• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On a Spectral Sequence for Twisted Cohomologies?

    2014-06-05 03:08:58WeipingLIXiuguiLIUHeWANG

    Weiping LI Xiugui LIU He WANG

    1 Introduction

    LetMbe a smooth compact closed manifold of dimensionn,and Ω?(M)be the space of smooth differential forms over R onM.We have the de Rham cochain complex(Ω?(M),d),whered:Ωp(M)→Ωp+1(M)is the exterior differentiation,and its cohomologyH?(M)(the de Rham cohomology).The de Rham cohomology with coefficients in a flat vector bundle is an extension of the de Rham cohomology.

    The twisted de Rham cohomology was first studied by Rohm and Witten[13]for the antisymmetric field in superstring theory.By analyzing the massless fermion states in the string sector,Rohm and Witten obtained the twisted de Rham cochain complex(Ω?(M),d+H3)for a closed 3-formH3,and mentioned the possible generalization to a sum of odd closed forms.A key feature in the twisted de Rham cohomology is that the theory is not integer-graded but(likeK-theory)is filtered with the grading mod 2.This has a close relation with the twistedK-theory and the Atiyah-Hirzebruch spectral sequence(see[1]).

    LetHbewhereis a closed(2i+1)-form.Then one can define a new operatorD=d+Hon Ω?(M),whereHis understood as an operator acting by exterior multiplication(for any differential formw,H(w)=H∧w).As in[1,13],there is a filtration on(Ω?(M),D)as follows:

    This filtration gives rise to a spectral sequence

    converging to the twisted de Rham cohomologyH?(M,H)with

    For convenience,we first fix some notations in this paper.The notation[r]denotes the greatest integer part ofr∈R.In the spectral sequence(1.2),for any∈,[yp]k+lrepresents its class to whichsurvives inIn particular,as in Proposition 3.2,for=represents the de Rham cohomology classrepresents a class inwhich survives to

    In[13,Appendix I],Rohm and Witten first gave a description of the differentialsd3andd5for the caseD=d+H3.Atiyah and Segal[1]showed a method about how to construct the differentials in terms of Massey products,and gave a generalization of Rohm and Witten’s result:The iterated Massey products withH3give(up to sign)all the higher differentials of the spectral sequence for the twisted cohomology(see[1,Proposition 6.1]).Mathai and Wu[9,p.5]considered the general case ofH=and claimed,without proof,thatd2=d4=···=0,whiled3,d5,···are given by the cup products withH3,H5,···and the higher Massey products with them.Motivated by the method in[1],we give an explicit description of the differentials in the spectral sequence(1.2)in terms of Massey products.

    We now describe our main results.LetAdenote a defining system for then-fold Massey productandc(A)denote its related cocycle(see Definition 5.1).Then

    by Definition 5.2.To obtain our desired theorems by specific elements of Massey products,we restrict the allowable choices of defining systems for Massey products(see[14]).By Theorems 4.1–4.2 in this paper,there are defining systems for the two Massey products that we need(see Lemma 5.1).The notationin Theorem 1.1 below denotes a cohomology class inH?(M)represented byc(A),whereAis a defining system obtained by Theorem 4.1(see Definition 5.3).Similarly,the notationin Theorem 1.2 below denotes a cohomology class inH?(M)represented byc(A),whereAis a defining system obtained by Theorem 4.2(see Definition 5.3).

    Theorem 1.1For H=and(t≥1),the differential of the spectral sequence(1.2),i.e.,is given by

    andis independent of the choice of the defining system A obtained from Theorem4.1.

    Specializing Theorem 1.1 to the caseH=we obtain

    Obviously,much information has been concealed in the above expression.In particular,we give a more explicit expression of differentials for this special case,which is compatible with Theorem 1.1(see Remark 5.6).

    Theorem 1.2For H=(s≥1)only and(t≥1),the differential of the spectral sequence(1.2),i.e.,:is given by

    andis independent of the choice of the defining system B obtained from Theorem4.2.

    Atiyah and Segal[1]gave the differential expression in terms of Massey products whenH=H3(see[1,Proposition 6.1]).Obviously,the result of Atiyah and Segal is a special case of Theorem 1.2.

    Some of the results above are known to experts in this field,but there is a lack of mathematical proof in the literature.

    This paper is organized as follows.In Section 2,we recall some backgrounds about the twisted de Rham cohomology.In Section 3,we consider the structure of the spectral sequence converging to the twisted de Rham cohomology,and give the differentialsdi(1≤i≤3)and(k≥1).With the formulas of the differentials inin Section 4,Theorems 1.1 and 1.2 are proved in Section 5.In Section 6,we discuss the indeterminacy of differentials of the spectral sequence(1.2).

    2 Twisted de Rham Cohomology

    For completeness,in this section,we recall some knowledge about the twisted de Rham cohomology.LetMbe a smooth compact closed manifold of dimensionn,and Ω?(M)be thespace of smooth differential forms onM.We have the de Rham cochain complex(Ω?(M),d)with the exterior differentiationd:and its cohomologyH?(M)(the de Rham cohomology).

    LetHdenotewhereis a closed(2i+1)-form.Define a new operatorD=d+Hon Ω?(M),whereHis understood as an operator acting by exterior multiplication(for any differential formw,H(w)=H∧w,also denoted byH∧).It is easy to show that

    However,Dis not homogeneous on the space of smooth differential forms Ω?(M)=

    Define Ω?(M)to be a new(mod 2)grading as follows:

    where

    ThenDis homogenous for this new(mod 2)grading,

    Define the twisted de Rham cohomology groups ofMas follows:

    Remark 2.1(i)The twisted de Rham cohomology groupsH?(M,H)(?=o,e)depend on the closed formHbut not just on its cohomology class.IfHandH′are cohomologous,thenH?(M,H)H?(M,H′)(see[1,Section 6]).

    (ii)The twisted de Rham cohomology is also an important homotopy invariant(see[9,Section 1.4]).

