• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The?-Stabilization of a Heegaard Splitting with Distance at Least 6 is Unstabilized?

    2014-06-05 03:07:56YanqingZOUQilongGUORuifengQIU

    Yanqing ZOU Qilong GUO Ruifeng QIU

    1 Introduction

    LetMbe a compact orientable 3-manifold.If there exists a closed surfaceXwhich cutsMinto two compression bodyVandWso thatX=?+V=?+W,then we sayMhas a Heegaard splitting,denoted byM=V∪XW.In this case,Xis called a Heegaard surface,andg(X)is called the genus of the Heegaard splitting.The Heegaard splittingM=V∪XWis said to be stabilized if there exist essential disksBinVandDinWsuch thatBintersectsDin just one point;otherwise,it is said to be unstabilized.M=V∪XWis said to be reducible if there exists an essential simple closed curve onXwhich bounds disks in bothVandW;otherwise,it is said to be irreducible.M=V∪XWis said to be weakly reducible if there exist an essential diskDinVandBinWsuch thatD∩B=?;otherwise,it is said to be strongly irreducible.M=V∪XWis said to be?-reducible if there exists an essential disk ofMwhich intersectsXin an essential simple closed curve;otherwise,it is said to be?-irreducible.The distance of two essential simple closed curvesαandβonX,denoted byd(α,β),is defined to be the smallest integern≥0 so that there exists a sequence of essential simple closed curvesα0=α,···,αn=βonXsuch thatαi?1is disjoint fromαifor 1≤i≤n.The distance of the Heegaard surfaceX,denoted byd(X),is defined to be min{d(α,β)},whereαbounds a disk inVandβbounds a disk inW(see[2,4]).

    LetMbe a compact orientable 3-manifold,andFbe a component of?M.LetM=V∪XWbe a Heegaard splitting.ThenV∪XWinduces another Heegaard splitting ofMcalled the?-stabilization ofV∪XWas follow.

    Without loss of generality,we may assume thatF???W.Now there exists an essential diskBwhich dividesWintoF×IandW?F×(0,1).Assume thatF=F×{0}.ThenF×{1}?intBis a sub-surface ofX.Letpbe a point onF,andN(p)be a regular neighborhood ofponFsuch thatN(p)×{1}is disjoint fromB.Now letV?=V∪N(p)×I∪F×[0,1],andW?be the closure ofM?V?.ThenV?andW?are two compression bodies such thatHenceis also a Heegaard splitting ofM,called the?-stabilization ofV∪XW.In this case,g(X?)=g(X)+g(F)(see[8]).

    Now a natural question is the following question.

    Question 1.1LetM=Wbe an unstabilized Heegaard splitting,andM=be the?-stabilization ofV∪XW.IsM=unstabilized?

    Remark 1.1IfM=is unstabilized,thenMhas two unstabilized Heegaard splittings with different Heegaard genera.Moreover,this implies a way to find Haken closed 3-manifolds which have unstabilized Heegaard splittings with different Heegaard genera:LetMbe a Haken closed 3-manifold,andFbe a closed incompressible surface which cutsMinto two 3-manifoldsM1andM2with?Miconnected.Now letbe a Heegaard splitting,andbe the?-stabilization ofNow if one ofandsayis unstabilized,thenMhas two natural Heegaard splittings,one of which is the amalgamation ofW1andand the other is the amalgamation ofandThus we can only consider if the two amalgamations are unstabilized.Bachman[1]announced a result on this topic.

    Scharlemann and Tomova[9]proved that ifM=is a Heegaard splitting,then,for any Heegaard splittingM=eitherorM=is obtained by doing?-stabilizations and stabilizations fromM=V∪XW.Scharlemann-Tomova theorem implies that ifM=V∪XWhas high distance while?Mhas at least two components,then the?-stabilization ofM=V∪XWalong a minimal genus component of?Mis unstabilized.We know little on Question 1.1 when?Mis connected except thatMis anI-bundle of a genusgclosed surfaceFg.In this case,the?-stabilization of the trivial Heegaard splitting ofFg×Iis unstabilized.The main result of this paper is the following theorem.

    Theorem 1.1Let M be a compact orientable3-manifold with?M connected.Then the?-stabilization of a Heegaard splitting of M with distance at least 6 is unstabilized.Furthermore,M admits two unstabilized Heegaard splittings with different genera.

