• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of Inverse Problems for Ultrahyperbolic Equations?

    2014-06-05 03:07:30FikretGLGELEYENMasahiroYAMAMOTO

    Fikret GLGELEYEN Masahiro YAMAMOTO

    (Dedicated to the memory of Professor Arif Amirov)

    1 Introduction

    Letn,m∈N andx∈Rn,y∈Rm.We consider the ultrahyperbolic equation

    in some bounded domain of(x,y)∈Rn×Rm.We set

    and

    Ifm=1,then(1.1)is a hyperbolic equation,wherey1is the time variable.Generally,it is considered that one time dimension is fundamentally important in describing many dynamic evolutions of physical quantities in the classical and quantum fields.Multiple times have been considered rarely,because it is widely believed to violate the causality and lead to the instability yielding that the phenomena under consideration are not deterministic in a usual physical sense.However,certain developments in the theoretical physics such as the string theory requireadditional dimensions for the time,and for related literature,we refer to Bars[4],Craig and Weinstein[11],Sparling[29],and Tegmark[31].In particular,the multiple dimensions are considered in the context of the twistor spaces(see[29]).

    The quantum kinetic theory is one of the fields in which ultrahyperbolic type equations are arising.For example,let us consider the quantum kinetic equation:

    in a domain{(x,p,t);x=whereu(x,p,t)is the quantum distribution function,his Planck’s constant,i is the imaginary unit, Φ(x,t)is the potential andf(x,p,t)is the function characterizing the sources.Applying the Fourier transform with respect topand the change of variables of the form

    one can obtain the following ultrahyperbolic type equation:

    wherew(ξ,η,t)=denote the Fourier transform ofuandfrespectively(see[2]).The ultrahyperbolic operator appears also as the stationary part of a generalized Schrdinger equation:

    and for related nonlinear generalized Schrdinger equations,see[18–19,30].

    The solutions of some direct problems to ultrahyperbolic equations were investigated by Kostomarov[24–25]in the case ofn=3,m=2 andn=3,m=3.As for the uniqueness and some mean value property of solutions to general ultrahyperbolic equations,see[10,12,14,27],but there are very few results on the existence of the solution.In[11],the unique existence of solutions was proved forwith suitably given initial data and also some non-uniqueness results were proved by some choice of hyperplanes,where the initial data are given.The proof in[11]assumed that all the coefficients in the ultrahyperbolic equation are constant in the whole domain because the key is the Fourier transform.There seems to be no result on the existence of the solution to a Cauchy problem of the ultrahyperbolic equation with non-analytic coefficients.In the case of analytic coefficients,by the Cauchy-Kovalevskaja theorem,we can establish the well-posedness of the initial value problem of determining the solutionuto(1.1)satisfyingwhereaandbare analytic.

    In this article,we discuss inverse problems of determining a coefficient or a source term in an ultrahyperbolic equation.First we formulate an inverse source problem.

    LetD?Rnbe a bounded domain with smooth boundary?Dand let

    We arbitrarily fix

    Henceforth(·,·)means the scalar product in Rnand Rm.ForT,T1>0,we set

    In particular,we write

    Throughout this article,we identifyLetp(x,y′)be given,ν(x)=(ν1(x),···,νn(x))denote the unit outward normal vector to?D,and?νu=(?xu,ν).Moreover,letT,T1>0 and Γ??Dbe given.We consider the following system:

    We consider an inverse problem of determiningf(x,y′)in(1.2)by extra data of the solution to(1.2)–(1.4).

    Inverse Source ProblemLetp,Rbe given suitably.Then determinef(x,y′),x∈D,Here we do not assume the uniqueness ofu,but its existence.

    Next we discuss an inverse problem of determining a coefficient by overdetermining lateral boundary data.More precisely,we consider

    Letv=v(p)satisfy(1.5)–(1.7).We discuss the following problem.

    Coefficient Inverse ProblemDetermine the coefficientin(1.5)by extra data

    Our main purpose is to establish the uniqueness and the stability for these inverse problems,assuming the existence ofv(p)andv(q)within adequate classes.

    The coefficient inverse problem is reduced to the inverse source problem as follows.Letv(p)andv(q)be two solutions of(1.5)–(1.7)with the coefficientspandqrespectively.Here we do not assume the uniqueness ofv(p)andv(q)but their existence.

    The differenceu=v(p)?v(q)satisfies(1.2)–(1.4),whereandR=v(q)(x,y).Therefore the determination ofp,qis reduced to the inverse source problem.

    Thus we first discuss the inverse source problem for(1.2)–(1.4).For the statements of the main results,we introduce the following notations.Forδ>0,x0and 0<β<1,we define the domains by

    We use the same notationsforG=if there is no fear of confusion.LetM>0 be arbitrarily fixed.

    We are ready to state the following theorem.