    LetEbe a flat vector bundle overM,and Ωi(M,E)be the space of smooth differentiali-forms onMwith values inE.A flat connection onEgives a linear map

    such that for any smooth functionfonMand anyω∈Ωi(M,E),

    Similarly,define Ω?(M,E)to be a new(mod 2)grading as follows:

    where

    Thenis homogenous for the new(mod 2)grading,

    Define the twisted de Rham cohomology groups ofEas follows:

    Results proved in this paper are also true for the twisted de Rham cohomology groupsH?(M,E,H)(?=o,e)with twisted coefficients inEwithout any change.

    3 A Spectral Sequence for Twisted de Rham Cohomology and Its Differentials di(1i3),(k1)

    RecallD=d+HandH=whereis a closed(2i+1)-form.Define the usual filtration on the graded vector space Ω?(M)to be

    andK=K0= Ω?(M).The filtration is bounded and complete,

    We haveD(Kp)?The differentialD(=d+H)does not preserve the grading of the de Rham complex.However,it does preserve the filtration

    The filtrationgives an exact couple(with bidegree)(see[12]).For eachp,Kpis a graded vector space with

    whereandThe cochain complex(Kp,D)is induced byD:Ω?(M)?→Ω?(M).In a way similar to(2.4),there are two well-defined cohomology groupsNote that a cochain complex with grading

    derives cohomology groupsandSinceD(we haveD=0 in the cochain complex

    Lemma 3.1For the cochain complexwe have

    ProofIfpis odd,then

    We have

    Similarly,for evenp,we have

    By the filtration(3.1),we obtain a short exact sequence of cochain complexes

    which gives rise to a long exact sequence of cohomology groups

    Note that in the exact sequence above,

    Let

    We get an exact couple from the long exact sequence(3.3)

    withi1of bidegree(?1,1),j1of bidegree(0,0)andk1of bidegree(1,0).

    We haved1=with bidegree(1,0),and=0.By(3.5),we have the derived couple

    by the following:

    (1)=i1D?,?1,E?,?2=Hd1(E?,?1).

    (2)i2=i1also denoted byi1.

    (3)Ifa2=define()=where[]d1denotes the cohomology class inHd1

    (4)For[b]d1∈=define

    The derived couple(3.6)is also an exact couple,andj2andk2are well defined(see[6,12]).

    Proposition 3.1(i)There exists a spectral sequencederived from the filtrationwhere=andThe bidegree of dris(r,1?r).

    (ii)The spectral sequenceconverges to the twisted de Rham cohomology

    ProofSince the filtration is bounded and complete,the proof follows from the standard algebraic topology method(see[12]).

    Remark 3.1(1)Note that

    Then we have thatare 2-periodic oni.Consequently,the spectral sequenceis 2-periodic onq.

    (2)There is also a spectral sequence converging to the twisted cohomologyH?(M,E,H)for a flat vector bundleEoverM.

    Proposition 3.2For the spectral sequence in Proposition3.1,

    (i)The-term is given by

    and d1xp=dxpfor any xp∈

    (ii)The -term is given by

    and d2=0.

    (iii)=and d3[xp]=

    Proof(i)By Lemma 3.1,we have the-term as desired,and by definition,we obtain:We only need to consider the case whenqis even,otherwised1=0.By(3.2)for oddp(the case,whenpis even,is similar),we have a large commutative diagram

    where the rows are exact and the columns are cochain complexes.

    Letxp∈Ωp(M)and

    be an(inhomogeneous)form,whereis a(p+2i)-form(0≤i≤Thenx∈jx=xpandDx∈AlsoDx∈By the definition of the homomorphismδin(3.3),we have

    where[]Dis the cohomology class inThe class[Dx]Dis well defined and independent of the choices of(1≤i≤(see[3,p.116]).

    Choose=0(1≤i≤[Then we have

    Thus,one obtains

    (ii)By the definition of the spectral sequence and(i),one obtains that(M)whenqis even,and=0 whenqis odd.Noted2:It follows thatd2=0 by degree reasons.

    (iii)Note thatimpliesdxp=0.Choosing=0 for 1≤i≤we get

    wherexis given in the proof of(i).Note

    It follows that

    where the first,second and fourth identities follow from the definitions ofd3,k3andj3,respectively,and the third and last identities follow from(3.10)and(3.11),respectively.By(ii),d2=0,soThen we have

    Corollary 3.1d2k=0for k≥1.Therefore,for k≥1,

    ProofNoteBy Proposition 3.2(ii),ifqis odd,then=0,which implies that=0.By degree reasons,we have=0 andfork≥1.

    The differentiald3for the caseH=H3is shown in[1,Section 6],and the-term is also known.

    4 Differentials( 1)in Terms of Cup Products

    In this section,we will show that the differentials(t≥1)can be given in terms of cup products.

    We first consider the general case ofH=we letx=∈(M)).Then we have

    Denotey=Dx=where

    Theorem 4.1For(t≥1),there exist(1≤i≤t),such that=0(0≤j≤t)and

    where the(p+2i)-formdepends on t.

    ProofThe theorem is shown by mathematical induction ont.

    Whent=1,implies thatdxp=0 and=0 by Proposition 3.2.Thus there exists a(p+2)-formv1,such thatWe can choose=v1to get+=0 from(4.2).Noting

    we obtain

    The reasons for the identities in(4.4)are similar to those of(3.12).Thus,we have

    where the first identity follows from(4.4)and the definition ofin(4.2),and the second one follows from the fact thatvanishes inHence the result holds fort=1.

    Suppose that the result holds fort≤m?1.Now we show that the theorem also holds fort=m.

    Fromwe haveand=0.By induction,there exist(1≤i≤m?1),such that

    Byd2m=0 and the last equation in(4.5),there exists a(p+2)-formsuch that

    By induction andthere exist(1≤i≤m?2),such that

    By(4.6)and the last equation in(4.7),we obtain

    Note that=0,and it follows that there exists a(p+4)-formsuch that

    Keeping the same iteration process as mentioned above,we have

    Byd6=0,it follows that there exists a(p+2(m?2))-formsuch that

    By induction andthere existssuch that

    By(4.8),the last equation in(4.9)andd4=0,it follows that there exists a(p+2(m?1))-formsuch that

    and==0.Thus there exists a(p+2m)-formsuch that

    Comparing(4.10)with(4.2),we choose at this time

    From(4.2),by a direct computation,we have

    Note

    By the similar reasons as in(3.12),the following identities hold:

    So we have

    showing that the result also holds fort=m.