    2 Some Known Results on Arc and Curve Complexes

    In this section,we assume thatSis a compact orientable surface of genusgwith at least one boundary component.A simple closed curve inSis said to be essential if it does not bound a disk inSand not parallel to?S.A properly embedded arc inSis said to be essential if it is not parallel to?S.

    Suppose thatg≥2.Harvey[3]defined the curve complexC(S)as follows:The vertices ofC(S)are the isotopy classes of essential simple closed curves onS,andk+1 distinct verticesx0,x1,···,xkdetermine ak-simplex ofC(S)if and only if they are represented by pairwise disjoint simple closed curves.For two verticesxandyofC(S),the distance ofxandy,denoted by(x,y),is defined to be the smallest integern≥0 so there exists a sequence of verticesx0=x,···,xn=ysuch thatandxiare represented by two disjoint simple closed curves onSfor each 1≤i≤n.For two sets of vertices inC(S),d(X,Y)is defined to be min(x,y)|x∈X,y∈Y.For a Heegaard splittingV∪XWwith genus at least 2,if we denote byAthe isotopy class of essential simple closed curves onXwhich bounds a disk inV,andBthe isotopy class of essential simple closed curves onXwhich bounds a disk inW,thend(X)=d(A,B).Now letSbe a once-punctured torus or a torus.In this case,Masur and Minsky[5–6]defineC(S)as follows:The vertices ofC(S)are the isotopy classes of essential simple closed curves or essential arcs onS,andk+1 distinct verticesdetermine ak-simplex ofC(S)if and only ifandxiare represented by two simple closed curvesandcionSsuch thatintersectsciin just one point for each 1≤i≤k.

    Masur and Minsky define the arc and curve complexAC(S)as follows:The vertices ofC(S)are the isotopy classes of essential simple closed curves and essential arcs onS.ThenAC(S)and(x,y)can be defined in the same way withC(S).

    In the following argument,we assume thatXis a closed surface of genus at least two andSis a once-punctured subsurface ofXwithg(S)≥1.Sis said to be essential and proper if?Sdoes not bound a disk onX.Define the mapsκS:C(X)→andσS:AC(S)→C(S)as follows:

    Letα∈C(X),andαcbe a simple closed curve in the isotopy classα.αcis tight to?Sif the geometry intersection number ofαcand?Sis minimal among all the simple closed curves inα.Now forα∈C(X),andαc∈αwhich is tight toS,letκS(α)=α ∩S.For anyα∈C(X),α′∈σS(α)if and only ifα′is a boundary component of a regular neighborhood ofα∪?Sand essential.Specially,letNow letWe sayα∈C(X)cutsSifIfα,β∈C(X)both cutS,we write(α,β)=

    Lemma 2.1Let S be an essential subsurface of X.Suppose α,β∈C(X)are disjoint in X and both cut S.Then(β))≤2.

    ProofThe lemma is immediately from Lemma 2.2 in[6].

    SupposeVis a genus at least 2 handlebody with?V=X.Define disk complexD(V)to be the collection of essential diskD?V,up to isotopy.Place an edge between any two verticesD1,D2∈D(V)ifD1andD2can be isotopic to being disjoint inV.LetSbe a once-punctured essential subsurface ofX.Sis called a hole forD(V)if,for anyD∈D(V),?DcutsS.

    A role tool of this paper is the following.

    Lemma 2.2Suppose S is a hole for D(V),S??V.Then for any essential disk D cuts S,there exists an essential disk D′with the following properties:

    (1)?S and?D′are tight.

    (2)If S is incompressible,then D′is not boundary compressible into S and≤3.

    (3)If S is compressible,then?D′?S and≤3.

    ProofSee the proof of Lemma 11.7 in[7].

    3 The Proof of Theorem 1.1

    Theorem 3.1Let M be a compact orientable3-manifold with?M connected.Then the?-stabilization of a Heegaard splitting of M with distance at least6is unstabilized.Furthermore,M admits two unstabilized Heegaard splittings with different genera.

    ProofLetM=V∪XWbe a Heegaard splitting with distance at least 6.Recalling the definition of the?-stabilization ofV∪XW:

    In this case,we may assume thatF=?M=??W.As defined in Section 1,V?andW?are two compression bodies such thatAndis also a Heegaard splitting ofM,called the?-stabilization ofV∪XW.Since?M=Fis connected,W?is a handlebody of genusg(X?)=g(X)+g(F).See Figure 1.

