻一区二区三| 亚洲男人天堂网一区| 国产黄频视频在线观看| 精品一区二区三区av网在线观看 | 一本大道久久a久久精品| 精品一区二区三卡| 欧美亚洲 丝袜 人妻 在线| 亚洲 欧美一区二区三区| 99国产极品粉嫩在线观看| 欧美激情高清一区二区三区| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 欧美黄色片欧美黄色片| 精品熟女少妇八av免费久了| 午夜91福利影院| 在线观看免费视频网站a站| 一区二区三区精品91| 国产成人免费无遮挡视频| 天天躁狠狠躁夜夜躁狠狠躁| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 啦啦啦啦在线视频资源| 亚洲久久久国产精品| 蜜桃在线观看..| 麻豆av在线久日| 精品高清国产在线一区| 精品亚洲成a人片在线观看| 免费看十八禁软件| 99九九在线精品视频| kizo精华| 国产国语露脸激情在线看| 国精品久久久久久国模美| 日本欧美视频一区| 中文字幕人妻熟女乱码| 欧美日韩av久久| 午夜福利在线免费观看网站| 色综合欧美亚洲国产小说| 欧美日韩av久久| 欧美精品高潮呻吟av久久| 中文字幕人妻熟女乱码| 成年人午夜在线观看视频| 亚洲精品粉嫩美女一区| 午夜成年电影在线免费观看| 老熟妇仑乱视频hdxx| 欧美在线一区亚洲| 色视频在线一区二区三区| 女人高潮潮喷娇喘18禁视频| 大型av网站在线播放| 高清在线国产一区| 999精品在线视频| 叶爱在线成人免费视频播放| 中文字幕最新亚洲高清| 久久久久久人人人人人| 99国产综合亚洲精品| 久久九九热精品免费| 91大片在线观看| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀| 成年女人毛片免费观看观看9 | 丝瓜视频免费看黄片| 母亲3免费完整高清在线观看| 啦啦啦视频在线资源免费观看| 国产淫语在线视频| 视频在线观看一区二区三区| 窝窝影院91人妻| 飞空精品影院首页| 亚洲国产成人一精品久久久| 久久av网站| 久久久久视频综合| 韩国高清视频一区二区三区| 国产精品一区二区在线观看99| 在线av久久热| 国产亚洲一区二区精品| 女性生殖器流出的白浆| 久久久国产一区二区| 亚洲精品在线美女| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看 | 日韩熟女老妇一区二区性免费视频| 免费久久久久久久精品成人欧美视频| 自线自在国产av| 国产黄色免费在线视频| 99九九在线精品视频| 18禁国产床啪视频网站| 国产区一区二久久| 亚洲精品在线美女| 日本a在线网址| 国产免费视频播放在线视频| 久久精品国产亚洲av香蕉五月 | 欧美老熟妇乱子伦牲交| 在线av久久热| 国产一级毛片在线| 交换朋友夫妻互换小说| 中文字幕高清在线视频| 久久精品国产亚洲av香蕉五月 | 久热这里只有精品99| 久久这里只有精品19| 999久久久精品免费观看国产| 国产成人精品无人区| 99国产精品99久久久久| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 亚洲精品在线美女| 男女免费视频国产| 亚洲成人手机| 美女高潮喷水抽搐中文字幕| 亚洲成国产人片在线观看| 久久国产精品影院| 国产精品影院久久| 美女脱内裤让男人舔精品视频| 91大片在线观看| 欧美97在线视频| 日韩制服骚丝袜av| 亚洲欧美日韩另类电影网站| 性色av乱码一区二区三区2| 国产99久久九九免费精品| 久热这里只有精品99| 少妇的丰满在线观看| 亚洲精品国产av蜜桃| 久久久久国内视频| 超碰成人久久| 人妻一区二区av| 午夜激情久久久久久久| 国产在线一区二区三区精| 一级,二级,三级黄色视频| 亚洲av成人一区二区三| 久久天堂一区二区三区四区| 亚洲第一欧美日韩一区二区三区 | 日日夜夜操网爽| 青春草视频在线免费观看| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 性少妇av在线| 天堂俺去俺来也www色官网| 国产精品久久久久久人妻精品电影 | 制服诱惑二区| 老司机影院成人| 亚洲精品美女久久久久99蜜臀| 法律面前人人平等表现在哪些方面 | 亚洲av美国av| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 一边摸一边抽搐一进一出视频| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| 亚洲精品中文字幕在线视频| 亚洲精华国产精华精| 亚洲专区字幕在线| 岛国毛片在线播放| 法律面前人人平等表现在哪些方面 | 99国产精品免费福利视频| 99热网站在线观看| 国产成人欧美| 久久天躁狠狠躁夜夜2o2o| 亚洲自偷自拍图片 自拍| 岛国毛片在线播放| 欧美大码av| 欧美在线黄色| 菩萨蛮人人尽说江南好唐韦庄| 超碰97精品在线观看| 亚洲激情五月婷婷啪啪| 91九色精品人成在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲综合色网址| 