    The proof of the theorem is completed.

    Remark 4.1Note that(1≤i≤t)depend ont,and thatdepend on the conditiongenerally(1≤i≤t)are related to(1≤j≤t?1,j≤i).

    Now we consider the special case in whichH=(s≥1)only.For this special case,we will give a more explicit result which is stronger than Theorem 4.1.

    Forx=we have

    Denote

    ThenDx=

    Theorem 4.2For H=(s≥1)only and(t≥1),there exist==0and=0for1≤i≤1≤j≤s?1and1≤k≤t?s,such that=0(0≤u≤t)and

    where the(p+2is)-formdepend on

    ProofWe prove the theorem by mathematical induction ons.

    Whens=1,the result follows from Theorem 4.1.

    Whens≥2,we prove the result by mathematical induction ont.We first show that the result holds fort=1.Note thatimplies=0.Choose=0 and make=0.

    (i)Whens=2,by(4.4),we have

    (ii)Whens≥3,by(4.4),we have

    Combining(i)and(ii),we have that the theorem holds fort=1.

    Suppose that the theorem holds fort≤m?1.Now we show that the theorem also holds fort=m.

    Case 12≤m≤s?1.

    By induction,the theorem holds for 1≤t≤m?1.Choosing=0(1≤i≤m),from(4.15),we easily get that=0(0≤j≤m).By(4.14)–(4.15),we have

    Case 2m=ls?1(l≥2).

    By induction,the theorem holds fort=m?1=ls?2.Thus,there exist==0 and=0 for 1≤i≤l?1,1≤j≤s?1 and 1≤k≤s?2,such that=0(0≤u≤ls?2).Choosing=0,by(4.15),we get

    Then we have

    Case 3m=ls(l≥1).

    By induction,there exist=0 andxp+2(l?1)s+2k=0 for 1≤i≤l?1,1≤j≤s?1 and 1≤k≤s?1,such that=0(0≤u≤ls?1).By the same method as in Theorem 4.1,one has that there exist==0 and=0 for 1≤i≤l,1≤j≤s?1 and 1≤k≤s?1,such that=0(0≤u≤ls).By(4.14)–(4.15)and=0,we have

    Case 4ls<m<(l+1)s?1(l≥1).

    By induction,there exist===0 and=0 for 1≤i≤l,1≤j≤s?1 and 1≤k≤m?ls?1,such that=0(0≤u≤m?1).Choose=0 and make=0.By(4.14)–(4.15)and=0,we have

    Combining Cases 1–4,we have that the result holds fort=m,and the proof is completed.

    Remark 4.2(1)Theorems 4.1–4.2 show that the differentials in the spectral sequence(1.2)can be computed in terms of cup products withThe existence of’s in Theorems 4.1–4.2 plays an essential role in proving Theorems 1.1–1.2,respectively.Theorems 4.1–4.2 give a description of the differentials at the level offor the spectral sequence(1.2),which was ignored in the previous studies of the twisted de Rham cohomology in[1,9].

    (2)Note that Theorem 4.2 is not a corollary of Theorem 4.1,and it can not be obtained from Theorem 4.1 directly.

    5 Differentials (t ≥ 1)in Terms of Massey Products

    The Massey product is a cohomology operation of higher order introduced in[8],which generalizes the cup product.May[10]showed that the differentials in the Eilenberg-Moore spectral sequence associated with the path-loop fibration of a path connected,simply connected space are completely determined by higher order Massey products.Kraines and Schochet[5]also described the differentials in Eilenberg-Moore spectral sequence by Massey products.Inorder to describe the differentials(t≥1)in terms of Massey products,we first recall brief l y the definition of Massey products(see[4,10–12]).Then the main theorems in this paper will be shown.

    Because of different conventions in the literature used to define Massey products,we present the following definitions.Ifx∈Ωp(M),the symbolwill denoteWe first define the Massey triple product.

    Letbe closed differential forms onMof degreeswith=0 and=0,where[]denotes the de Rham cohomology class.Thus,there are differential formsv1of degreer1+r2?1 andv2of degreer2+r3?1,such thatandDefine the?1)-form

    Thenωsatisfies

    Hence a set of all the cohomology classes[ω]obtained by the above procedure is defined to be the Massey triple productofx1,x2andx3.Due to the ambiguity ofvi,i=1,2,the Massey triple productis a representative of the quotient group

    Definition 5.1Let(Ω?(M),d)be de Rham complex,and···,xnbe closed differential forms on M with(M).A collection of forms,A=for1≤i≤j≤k andis said to be a defining system for the n-fold Massey product〉if

    The(r1+···+rn?n+2)-dimensional cocycle,c(A),defined by

    is called the related cocycle of the defining system A.

    Remark 5.1There is a unique matrix associated to each defining systemAas follows:

    Definition 5.2The n-fold Massey product〉is said to be defined,if there is a defining system for it.If it is defined,thenconsists of all classes w∈for which there exists a defining system A,such that c(A)represents w.

    Remark 5.2There is an inherent ambiguity in the definition of the Massey product arising from the choices of defining systems.In general,then-fold Massey product may or may not be a coset of a subgroup,but its indeterminacy is a subset of a matrix Massey product(see[10,Section 2]).

    Based on Theorems 4.1–4.2,we have the following lemma on defining systems for the two Massey products we consider in this paper.

    Lemma 5.1(1)For(t≥1),there are defining systems forxp〉obtained from Theorem4.1.

    (2)Forwhen t=ls?1(l≥2),there are defining systems forobtained from Theorem4.2.

    Proof(1)From Theorem 4.1,there exist(1≤j≤t),such that=0(0≤i≤t)and=+By Theorem 4.1 and(4.2),there exists a defining systemA=(ai,j)for〉as follows:

    to which the matrix associated is given by

    The desired result follows.