    Figure 1 ?-stabilization

    By the definition,?BcutsX?into a subsurface ofX,sayS1,and a subsurface ofF×{1},sayS2.See Figure 1.

    Claim 3.1S2is incompressible inW?.

    ProofSinced(X)≥6,by definitions in Section 1,V∪XWis strongly irreducible and?-irreducible.HenceMis irreducible and?-irreducible(see[2]).This means thatFis incompressible inM.IfS2is compressible inW?,then?Bbounds a disk inW?,sayB′;otherwise,Fis compressible inM.NowB∪B′is a sphere inWsuch thatXandFlie in the two sides ofB∪B′.This means that the compression bodyWis reducible,a contradiction.

    Supposeis stabilized.Sincegis a reducible Heegaard splitting.Hence there exists a spherePwhich intersectsX?in an essential simple closed curve,sayC.ThusCcutsPinto an essential diskD1inV?and an essential diskE1inW?.We may assume that|C∩?B|is minimal among all reducing sphere ofBy Claim 3.1,ifC∩?B=?,thenC?S1.In this case,by the proof of Claim 3.1,Cis not parallel to?B.This means thatCis essential onX.This means thatV∪XWis reducible,a contradiction.Hence we have|C∩ ?B|>0.

    Claim 3.2(1)S1is compressible inW?.

    (2)S1is a hole forD(W?).

    Proof(1)By the definition ofN(p)×Iis disjoint fromW?F×(0,1).HenceS1is compressible inW?.

    (2)LetDbe an essential disk inW?.By Claim 3.1,S2is incompressible inW?.Hence either?D?SorDcan be isotoped so that each component of?D∩S1and?D∩S2is essential inS1orS2.By the definition,S1is a hole forD(W?).

    Note thatBcutsV?intoVandF×I.Now consider the two essential disksD1inV?andD2inW?.By the minimality ofC∩?B,each component of?D∩S1and?D∩S2is essential inS1orS2.We may assume that each component ofD1∩Bis an arc on bothD1andB.Letabe an outermost component ofD1∩Brelative toD1.This means thata,together with an arc on?D1,bounds a diskD2such that intD2is disjoint fromB,andD2?VsinceFis incompressible inM.Thusa,together with an arc on?B,does also bound a diskD3inV.Furthermore,?D3is essential inX.SinceE1is an essential disk ofW?,by Lemma 2.2,there exists an essential diskE2inW?such that≤3,and?E2?S1.

    By Lemma 2.1,and since?E2are contained in≤5.Note that?D1=?E1=C,≤5.Then≤5.Since both?D3and?E2are essential curves inS1,andS1is obtained by removing a diskBfromX,we have that any vertex in the path ofC(S1)connecting?D3and?E2is essential inX.≤5.This means thatd(X)≤5,a contradiction.Noware two unstabilized Heegaard splittings with generag(X)andg(X)+g(?M).

    Remark 3.1In fact,Lemma 2.2 is also true whenVis a compression body.By the proof of Theorem 1.1,it is also true when?Mis not connected.We omit the argument.

    Now an interesting question is to determine the sharp lower bound ofd(X),sayb,so that the?-stabilization ofV∪XWis unstabilized.LetMbe a compact orientable 3-manifold with?Mconnected,andV∪XWbe a Heegaard splitting ofM.We may assume that?M=??W.V∪XWis said to be primitive if there exist an essential diskDinVand a spine annulus A inWsuch thatDintersectsAin just one point.IfV∪XWis primitive,thend(X)≤2,and the?-stabilization ofV∪XWis stabilized.Furthermore,there exists primitive Heegaard splittings with distance 2.For example,Morimoto[8]constructed a non-trivial knot whose complement admits a genus two primitive Heegaard splittingV∪XW.Henced(X)=2.In this case,b≥3.So we have the following conjecture.

    Conjecture 3.1LetMbe a compact orientable 3-manifold with?Mconnected.Then the?-stabilization of a Heegaard splitting ofMwith distance at least 3 is unstabilized.

    AcknowledgementThe authors thank Tao Li and Jiming Ma for helpful discussions on this topic.

    [1]Bachman,D.,Heegaard splittings of sufficiently complicated 3-manifolds II:Amalgamation.arXiv:0904.0485

    [2]Casson,A.and Gordon,C.,Reducing Heegaard splittings,Topology Appl.,27,1987,275–283.