    Theorem 1.1We consider(1.2)–(1.3)in D×G.Let

    We further assume that

    and that there exists a constant r0>0such that

    Finally we assume

    and thatΓ??D satisfies

    Then for any δ1>δ,there exist constants C>0and θ∈(0,1),depending on M,r0such that

    Theorem 1.1 gives a local estimate.More precisely,given Γ??DandT>0,we can find a subdomainwhere theL2-norm offis estimated.For example,we chooseδ>0 with> δand 0<t0<Tarbitrarily.We takeβsufficiently small such thatFor thisβ,we chooseT>0 sufficiently large such that(1.8)holds.Then Theorem 1.1 asserts

    In fact,we chooseδ1>0 sufficiently close toδsuch thatSincefor|x?x0|<t0,we see thatTherefore(1.10)yields(1.11).

    If we want to estimateffor largert0,thenβhas to be small and so we have to chooseT>0 very large,that is,we need to observe longer iny-direction as the right-hand side of(1.11)shows.In particular,for sufficiently largeδ1we haveand so the left-hand side of(1.11)estimatesfoverDprovided thatt0is small andT>0 is very large.The above observation means that if we want to estimatefin a larger subdomain ofD,then the sizeTof the “time” region has to be large.This fact corresponds to the finiteness of the propagation speed,which is a typical character for the case ofm=1.

    In Theorem 1.1,it is not clear how largeTand Γ are necessary for identifyingfin a given subdomain orD×G′.Next we derive the estimation offin an arbitrarily given subdomain ofD×G′.For the statement,we recall

    withT>0.Forwe set

    We note that?D+is a proper subset of?Din general.

    Theorem 1.2Let u satisfy(1.2)–(1.3)in D×G(T,2T)and u=0on?D×G(T,2T)and

    We further assume that β>0is sufficiently small and

    and that

    and

    Then for any small>0,there exist constants C>0and θ∈(0,1)depending on,M,x0,such that

    Next we show stability results for the coefficient inverse problem.We state two results which correspond to Theorems 1.1–1.2,respectively.

    Theorem 1.3We consider(1.5)–(1.7).Let

    with some r0>0.We assume that0<β<1,(1.8)and(1.9)hold.Then for any δ1>δ,there exist constants C>0and θ ∈(0,1),depending on M,r0,such that

    Theorem 1.4Let v(p),v(q)satisfy(1.5)–(1.6)with p,q respectively and v(p)=v(q)on?D×G(T,2T).We assume

    with some r0>0.We further assume

    Then for any small>0,there exist constants C>0and θ∈(0,1)depending on,M,x0,such that

    As is seen by the proof in Section 4,in Theorem 1.2,we can obtain the same stability in the case whereG(T,2T)is replaced by a smallerG:=if we can take also the norm of data on the other subboundary ofG:

    whereνis the unit outward normal vector to?GandA similar remark holds for Theorem 1.4.Moreover,if we have an a priori Lipschitz estimate for the direct problem for(1.2)–(1.3)withu=0 on(?D×G)∪(D×then the same method as Imanuvilov and Yamamoto[16]can yield the Lipschitz stability,but we do not know such Lipschitz stability for the direct problem form≥2.In the case ofm=1,that is,the inverse hyperbolic problem,we can replace(1.15)by the Lipschitz stability(see[15–16])and we note that we need not fix>0.Moreover,for the uniqueness offinD×we need a boundary datum?νuover?D+×<2T},that is,we need a twice longery′-region for the observation than the domain iny′wherefis determined.

    In Theorems 1.2 and 1.4,we can not take=0.However,since>0 is arbitrary,we can prove the uniqueness:For example,in Theorem 1.2,ifu(x,y)=0 forx∈ ?D,|y1|<Tand<2Tand?νu(x,y)=0 forx<2T,thenf(x,y′)=0 forx∈Dand

    The proofs of the theorems are based on the method by Bukhgeim and Klibanov[9].In[9],the authors first applied a Carleman estimate which is anL2-estimate with large parameters,and then established the uniqueness in determining a spatially varying coefficient by overdetermining lateral boundary data.After[9],there have been many works relying on that method with modified arguments.We refer to Amirov[1–2],Amirov and Yamamoto[3],Baudouin and Puel[5],Bellassoued[6],Bellassoued and Yamamoto[7–8],Imanuvilov and Yamamoto[15–16],Isakov[17],Kha??darov[20],Klibanov[21–22],Klibanov and Timonov[23],and Yamamoto[32].Here we do not intend to give a complete list of the works and refer to the references therein.There are satisfactory amounts of works on classical equations in mathematical physics,but there are very few works for inverse problems of ultrahyperbolic equations.A key Carleman estimate was proved by Amirov[1–2]and Lavrent’ev,Romanov and Shishat·ski??[26],where they applied the Carleman estimates to the unique continuation and proved stability.See also Romanov[28]for a Carleman estimate for an ultrahyperbolic equation in a Riemannian manifold and an application to some unique continuation problems.In Chapter 4 of Amirov[2],the uniqueness for an inverse source problem of a different type was proved by using the Carleman estimate.To the best knowledge of the authors,there are no results on the conditional stability like Theorems 1.1–1.4.