    (2)By Theorem 4.2,there exist=0 and=0 for 1≤i≤l?1,1≤j≤s?1 and 1≤k≤s?1,such that=0(0≤i≤t)andBy Theorem 4.2 and(4.15),there also exists a definingsystemA=foras follows:

    to which the matrix associated is given by

    The desired result follows.

    To obtain our desired theorems by specific elements of Massey products,we restrict the allowable choices of defining systems for the two Massey products in Lemma 5.1(see[14]).By Lemma 5.1,we give the following definitions.

    Definition 5.3(1)Given a class(t≥1),a specific element of(t+2)-fold Massey productdenoted byis a class in(M)represented by c(A),where A is a defining system obtained from Theorem4.1.We define the(t+2)-fold allowable Massey productto be the set of all the cohomology classes w∈(M)for which there exists a defining system A obtained from Theorem4.1,such that c(A)represents w.

    (2)Similarly,given a class(t≥1),when t=ls?1(l≥2),we definethe specific element of(l+1)-fold Massey product〉and the(l+1)-foldallowable Massey productby replacing Theorem4.1by Theorem4.2in(1).

    Remark 5.3(1)From Definition 5.3,we can get the following:

    (2)The allowable Massey productis less ambiguous than the general Massey productTakein Definition 5.3 for example.SupposeH=By Theorem 4.1 and(4.2),there existsuch that=0(0≤i≤1)and=By Lemma 5.1,we get a defining systemAforand its related cocyclec(A)=?Thus,we have

    Obviously,the indeterminacy of the allowable Massey product(M).However,in the general case,the indeterminacy of the Massey product〉is(M)+

    Similarly,the allowable Massey productis less ambiguous than the general Massey product

    Now we begin to prove our main theorems.

    Proof of Theorem 1.1By Lemma 5.1(1),there exist defining systems forgiven by Theorem 4.1.For any defining systemA=(ai,j)given by Theorem 4.1,by(5.4),we have

    By Definition 5.3,we have

    Then by Theorem 4.1,we have

    Thus,we have

    By the arbitrariness ofA,we have thatis independent of the choice of the defining systemAobtained by Theorem 4.1.

    Example 5.1For formal manifolds,which are manifolds with vanishing Massey products,it is easy to get

    by Theorem 1.1.Note that simply connected compact Khler manifolds are an important class of formal manifolds(see[2]).

    Remark 5.4(1)From the proof of Theorem 1.1,we have that the specific element

    represents a class inFor two different defining systemsA1andA2given by Theorem 4.1,we have

    generally.However,in the spectral sequence(1.2),we have

    (2)Since the indeterminacy ofdoes not affect our results,we will not analyze the indeterminacy of Massey products in this paper.

    (3)By Theorem 1.1,fort≥1,which is expressed only byH3andxp.From the proof of Theorem 1.1,we know that the above expression conceals some information,because the otheraffect the result implicitly.

    We have the following corollary(see[1,Proposition 6.1]).

    Corollary 5.1For H=H3only and(t≥1),we have that in the spectral sequence(1.2),

    and[is independent of the choice of the defining system A obtained from Theorem4.1.

    Remark 5.5(1)Because the definition of Massey products is different from the definition in[1],the expression of differentials in Corollary 5.1 differs from the one in[1,Proposition 6.1].

    (2)The two specific elements of〉in Theorem 1.1 and Corollary 5.1 are completely different,and equal[c(A1)]and[c(A2)],respectively,wherec(Ai)(i=1,2)are related cocycles of the defining systemsAi(i=1,2)obtained from Theorem 4.1.The matrices associated to the two defining systems are given by

    and

    respectively.Here(1≤i≤t)in the first matrix are different from those in the second one.

    ForH=(s≥2)only(i.e.,in the caseHi=0,i2s+1)and(t≥1),we make use of Theorem 1.1 to get

    Obviously,some information has been concealed in the expression above.Another description of the differentials for this special case is shown in Theorem 1.2.

    Proof of Theorem 1.2Whent=s?1,the result follows from Theorem 4.2.

    Whent=ls?1(l≥2),from Lemma 5.1(2),we know that there exist defining systems forobtained from Theorem 4.2.For any defining systemBgiven by Theorem 4.2,by(5.6),we getc(B)=(?1By Definition 5.3,

    Then by Theorem 4.2,we have

    Thus

    By the arbitrariness ofB,we have thatis independent of the choice of the defining systemBobtained from Theorem 4.2.

    For the rest cases oft,the results follow from Theorem 4.2.

    The proof of this theorem is completed.

    Remark 5.6We now use the special caseH=H5andto illustrate the compatibility between Theorems 1.1 and 1.2 fors=2 andt=3.

    Note that in this case,we haveH3=0 andHi=0 fori>5.By Theorem 1.1,we get the corresponding matrix associated to the defining systemAfor

    and

    By Theorem 1.2,in this case,the matrix associated to the defining systemBfor

    and

    We claim that=For any defining systemBabove,there is a defining system

    forwhich can be obtained from Theorem 4.1,such that

    HenceOn the other hand,for any defining systemAabove,there also exists a defining system

    forwhich can be obtained from Theorem 4.2,such that

    Thereforeand thus the claim follows.

    By Theorem 1.1 and Remark 5.3,we have

    By Theorem 1.2,By Proposition 3.4,=0.It follows that

    By Theorems 1.1 and 4.1,we have

    whereis an arbitrary(p+2)-form satisfying=0∧zp.By Remark 5.4(2),we take=0.Then we have=0,i.e.,0.At the same time,we also have=0 from Theorem 1.2.Thus=0.

    Byfor 1≤i≤7 and=we can conclude that=from(5.12)and(5.14).

    6 The Indeterminacy of Differentials in the Spectral Sequence(1.2)

    LetThe indeterminacy of[xp]is a normal subgroupGofH?(M),which means that if there is another element[yp]∈Hp(M),which also represents the classthen

    In this section,we will show that forH=the indeterminacy of the differential∈is a normal subgroup ofH?(M).