    [3]Harvey,W.J.,Boundary Structure of the Modular Group,Riemann Surfaces and Related Topics,Ann.of Math.Stud.,vol.97,Princeton University Press,Princeton,NJ,1981,245–251.

    [4]Hempel,J.,3-Manifolds as viewed from the curve complex,Topology,40,2001,631–657.

    [5]Masur,H.and Minsky,Y.,Geometry of the complex of curves I:Hyperbolicity,Invent.Math.,138,1999,103–149.

    [6]Masur,H.and Minsky,Y.,Geometry of the complex of curves II:Hierarchical structure,Geom.Funct.Anal.,10,2000,902–974.

    [7]Masur,H.and Schleimer,S.,The geometry of the disk complex,J.Amer.Math.Soc.,26,2013,1–62.

    [8]Moriah,Y.,On boundary primitive manifolds and a theorem of Casson-Gordon,Topology Appl.,125,2002,571–579.

    [9]Morimoto,K.,There are knots whose tunnel numbers go down under connected sun,Proc.Amer.Math.Soc.,123,1995,3527–3532.

    [10]Scharlemann,M.and Tomova,M.,Alternate Heegaard genus bounds distance,Geom.Topol.,10,2006,593–617.

    高清毛片免费看| 成人亚洲欧美一区二区av| 亚洲激情五月婷婷啪啪| 一边亲一边摸免费视频| 欧美人与性动交α欧美软件 | 99热网站在线观看| 91精品国产国语对白视频| 天堂俺去俺来也www色官网| 成年女人在线观看亚洲视频| 国产熟女欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品女同一区二区软件| 亚洲婷婷狠狠爱综合网| 国产成人a∨麻豆精品| 天美传媒精品一区二区| 国产精品女同一区二区软件| 亚洲国产最新在线播放| 9191精品国产免费久久| 久久精品久久精品一区二区三区| 啦啦啦中文免费视频观看日本| 精品少妇内射三级| 免费日韩欧美在线观看| 在线观看www视频免费| 久久精品国产亚洲av天美| 在线观看免费视频网站a站| 亚洲精品国产av蜜桃| 91在线精品国自产拍蜜月| 欧美日韩av久久| 韩国av在线不卡| 99热全是精品| 亚洲国产欧美日韩在线播放| 亚洲精品456在线播放app| 女人被躁到高潮嗷嗷叫费观| 久热久热在线精品观看| 国产亚洲一区二区精品| 熟妇人妻不卡中文字幕| 丝袜喷水一区| 国产伦理片在线播放av一区| 五月开心婷婷网| 在线观看免费日韩欧美大片| 国产成人av激情在线播放| 麻豆乱淫一区二区| 国产又色又爽无遮挡免| 1024视频免费在线观看| 国产精品欧美亚洲77777| 曰老女人黄片| 蜜桃在线观看..