黄色 视频免费看| 伊人亚洲综合成人网| 国产男人的电影天堂91| 日韩精品免费视频一区二区三区| 啦啦啦免费观看视频1| e午夜精品久久久久久久| 啦啦啦啦在线视频资源| a级毛片在线看网站| 欧美国产精品va在线观看不卡| 91成年电影在线观看| 丰满迷人的少妇在线观看| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 丰满饥渴人妻一区二区三| 大型av网站在线播放| 精品久久久精品久久久| 大香蕉久久网| 一级毛片女人18水好多| 国产一卡二卡三卡精品| 午夜激情久久久久久久| 午夜福利视频在线观看免费| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| 欧美xxⅹ黑人| 午夜91福利影院| www.av在线官网国产| 777米奇影视久久| av线在线观看网站| 男女边摸边吃奶| 久久香蕉激情| 如日韩欧美国产精品一区二区三区| 9热在线视频观看99| 亚洲 国产 在线| 一区二区三区精品91| av又黄又爽大尺度在线免费看| av不卡在线播放| 成人国产一区最新在线观看| 人人妻人人爽人人添夜夜欢视频| 国产伦人伦偷精品视频| 久久这里只有精品19| 女人爽到高潮嗷嗷叫在线视频| 飞空精品影院首页| 啦啦啦 在线观看视频| 日韩有码中文字幕| 国产成人a∨麻豆精品| 悠悠久久av| 国产一区二区三区在线臀色熟女 | 久久久久精品人妻al黑| 久久香蕉激情| 国产在视频线精品| 男女无遮挡免费网站观看| 日韩人妻精品一区2区三区| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 大片电影免费在线观看免费| 久久久久网色| 亚洲,欧美精品.| 午夜老司机福利片| 水蜜桃什么品种好| 女人久久www免费人成看片| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 久久中文字幕一级| 国产一区二区 视频在线| 男女午夜视频在线观看| 亚洲一区二区三区欧美精品| 王馨瑶露胸无遮挡在线观看| 在线永久观看黄色视频| 色婷婷av一区二区三区视频| 我要看黄色一级片免费的| 欧美黑人欧美精品刺激| 日韩有码中文字幕| 又紧又爽又黄一区二区| 99精国产麻豆久久婷婷| 91大片在线观看| 老熟女久久久| 男女边摸边吃奶| 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜一区二区| av又黄又爽大尺度在线免费看| 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看| 精品高清国产在线一区| 黄片小视频在线播放| 精品久久蜜臀av无| 国产一级毛片在线| 汤姆久久久久久久影院中文字幕| 男男h啪啪无遮挡| 国产又色又爽无遮挡免| 国产精品亚洲av一区麻豆| 亚洲精品中文字幕在线视频| 成年美女黄网站色视频大全免费| 看免费av毛片| 国产免费av片在线观看野外av| 老司机午夜十八禁免费视频| 亚洲欧美日韩另类电影网站| 久久中文字幕一级| 国产欧美日韩一区二区三 | 搡老乐熟女国产| 天天躁狠狠躁夜夜躁狠狠躁| 如日韩欧美国产精品一区二区三区| 欧美日韩精品网址| 丝袜美腿诱惑在线| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 午夜视频精品福利| 国产黄色免费在线视频| 欧美国产精品va在线观看不卡| 亚洲av日韩精品久久久久久密| 法律面前人人平等表现在哪些方面 | 精品一区二区三区av网在线观看 | 少妇猛男粗大的猛烈进出视频| 久久亚洲国产成人精品v| av网站在线播放免费| 国产欧美日韩一区二区三区在线| 免费看十八禁软件| 五月天丁香电影| 一个人免费在线观看的高清视频 | 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 9191精品国产免费久久| 19禁男女啪啪无遮挡网站| av一本久久久久| 日韩 欧美 亚洲 中文字幕| 在线av久久热| 乱人伦中国视频| 三级毛片av免费| 午夜视频精品福利| 亚洲天堂av无毛| 777久久人妻少妇嫩草av网站| 日韩欧美免费精品| 人妻人人澡人人爽人人| 国产精品.久久久| 亚洲精品av麻豆狂野| 深夜精品福利| 久久影院123| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 亚洲熟女毛片儿| 国产黄色免费在线视频| 久久国产精品影院| 久久久久久久久久久久大奶| 老司机影院成人| 国产成人精品久久二区二区91| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人| 人妻人人澡人人爽人人| 国产精品一区二区在线观看99| 国精品久久久久久国模美| 十八禁网站免费在线| 人人澡人人妻人| 美女高潮喷水抽搐中文字幕| 久久影院123| 久久亚洲国产成人精品v| 国产精品一区二区免费欧美 | 久久久久国产一级毛片高清牌| 在线观看一区二区三区激情|