    From the long exact sequence(3.3),we have a commutative diagram

    in which any sequence consisting of a vertical mapfollowed by two horizontal mapsandδand then a vertical mapi?followed again by,δ,and iteration of this is exact.From this diagram,there is a spectral sequence,in whichand forr≥2,isdefined to be the quotientwhere

    We also have a sequence of inclusions

    By[6–7],thedefined above is the same as the one in the spectral sequence(1.2).A similar argument about a homology spectral sequence is given in[15,p.472–473].

    Theorem 6.1Let H=(r≥3).Then the indeterminacy ofis the following normal subgroup of Hp(M):

    where d is just the exterior differentiation,and δ is the connecting homomorphism of the long exact sequence induced by the short exact sequence of cochain complexes

    ProofFrom the above tower(6.3),we get a tower of subgroups of

    Note

    It follows that the indeterminacy of[xp]is the normal subgroupofHp(M).

    From the short exact sequences of cochain complexes

    we can get the following long exact sequence of cohomology groups:

    whereandare the connecting homomorphisms.

    Combining(3.3)and(6.4),we have the following commutative diagram of long exact sequences:

    Using the above commutative diagram and the fact thatwe have

    Whenr=2,from(6.5),we have

    From(3.4),it follows that=d1.By Proposition 3.2,=d.Thus,we have

    The desired result follows.

    By Theorem 6.1,we obtain the following corollary.

    Corollary 6.1In Theorem1.1,forwe have that the indeterminacy ofis a normal subgroup of(M)

    where d is just the exterior differentiation,and δ is the connecting homomorphism of the long exact sequence induced by the short exact sequence of cochain complexes

    ProofIn Theorem 6.1,r,pandqare replaced by 2t+3,p+2t+3 andq?2t?2,respectively.Then the desired result follows.

    AcknowledgementsThe authors would like to express gratitude to Professor Jim Stashefffor his helpful comments,and thank the referees for their suggestions.

    [1]Atiyah,M.and Segal,G.B.,TwistedK-Theory and Cohomology,Inspired by S.S.Chern,Nankai Tracts Math.,11,World Sci.Publ.,Hackensack,NJ,2006,5–43.

    [2]Deligne,P.,Griffiths,P.,Morgan,J.and Sullivan,D.,Real homotopy theory of Khler manifolds,Invent.Math.,29(3),1975,245–274.

    [3]Hatcher,A.,Algebraic Topology,Cambridge University Press,Cambridge,2002.

    [4]Kraines,D.,Massey higher products,Trans.Amer.Math.Soc.,124,1966,431–449.

    [5]Kraines,D.and Schochet,C.,Differentials in the Eilenberg-Moore spectral sequence,J.Pure Appl.Algebra,2(2),1972,131–148.

    [6]Massey,W.S.,Exact couples in algebraic topology,I,II,Ann.of Math.(2),56,1952,363–396.

    [7]Massey,W.S.,Exact couples in algebraic topology,III,IV,V,Ann.of Math.(2),57,1953,248–286.

    [8]Massey,W.S.,Some higher order cohomology operations,1958 Symposium Internacional de Topologa Algebraica International Symposium on Algebraic Topology,Universidad Nacional Autnoma de M′exico and Unesco,Mexico,1958,145–154.

    [9]Mathai,V.and Wu,S.,Analytic torsion for twisted de Rham complexes,J.Diff.Geom.,88(2),2011,297–332.

    [10]May,J.P.,Matric Massey products,J.Algebra,12,1969,533–568.

    [11]May,J.P.,The cohomology of augmented algebras and generalized Massey products for DGA-algebras,Trans.Amer.Math.Soc.,122,1966,334–340.

    [12]McCleary,J.,A User’s Guide to Spectral Sequences,2nd Edition,Cambridge University Press,Cambridge,2001.

    [13]Rohm,R.and Witten,E.,The antisymmetric tensor field in superstring theory,Ann.Physics,170(2),1986,454–489.

    [14]Sharif i,R.T.,Massey products and ideal class groups,J.Reine Angew.Math.,603,2007,1–33.

    [15]Spanier,E.W.,Algebraic Topology,Springer-Verlag,New York,Berlin,1981.