| 男的添女的下面高潮视频| 久久久国产一区二区| 国产精品嫩草影院av在线观看| 精品亚洲成国产av| 大陆偷拍与自拍| 人人妻人人澡人人看| 91精品国产国语对白视频| 九九爱精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 欧美bdsm另类| 咕卡用的链子| 久久狼人影院| 汤姆久久久久久久影院中文字幕| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看| 五月开心婷婷网| 搡女人真爽免费视频火全软件| av国产精品久久久久影院| 女的被弄到高潮叫床怎么办| 欧美最新免费一区二区三区| av又黄又爽大尺度在线免费看| 欧美 亚洲 国产 日韩一| 少妇精品久久久久久久| 母亲3免费完整高清在线观看 | 搡女人真爽免费视频火全软件| 美女福利国产在线| 午夜福利视频在线观看免费| 久久人妻熟女aⅴ| 国产男人的电影天堂91| 国产精品国产三级国产专区5o| a级片在线免费高清观看视频| 免费人妻精品一区二区三区视频| 久久 成人 亚洲| 成年av动漫网址| 亚洲经典国产精华液单| 七月丁香在线播放| 97人妻天天添夜夜摸| 久久毛片免费看一区二区三区| 这个男人来自地球电影免费观看 | 欧美精品国产亚洲| 最近2019中文字幕mv第一页| 亚洲精品美女久久久久99蜜臀 | 精品一区二区三卡| 国产黄频视频在线观看| 亚洲色图综合在线观看| 人妻少妇偷人精品九色| 99久国产av精品国产电影| 成人手机av| 日本vs欧美在线观看视频| 久久人人爽av亚洲精品天堂| 色婷婷久久久亚洲欧美| 九九爱精品视频在线观看| 日韩在线高清观看一区二区三区| 欧美激情 高清一区二区三区| 国产精品人妻久久久久久| 久久久国产精品麻豆| 人体艺术视频欧美日本| 免费人妻精品一区二区三区视频| 亚洲美女视频黄频| 国产视频首页在线观看| 精品少妇内射三级| 国产成人aa在线观看| 日韩制服丝袜自拍偷拍| 日韩精品免费视频一区二区三区 | 2022亚洲国产成人精品| 少妇的逼好多水| 亚洲五月色婷婷综合| 亚洲色图综合在线观看| 国产又爽黄色视频| 国产黄色免费在线视频| 久久久久久久精品精品| 国产精品久久久av美女十八| 国产精品国产三级专区第一集| 国产成人av激情在线播放| 欧美日韩亚洲高清精品| 亚洲成人av在线免费| 欧美精品国产亚洲| 亚洲精品456在线播放app| 看十八女毛片水多多多| 国产精品欧美亚洲77777| 在线观看www视频免费| 女人久久www免费人成看片| 亚洲av成人精品一二三区| 亚洲欧美清纯卡通| 国产不卡av网站在线观看| 街头女战士在线观看网站| 国产1区2区3区精品| 免费黄频网站在线观看国产| 在线观看免费日韩欧美大片| 春色校园在线视频观看| 热99久久久久精品小说推荐| 日本色播在线视频| 在现免费观看毛片| 国产探花极品一区二区| 欧美精品国产亚洲| 婷婷成人精品国产| 国产精品久久久久久久电影| 欧美性感艳星| av在线老鸭窝| 欧美日韩视频精品一区| 久久久久网色| 欧美激情极品国产一区二区三区 | 国产色爽女视频免费观看| 精品福利永久在线观看| 视频中文字幕在线观看| 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| 日韩成人av中文字幕在线观看| 国产深夜福利视频在线观看| 2022亚洲国产成人精品| 精品少妇内射三级| 亚洲精华国产精华液的使用体验| 国产成人91sexporn| 午夜激情av网站| 成年人免费黄色播放视频| 日本vs欧美在线观看视频| 黄色视频在线播放观看不卡| 亚洲成色77777| 啦啦啦在线观看免费高清www| 秋霞在线观看毛片| 久久人妻熟女aⅴ| 制服人妻中文乱码| 国产亚洲av片在线观看秒播厂| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 乱码一卡2卡4卡精品| 91午夜精品亚洲一区二区三区| 亚洲国产精品一区三区| 欧美xxxx性猛交bbbb| 少妇猛男粗大的猛烈进出视频| 伦理电影免费视频| 18禁在线无遮挡免费观看视频| 春色校园在线视频观看| 美女视频免费永久观看网站| 亚洲在久久综合| 22中文网久久字幕| 国产激情久久老熟女| 欧美性感艳星| av女优亚洲男人天堂| 午夜精品国产一区二区电影| 巨乳人妻的诱惑在线观看| 日韩成人伦理影院| 交换朋友夫妻互换小说| 亚洲av.av天堂| 亚洲国产精品一区三区| 久久国产亚洲av麻豆专区| 成年人午夜在线观看视频| 丝袜在线中文字幕| 亚洲精品久久成人aⅴ小说| 亚洲精品美女久久久久99蜜臀 | 国产精品偷伦视频观看了| 国产精品久久久久久av不卡| 久久久欧美国产精品| 又大又黄又爽视频免费| 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| 在线观看美女被高潮喷水网站| 免费黄频网站在线观看国产| 91aial.com中文字幕在线观看| 午夜福利影视在线免费观看| 亚洲国产日韩一区二区| 少妇的逼好多水| 纯流量卡能插随身wifi吗| 国产福利在线免费观看视频| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| 成人国产av品久久久| 精品一区二区三卡| 高清视频免费观看一区二区| 涩涩av久久男人的天堂| 国产精品国产三级国产av玫瑰| 国精品久久久久久国模美| 久久精品国产亚洲av涩爱| 在线亚洲精品国产二区图片欧美| 亚洲在久久综合| 亚洲综合色惰| 久久国内精品自在自线图片| 高清在线视频一区二区三区| 美女视频免费永久观看网站| 91成人精品电影| 国产探花极品一区二区| 大香蕉久久成人网| 美女xxoo啪啪120秒动态图| 少妇 在线观看| 热99久久久久精品小说推荐| 亚洲av中文av极速乱| 一级毛片电影观看| 18禁动态无遮挡网站| 欧美激情国产日韩精品一区| 插逼视频在线观看| 亚洲av.av天堂| 欧美 亚洲 国产 日韩一| 午夜精品国产一区二区电影| 国产欧美亚洲国产| 少妇被粗大猛烈的视频| 视频中文字幕在线观看| 午夜精品国产一区二区电影| 亚洲成色77777| 一级片'在线观看视频| 人妻人人澡人人爽人人| 水蜜桃什么品种好| 多毛熟女@视频| 咕卡用的链子| 中文字幕免费在线视频6| 免费少妇av软件| 99热全是精品| 精品少妇黑人巨大在线播放| 超色免费av| 多毛熟女@视频| 免费日韩欧美在线观看| 韩国高清视频一区二区三区| 亚洲精品久久成人aⅴ小说| 国产一区二区在线观看日韩| 在线观看免费高清a一片| 麻豆乱淫一区二区| 国产淫语在线视频| 天天躁夜夜躁狠狠久久av| 国产 一区精品| 成人国语在线视频| av女优亚洲男人天堂| 精品人妻在线不人妻| 男的添女的下面高潮视频| 精品一区在线观看国产| 日韩一区二区三区影片| 久久久久精品人妻al黑| 国产成人精品久久久久久| 女人精品久久久久毛片| 9191精品国产免费久久| 麻豆乱淫一区二区| 久久久久久久久久成人| 日韩中字成人| 黑人高潮一二区| 在线天堂最新版资源| 最新中文字幕久久久久| av卡一久久| 一级黄片播放器| 国产又色又爽无遮挡免| 狠狠婷婷综合久久久久久88av| 亚洲精品日韩在线中文字幕| 亚洲国产av新网站| 男男h啪啪无遮挡| 国产69精品久久久久777片| 日韩成人伦理影院| 只有这里有精品99| 91精品伊人久久大香线蕉| 九色亚洲精品在线播放| 丝袜喷水一区| 午夜福利乱码中文字幕| 久久99一区二区三区| 午夜av观看不卡| 日韩欧美一区视频在线观看| 成人午夜精彩视频在线观看| 99视频精品全部免费 在线| 亚洲精品乱久久久久久| 国产成人a∨麻豆精品| 狠狠精品人妻久久久久久综合| 97在线人人人人妻| videosex国产| 这个男人来自地球电影免费观看 | 黑人高潮一二区| 久久久久精品性色| 欧美变态另类bdsm刘玥| 欧美日韩视频精品一区| 亚洲 欧美一区二区三区| 三上悠亚av全集在线观看| 女人久久www免费人成看片| 亚洲一级一片aⅴ在线观看| www日本在线高清视频| 在线观看免费视频网站a站| 超色免费av| 综合色丁香网| 国产精品久久久久久久久免| 亚洲成色77777| 日韩av免费高清视频| 韩国高清视频一区二区三区| 2022亚洲国产成人精品| 亚洲欧美日韩另类电影网站| 纵有疾风起免费观看全集完整版| 2021少妇久久久久久久久久久| 波野结衣二区三区在线| 嫩草影院入口| 亚洲成人av在线免费| 国产成人a∨麻豆精品| 久久久久国产网址| 亚洲精品av麻豆狂野| 亚洲久久久国产精品| av天堂久久9| 