    黄色毛片三级朝国网站| 男女下面进入的视频免费午夜 | 欧美av亚洲av综合av国产av| 99在线视频只有这里精品首页| 视频区欧美日本亚洲| 欧美日韩黄片免| 国产亚洲精品一区二区www| 久久久久久久久免费视频了| a级毛片在线看网站| 国产黄a三级三级三级人| 久久国产乱子伦精品免费另类| 欧美乱码精品一区二区三区| 日本精品一区二区三区蜜桃| 一区二区三区国产精品乱码| 欧美中文日本在线观看视频| а√天堂www在线а√下载| 国产主播在线观看一区二区| 999久久久精品免费观看国产| 最近最新中文字幕大全电影3 | 亚洲成人免费电影在线观看| 韩国av一区二区三区四区| 9色porny在线观看| 性少妇av在线| 天堂√8在线中文| 国产在线观看jvid| 一边摸一边做爽爽视频免费| 老司机深夜福利视频在线观看| 午夜福利影视在线免费观看| 一级毛片女人18水好多| 91麻豆av在线| 欧美一级a爱片免费观看看 | 国产黄a三级三级三级人| 宅男免费午夜| 成人av一区二区三区在线看| 国产熟女xx| 久久影院123| 精品日产1卡2卡| 丝袜人妻中文字幕| 国内毛片毛片毛片毛片毛片| 丰满的人妻完整版| 亚洲中文字幕日韩| 伦理电影免费视频| 美女 人体艺术 gogo| 亚洲成av人片免费观看| 91国产中文字幕| 可以在线观看的亚洲视频| av网站免费在线观看视频| 一个人免费在线观看的高清视频| avwww免费| www.自偷自拍.com| 欧美日韩黄片免| 美女国产高潮福利片在线看| 久久伊人香网站| 91麻豆av在线| 性欧美人与动物交配| 熟女少妇亚洲综合色aaa.| 伦理电影免费视频| 免费在线观看黄色视频的| 日本免费a在线| 国产一区二区在线av高清观看| 乱人伦中国视频| 一本综合久久免费| 91精品国产国语对白视频| 亚洲欧美精品综合久久99| 一区在线观看完整版| 夜夜爽天天搞| 大陆偷拍与自拍| 国产主播在线观看一区二区| 日韩欧美国产一区二区入口| 亚洲中文字幕日韩| 午夜激情av网站| 超碰成人久久| 精品国内亚洲2022精品成人| 国产精品永久免费网站| 首页视频小说图片口味搜索| 人人妻人人澡人人看| 久9热在线精品视频| av视频在线观看入口| 俄罗斯特黄特色一大片| 黄色视频不卡| 88av欧美| а√天堂www在线а√下载| 最近最新中文字幕大全免费视频| 嫁个100分男人电影在线观看| 国产极品粉嫩免费观看在线| 大码成人一级视频| 黄片播放在线免费| 性欧美人与动物交配| 无人区码免费观看不卡| 69精品国产乱码久久久| 亚洲黑人精品在线| 免费看美女性在线毛片视频| 琪琪午夜伦伦电影理论片6080| 国产私拍福利视频在线观看| 午夜福利一区二区在线看| 亚洲国产毛片av蜜桃av| 黄网站色视频无遮挡免费观看| 97人妻天天添夜夜摸| 日韩国内少妇激情av| 国产精品电影一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲片人在线观看| 国产一区二区三区视频了| 97人妻天天添夜夜摸| 欧美激情久久久久久爽电影 | 91成人精品电影| 国产一级毛片七仙女欲春2 | 亚洲专区中文字幕在线| 国产男靠女视频免费网站| 国产精品久久久久久精品电影 | 免费高清视频大片| 亚洲精品粉嫩美女一区| 久久性视频一级片| 久久午夜综合久久蜜桃| 美女国产高潮福利片在线看| 一级a爱片免费观看的视频| videosex国产| 国产精品美女特级片免费视频播放器 | 久久精品aⅴ一区二区三区四区| 国产高清有码在线观看视频 | 中文字幕精品免费在线观看视频| 国产高清视频在线播放一区| 亚洲欧美日韩无卡精品| 人人妻人人爽人人添夜夜欢视频| 亚洲五月天丁香| 亚洲欧美激情综合另类| 成人18禁在线播放| 精品一区二区三区av网在线观看| 欧美日韩精品网址| 久久久久久人人人人人| 最好的美女福利视频网| 他把我摸到了高潮在线观看| 91精品三级在线观看| 国产成人精品久久二区二区91| 国产麻豆69| 成熟少妇高潮喷水视频| 国产日韩一区二区三区精品不卡| 又黄又粗又硬又大视频| 亚洲精品国产区一区二| 亚洲片人在线观看| 国产成人精品无人区| 国产亚洲欧美精品永久| 50天的宝宝边吃奶边哭怎么回事| 国产精品99久久99久久久不卡| 村上凉子中文字幕在线| 国产又爽黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品久久久久久毛片777| 可以免费在线观看a视频的电影网站| 亚洲天堂国产精品一区在线| 国产伦一二天堂av在线观看| 久久精品91蜜桃| 巨乳人妻的诱惑在线观看| 国产主播在线观看一区二区| 精品乱码久久久久久99久播| 99精品欧美一区二区三区四区| 亚洲av成人av| 丝袜美腿诱惑在线| 嫩草影院精品99| 大香蕉久久成人网| 可以在线观看的亚洲视频| 亚洲成国产人片在线观看| 国产成人啪精品午夜网站| 精品久久久久久成人av| 亚洲在线自拍视频| 亚洲av成人一区二区三| 欧美性长视频在线观看| 亚洲专区国产一区二区| 老司机靠b影院| 丁香欧美五月| 两个人免费观看高清视频| 久久中文看片网| 天堂√8在线中文| 19禁男女啪啪无遮挡网站| 国产成人精品在线电影| 亚洲性夜色夜夜综合| 欧美日韩亚洲综合一区二区三区_| 女性生殖器流出的白浆| 午夜福利18| 神马国产精品三级电影在线观看 | 成人18禁在线播放| 午夜久久久久精精品| 国产高清videossex| 91老司机精品| 亚洲在线自拍视频| 精品久久久久久久久久免费视频| 国产亚洲精品综合一区在线观看 | 亚洲五月色婷婷综合| 亚洲精品一区av在线观看| 91字幕亚洲| 97人妻精品一区二区三区麻豆 | 嫁个100分男人电影在线观看| a在线观看视频网站| 一进一出抽搐动态| 久久久久久亚洲精品国产蜜桃av| 国产精品久久电影中文字幕| 国产人伦9x9x在线观看| 国产日韩一区二区三区精品不卡| 久久热在线av| 法律面前人人平等表现在哪些方面| 高清在线国产一区| 伦理电影免费视频| 国产精品一区二区免费欧美| 亚洲最大成人中文| 老熟妇乱子伦视频在线观看| 久久香蕉精品热| 最好的美女福利视频网| 亚洲片人在线观看| 日韩成人在线观看一区二区三区| 