久热这里只有精品99| 精品久久蜜臀av无| 少妇精品久久久久久久| 日韩大片免费观看网站| 精品人妻一区二区三区麻豆| 我的女老师完整版在线观看| 久久久a久久爽久久v久久| 久久久久久伊人网av| 国产爽快片一区二区三区| 午夜av观看不卡| 亚洲精品第二区| 母亲3免费完整高清在线观看 | 人妻系列 视频| 日韩人妻精品一区2区三区| 中文乱码字字幕精品一区二区三区| 亚洲第一区二区三区不卡| 性色avwww在线观看| 亚洲成色77777| av卡一久久| 成人亚洲精品一区在线观看| av国产久精品久网站免费入址| 久久精品人人爽人人爽视色| 咕卡用的链子| 日本-黄色视频高清免费观看| 人妻人人澡人人爽人人| 成年美女黄网站色视频大全免费| 欧美人与性动交α欧美软件 | 亚洲国产色片| 久久免费观看电影| 一级黄片播放器| 这个男人来自地球电影免费观看 | 曰老女人黄片| 久久久亚洲精品成人影院| 久久久久精品性色| 午夜日本视频在线| 韩国高清视频一区二区三区| 一区在线观看完整版| 如何舔出高潮| 日韩不卡一区二区三区视频在线| 新久久久久国产一级毛片| 亚洲综合色惰| 夜夜爽夜夜爽视频| 免费av中文字幕在线| 国产午夜精品一二区理论片| 久久影院123| 午夜福利,免费看| 9色porny在线观看| 黄色一级大片看看| 亚洲成人手机| 国产av码专区亚洲av| 在线观看免费高清a一片| 久久久国产精品麻豆| 亚洲婷婷狠狠爱综合网| 日本免费在线观看一区| 9热在线视频观看99| 日韩av不卡免费在线播放| 亚洲精品成人av观看孕妇| 一级片免费观看大全| 久久韩国三级中文字幕| 十八禁高潮呻吟视频| 午夜福利影视在线免费观看| 日韩电影二区| 国产精品国产三级专区第一集| 久久 成人 亚洲| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 午夜91福利影院| 久久亚洲国产成人精品v| 一本色道久久久久久精品综合| 在线观看www视频免费| 免费av不卡在线播放| 成人18禁高潮啪啪吃奶动态图| 国产精品麻豆人妻色哟哟久久| 香蕉国产在线看| 国产精品嫩草影院av在线观看| 看十八女毛片水多多多| 中文字幕最新亚洲高清| av黄色大香蕉| 两性夫妻黄色片 | 亚洲美女搞黄在线观看| 蜜臀久久99精品久久宅男| 五月天丁香电影| 女性生殖器流出的白浆| 最近手机中文字幕大全| 欧美精品人与动牲交sv欧美| 久久99热6这里只有精品| 69精品国产乱码久久久| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| 免费少妇av软件| 多毛熟女@视频| 熟女av电影| 日本爱情动作片www.在线观看| 五月开心婷婷网| 丰满少妇做爰视频| 久久久久久久久久久久大奶| 日韩一区二区三区影片| 国产欧美日韩综合在线一区二区| av在线老鸭窝| 夫妻午夜视频| 亚洲精品美女久久久久99蜜臀 | 欧美精品人与动牲交sv欧美| 建设人人有责人人尽责人人享有的| 日本与韩国留学比较| 欧美成人精品欧美一级黄| 久久这里只有精品19| 一级爰片在线观看| 久久ye,这里只有精品| 捣出白浆h1v1| 日韩欧美精品免费久久| 久久免费观看电影| 晚上一个人看的免费电影| 草草在线视频免费看| 在线观看一区二区三区激情| 王馨瑶露胸无遮挡在线观看| 国产在线免费精品| 亚洲精品国产av成人精品| 中文天堂在线官网| 婷婷成人精品国产| 女人精品久久久久毛片| 80岁老熟妇乱子伦牲交| 亚洲精品av麻豆狂野| 国产熟女欧美一区二区| 国产 精品1| 制服诱惑二区| 精品亚洲成国产av| 欧美少妇被猛烈插入视频| 欧美+日韩+精品| av卡一久久| 久久99一区二区三区| 国产乱来视频区| 视频区图区小说| 国产精品久久久av美女十八| 国产日韩一区二区三区精品不卡| 亚洲成色77777| 亚洲精品日本国产第一区| 免费高清在线观看视频在线观看| 高清毛片免费看| 久久久国产一区二区| 午夜福利,免费看| 大片免费播放器 马上看| 高清黄色对白视频在线免费看| a级毛色黄片| 