日韩精品免费视频一区二区三区| 色综合亚洲欧美另类图片| 国产精品,欧美在线| 啦啦啦 在线观看视频| 女性生殖器流出的白浆| 18禁国产床啪视频网站| 91精品三级在线观看| 国产精品av久久久久免费| 亚洲精品国产精品久久久不卡| 淫秽高清视频在线观看| 18禁美女被吸乳视频| 国产精品久久久久久人妻精品电影| 一个人观看的视频www高清免费观看 | 亚洲精品在线美女| 男女午夜视频在线观看| 中文字幕人妻丝袜一区二区| 成在线人永久免费视频| 十八禁人妻一区二区| 91麻豆av在线| 欧美最黄视频在线播放免费| 曰老女人黄片| 身体一侧抽搐| 一a级毛片在线观看| 长腿黑丝高跟| 成人手机av| 精品久久久久久成人av| 又黄又粗又硬又大视频| 手机成人av网站| ponron亚洲| 国产高清激情床上av| 欧美黑人欧美精品刺激| 亚洲一码二码三码区别大吗| 国产成人一区二区三区免费视频网站| 看免费av毛片| 一区二区三区高清视频在线| 亚洲av日韩精品久久久久久密| 精品无人区乱码1区二区| 国产精品亚洲美女久久久| 日本五十路高清| 国产精品久久久久久精品电影 | 亚洲色图 男人天堂 中文字幕| 亚洲精品av麻豆狂野| 久久久久亚洲av毛片大全| 日本精品一区二区三区蜜桃| 成在线人永久免费视频| 波多野结衣一区麻豆| 黄色丝袜av网址大全| 搡老熟女国产l中国老女人| 自线自在国产av| 精品国产美女av久久久久小说| 亚洲性夜色夜夜综合| 18禁裸乳无遮挡免费网站照片 | 久久久久久国产a免费观看| 日韩高清综合在线| 国产精品久久电影中文字幕| 麻豆一二三区av精品| 亚洲精品在线美女| 亚洲国产看品久久| 国产av精品麻豆| 波多野结衣一区麻豆| 日本在线视频免费播放| 欧美 亚洲 国产 日韩一| 12—13女人毛片做爰片一| 97人妻精品一区二区三区麻豆 | 9热在线视频观看99| 日韩欧美国产一区二区入口| 他把我摸到了高潮在线观看| 高清毛片免费观看视频网站| 99久久99久久久精品蜜桃| 久久久久久久久免费视频了| 亚洲欧美精品综合一区二区三区| 国产三级在线视频| 99在线人妻在线中文字幕| 亚洲一码二码三码区别大吗| 精品久久蜜臀av无| 国产免费男女视频| 婷婷精品国产亚洲av在线| 亚洲熟妇熟女久久| av超薄肉色丝袜交足视频| 久久久精品国产亚洲av高清涩受| 午夜成年电影在线免费观看| 看片在线看免费视频| 午夜福利高清视频| 十八禁网站免费在线| 亚洲五月天丁香| 亚洲国产中文字幕在线视频| 老司机深夜福利视频在线观看| av中文乱码字幕在线| 国产一区二区三区在线臀色熟女| tocl精华| 精品久久久久久久久久免费视频| 亚洲午夜精品一区,二区,三区| 欧美日本亚洲视频在线播放| 成人亚洲精品一区在线观看| 免费不卡黄色视频| 亚洲成a人片在线一区二区| 99国产精品99久久久久| 丝袜在线中文字幕| 精品乱码久久久久久99久播| a级毛片在线看网站| 精品欧美一区二区三区在线| 一本大道久久a久久精品| 精品人妻1区二区| av视频免费观看在线观看| 两个人视频免费观看高清| 午夜老司机福利片| 久久国产精品人妻蜜桃| 亚洲最大成人中文| 自线自在国产av| 嫩草影院精品99| 久久久精品国产亚洲av高清涩受| 丁香六月欧美| 18禁观看日本| 88av欧美| 给我免费播放毛片高清在线观看| 午夜成年电影在线免费观看| 黄网站色视频无遮挡免费观看| 国产又色又爽无遮挡免费看| 满18在线观看网站| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| 国产精品久久久av美女十八| 欧美日韩乱码在线| 国产97色在线日韩免费| 欧美 亚洲 国产 日韩一| 国产蜜桃级精品一区二区三区| 性色av乱码一区二区三区2| 亚洲免费av在线视频| 91精品国产国语对白视频| 日韩中文字幕欧美一区二区| 午夜a级毛片| cao死你这个sao货| aaaaa片日本免费| 可以在线观看毛片的网站| 久久国产精品影院| 亚洲片人在线观看| 亚洲一码二码三码区别大吗| 首页视频小说图片口味搜索| 波多野结衣巨乳人妻| 免费在线观看影片大全网站| 亚洲无线在线观看| 国产亚洲欧美98| 亚洲一区中文字幕在线| 国产高清激情床上av| 又大又爽又粗| 9色porny在线观看| 大型黄色视频在线免费观看| 99在线人妻在线中文字幕| 精品无人区乱码1区二区| 国产亚洲精品一区二区www| 欧美+亚洲+日韩+国产| 日韩视频一区二区在线观看| 热99re8久久精品国产| 99国产精品99久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲综合一区二区三区_| 欧美丝袜亚洲另类 | 久久国产精品男人的天堂亚洲| a在线观看视频网站| 黄色毛片三级朝国网站| 在线视频色国产色| 91国产中文字幕| 男男h啪啪无遮挡| 国产又爽黄色视频| 欧美乱妇无乱码| 久久精品亚洲精品国产色婷小说| 啦啦啦免费观看视频1| 欧美日韩乱码在线| 欧美日韩亚洲国产一区二区在线观看| 不卡av一区二区三区| 99国产极品粉嫩在线观看| 大陆偷拍与自拍| 老司机午夜十八禁免费视频| 99国产精品99久久久久| 成人国产一区最新在线观看| 成人免费观看视频高清| 亚洲欧美激情综合另类| 91精品国产国语对白视频| 伊人久久大香线蕉亚洲五| 天堂动漫精品| 在线观看免费日韩欧美大片| 日本三级黄在线观看| 手机成人av网站| 久久精品国产亚洲av香蕉五月| 亚洲精华国产精华精| 丰满人妻熟妇乱又伦精品不卡| 国产精品99久久99久久久不卡| 婷婷六月久久综合丁香| 日韩视频一区二区在线观看| av网站免费在线观看视频| 女人精品久久久久毛片| 又黄又粗又硬又大视频| 国产真人三级小视频在线观看| 亚洲精品中文字幕一二三四区| 午夜久久久在线观看| 久热爱精品视频在线9| 亚洲第一青青草原| 国产精华一区二区三区| 日韩大尺度精品在线看网址 | 成在线人永久免费视频| 亚洲成国产人片在线观看| 欧美国产精品va在线观看不卡| 免费看a级黄色片| 日本a在线网址| 多毛熟女@视频| 日韩中文字幕欧美一区二区| 长腿黑丝高跟| 精品国产一区二区久久| 一级毛片精品| 乱人伦中国视频| 亚洲精品中文字幕一二三四区| 午夜久久久在线观看| 国产亚洲av高清不卡| 日韩欧美三级三区| 别揉我奶头~嗯~啊~动态视频| 一级毛片高清免费大全| 午夜影院日韩av| 久久久久久久精品吃奶| 久久久久久免费高清国产稀缺| 叶爱在线成人免费视频播放| x7x7x7水蜜桃| 757午夜福利合集在线观看| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| www.