视频区图区小说| 日韩视频在线欧美| 日韩成人av中文字幕在线观看| 久久国产精品大桥未久av| 亚洲国产色片| 婷婷色综合大香蕉| 国产精品麻豆人妻色哟哟久久| 国产视频首页在线观看| 人人妻人人澡人人爽人人夜夜| 色婷婷久久久亚洲欧美| 男人操女人黄网站| 久久久久久久亚洲中文字幕| 美女xxoo啪啪120秒动态图| 夫妻性生交免费视频一级片| 亚洲人与动物交配视频| 视频区图区小说| 国产淫语在线视频| 久久97久久精品| 免费女性裸体啪啪无遮挡网站| 免费黄色在线免费观看| 又大又黄又爽视频免费| 精品视频人人做人人爽| 一区二区三区四区激情视频| 高清黄色对白视频在线免费看| 欧美丝袜亚洲另类| 国产精品国产三级国产av玫瑰| 国产不卡av网站在线观看| 热re99久久国产66热| 伊人亚洲综合成人网| 久久久久久人人人人人| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 又黄又粗又硬又大视频| 黄片无遮挡物在线观看| 国产高清三级在线| 观看美女的网站| 欧美日韩综合久久久久久| 51国产日韩欧美| 久久精品久久久久久噜噜老黄| 日韩视频在线欧美| 一区二区三区四区激情视频| 国产女主播在线喷水免费视频网站| 丝袜在线中文字幕| 又粗又硬又长又爽又黄的视频| 十八禁网站网址无遮挡| 美国免费a级毛片| freevideosex欧美| 日日啪夜夜爽| 丰满迷人的少妇在线观看| 亚洲成人av在线免费| 一级黄片播放器| 少妇人妻久久综合中文| 国产精品不卡视频一区二区| 亚洲国产最新在线播放| 国产黄频视频在线观看| 久久久a久久爽久久v久久| 9色porny在线观看| 天堂中文最新版在线下载| 啦啦啦啦在线视频资源| 黑人高潮一二区| 精品少妇黑人巨大在线播放| 亚洲精品日本国产第一区| 欧美日韩精品成人综合77777| 久久狼人影院| 卡戴珊不雅视频在线播放| 国产永久视频网站| 亚洲图色成人| 久久午夜综合久久蜜桃| 国产有黄有色有爽视频| 欧美3d第一页| 777米奇影视久久| 免费看光身美女| 成年人午夜在线观看视频| 精品国产乱码久久久久久小说| 秋霞伦理黄片| 9191精品国产免费久久| 日本与韩国留学比较| 亚洲欧美色中文字幕在线| 啦啦啦中文免费视频观看日本| 免费女性裸体啪啪无遮挡网站| 婷婷色av中文字幕| 亚洲综合色网址| 五月开心婷婷网| 免费黄色在线免费观看| 十分钟在线观看高清视频www| 亚洲,欧美,日韩| 国产老妇伦熟女老妇高清| 美女主播在线视频| 午夜免费观看性视频| 嫩草影院入口| 一区二区三区精品91| 少妇精品久久久久久久| av在线播放精品| 一级片免费观看大全| 精品亚洲乱码少妇综合久久| 美女xxoo啪啪120秒动态图| 制服丝袜香蕉在线| 亚洲国产成人一精品久久久| 一级毛片电影观看| 熟女电影av网| 晚上一个人看的免费电影| 国产精品欧美亚洲77777| 色网站视频免费| 婷婷色av中文字幕| 午夜久久久在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩另类电影网站| 免费不卡的大黄色大毛片视频在线观看| 欧美+日韩+精品| 国产精品久久久久久精品电影小说| 国产精品秋霞免费鲁丝片| 中国美白少妇内射xxxbb| 在现免费观看毛片| 午夜av观看不卡| 一区二区日韩欧美中文字幕 | 看免费成人av毛片| 最近2019中文字幕mv第一页| 我的女老师完整版在线观看| 日韩,欧美,国产一区二区三区| 丝袜脚勾引网站| 日本vs欧美在线观看视频| 久久毛片免费看一区二区三区| 午夜免费鲁丝| 成人亚洲欧美一区二区av| 老司机亚洲免费影院| 美女大奶头黄色视频| 国产精品99久久99久久久不卡 | 在线观看一区二区三区激情| 国产精品欧美亚洲77777| 亚洲精品美女久久久久99蜜臀 | 精品亚洲成国产av| 男女边吃奶边做爰视频| 亚洲精品美女久久av网站| 日韩免费高清中文字幕av| 亚洲激情五月婷婷啪啪| 国产欧美日韩一区二区三区在线| 精品久久蜜臀av无| 高清视频免费观看一区二区|