熟女人妻精品国产| 国产视频一区二区在线看| 亚洲精品美女久久久久99蜜臀| 三级毛片av免费| 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av香蕉五月| 成人手机av| 午夜日韩欧美国产| 亚洲国产看品久久| 久久久久九九精品影院| 啦啦啦韩国在线观看视频| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 久久人人97超碰香蕉20202| 午夜亚洲福利在线播放| svipshipincom国产片| 不卡一级毛片| 黄色视频,在线免费观看| www国产在线视频色| 亚洲精品在线美女| 好看av亚洲va欧美ⅴa在| 免费少妇av软件| 国产成人影院久久av| 精品高清国产在线一区| 波多野结衣av一区二区av| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| 午夜免费成人在线视频| 国产成人精品久久二区二区91| 亚洲情色 制服丝袜| 少妇粗大呻吟视频| 久久久久久久久久久久大奶| 最近最新中文字幕大全免费视频| 国产aⅴ精品一区二区三区波| 欧美精品亚洲一区二区| 亚洲一区高清亚洲精品| 日韩大码丰满熟妇| 久久久久久久久中文| 久久亚洲精品不卡| 三级毛片av免费| 亚洲最大成人中文| 18禁国产床啪视频网站| 99热只有精品国产| 亚洲成av人片免费观看| 美国免费a级毛片| 欧美黑人欧美精品刺激| 日本vs欧美在线观看视频| 国产精品免费视频内射| 90打野战视频偷拍视频| 国产高清videossex| 国产av在哪里看| 大香蕉久久成人网| 一本大道久久a久久精品| 亚洲精品美女久久av网站| 老司机福利观看| 女人被躁到高潮嗷嗷叫费观| 母亲3免费完整高清在线观看| 亚洲 欧美一区二区三区| 亚洲精品一区av在线观看| 久久午夜亚洲精品久久| 9热在线视频观看99| 嫩草影院精品99| 亚洲情色 制服丝袜| 欧美在线黄色| 欧美日韩福利视频一区二区| 午夜激情av网站| 极品教师在线免费播放| 国产成人av激情在线播放| 一级毛片高清免费大全| 午夜免费观看网址| 91麻豆av在线| 亚洲av成人不卡在线观看播放网| 免费看十八禁软件| 美国免费a级毛片| 久久香蕉国产精品| 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 欧美人与性动交α欧美精品济南到| 欧美不卡视频在线免费观看 | 中文亚洲av片在线观看爽| 国产亚洲精品久久久久5区| 精品高清国产在线一区| 国产成年人精品一区二区| 成熟少妇高潮喷水视频| 亚洲 国产 在线| 两性夫妻黄色片| 9热在线视频观看99| 久久中文字幕一级| 丁香六月欧美| 精品乱码久久久久久99久播| 成熟少妇高潮喷水视频| 97碰自拍视频| 国产欧美日韩一区二区精品| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av| 好看av亚洲va欧美ⅴa在| 亚洲精品国产精品久久久不卡| 欧美久久黑人一区二区| av视频免费观看在线观看| 中文字幕色久视频| 亚洲伊人色综图| 真人一进一出gif抽搐免费| 九色亚洲精品在线播放| 中文字幕另类日韩欧美亚洲嫩草| 看免费av毛片| 久久中文看片网| 亚洲国产中文字幕在线视频| 亚洲成人精品中文字幕电影| 18禁黄网站禁片午夜丰满| 久久精品91蜜桃| 大型av网站在线播放| 午夜福利影视在线免费观看| 国产亚洲欧美在线一区二区| 淫妇啪啪啪对白视频| 欧美午夜高清在线| 午夜成年电影在线免费观看| 国产成人系列免费观看| 黄色片一级片一级黄色片| 亚洲成人久久性| 久久久精品欧美日韩精品| 久久 成人 亚洲| 99国产精品免费福利视频| 最近最新中文字幕大全电影3 | 97人妻天天添夜夜摸| 免费搜索国产男女视频| 国产成+人综合+亚洲专区| 男女床上黄色一级片免费看| 久久草成人影院| 久久人人精品亚洲av| 精品熟女少妇八av免费久了| 亚洲精品国产区一区二| 久久久久国内视频| 真人做人爱边吃奶动态| 亚洲国产看品久久| 久久久国产成人精品二区| 午夜影院日韩av| 国产精品秋霞免费鲁丝片| 成人av一区二区三区在线看| 久久久久久久久久久久大奶| 亚洲午夜理论影院| 亚洲精品美女久久久久99蜜臀| 制服人妻中文乱码| 亚洲视频免费观看视频| 日本在线视频免费播放| 国产不卡一卡二| 成年女人毛片免费观看观看9| 精品人妻1区二区| bbb黄色大片| 男人舔女人的私密视频| 别揉我奶头~嗯~啊~动态视频| 欧美日韩黄片免| 香蕉国产在线看| 妹子高潮喷水视频| 国产av精品麻豆| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看| 午夜成年电影在线免费观看| 日韩精品免费视频一区二区三区| 亚洲一区高清亚洲精品| 一区二区三区激情视频| 黄频高清免费视频| 美国免费a级毛片| 亚洲激情在线av| e午夜精品久久久久久久| 免费看a级黄色片| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久亚洲av鲁大| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 操出白浆在线播放| ponron亚洲| 午夜精品久久久久久毛片777| 欧美一区二区精品小视频在线| 精品熟女少妇八av免费久了| 亚洲 国产 在线| 免费不卡黄色视频| 男女午夜视频在线观看| 老司机午夜福利在线观看视频| 国产成人系列免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 欧美 亚洲 中文字幕|