    This paper is composed of four sections and one appendix.In Section 2,we present two Carleman estimates.Sections 3–4 are devoted to the proofs of Theorems 1.1–1.2 respectively.The proof of the key Carleman estimate is given in Appendix.

    2 Key Carleman Estimate

    In this section,we show two Carleman estimates for an ultrahyperbolic equation.The former Carleman estimate is used for the proof of Theorem 1.1 and the latter for the proof of Theorem 1.2.As for the general theory of Carleman estimates for functions with compact supports,we refer to,for example,Hrmander[13]and Isakov[17],but we here give a direct proof because we need a Carleman estimate for functions not having compact supports and the proof of that Carleman estimate does not follow directly from[13,17].Another direct proof of a Carleman estimate for an ultrahyperbolic equation is found in[2,26].

    Here and henceforth let=D× ?G(T,T1),and letand···dSybe the boundary integrals on Γxand Γy,respectively.

    We recall that forwe set

    whereγis a positive parameter.We consider the following equation:

    Here we recall that

    and

    Letμ(x,y)be the outward unit normal vector to?(D×G(T,T1))at(x,y)and letHenceforth we recall that?D+??Dis defined by(1.13).

    Theorem 2.1In(2.1),let us assume thatfor0≤i≤n and1≤j≤m.Moreover,let0<β <1be small and γ>0be sufficiently large,and let

    with some δ0>0.Then there exist constants C>0and s0>0such that

    for all u∈H2(D×G(T,T1))and s≥s0.

    Theorem 2.20≤i≤n,1≤j≤m and(2.2)hold for(x,y)∈D×G(T,T1).Then there exist constants C>0and s0>0such that

    for all s≥s0and all u∈H2(D×G(T,T1))satisfying

    Theorem 2.1 gives a Carleman estimate which holds only in a level set Ω(δ),while the Carleman estimate in Theorem 2.2 is global over the total domainG×(T,T1).The proofs of Theorems 2.1–2.2 rely on an idea similar to Bellassoued and Yamamoto[8]and the proof is obtained only by integration by parts and is lengthy,so we give the proof in Appendix.

    3 Proof of Theorem 1.1

    The proofs of Theorems 1.3–1.4 are reduced to the proofs of Theorems 1.1–1.2,respectively,which this follows from settingu=v(p)?v(q),f=p?qandR=v(q).Therefore it is sufficient to prove only Theorems 1.1–1.2.In this section,we will prove Theorem 1.1.

    We set

    First by(1.8),we see that

    In fact,letx∈DandThen(1.8)yields

    Therefore,0,that is,|y|<T.Thus(3.1)is verified.

    Next,we characterize?Ω(δ).We can easily have?Ω(δ)

    Then,similar to(3.1),we can prove that Γ2=?.In fact,(1.8)implies

    which is impossible.

    Moreover,noting thatwe see that

    Hence

    Now we apply the Carleman estimate in Theorem 2.1,but no data are given on

    and so we need a cut-offfunction.

    Henceforth,C>0 denotes a generic constant which is independent ofs.We define a cut-offfunctionsuch that 0≤χ(x,y)≤1 and

    Settingz=for 1≤i≤n,we have

    that is,

    Similarly,

    From(1.2),we obtain

    In particular,settingw=ands=0 in(3.4)we have

    By(3.2)–(3.3),we see that

    By(1.4)we have=0 andon ?!罣.Moreover,by 0<β<1 we note that

    Thus the assumptions in Theorem 2.1 are satisfied in Ω(δ).We apply the Carleman estimate given by Theorem 2.1,and we obtain

    Here we also used

    Sincez=we have

    and

    We set

    On the other hand,by(3.3),the supports of the functionsare the subsets ofso that

    In terms of(3.7)–(3.9),we rewrite(3.6)as

    We set

    We multiply(3.4)byzand integrate it overto have

    We denote the left-hand side of(3.11)by I1and the right-hand side by I2.By(3.2),we note that

    Moreover,by(1.3)–(1.4)and(3.3),we have

    and

    Then,we have

    Therefore,using the integration by parts,we obtain

    Consequently,we have

    Hereis the-component of the unit outward normal vectorνtoWe see that=0 on ?!罣.Moreover,=0 onTherefore,(3.12)yields

    From(1.2),we have

    Thus by(3.3)and the condition>0,we see that

    Next we estimate I2.Using the Cauchy-Schwarz inequality,we have

    Therefore we absorb the terms includingdxdyintosdxdy,and we obtain

    Now by noting that?Ω(δ),(3.3)and(3.10),we have

    By(3.3)and the a priori boundedness onu,we have

    and so

    Now we will consider the first term on the right-hand side of(3.15).SinceandR(x,0,>0 onwe can define a function(?T,T)by

    Then we can write

    On the other hand,we have

    In fact,let∈Ω(δ+2).Then

    Hence(1.8)impliesand so

    that is,|y1|<T.Since

    we see that(x,0,+2).

    Consequently we obtain

    where

    Moreover,(?T,T)and the Lebesgue theorem imply

    Henceforth,we set

    Then(3.15)yields

    From(3.14)and(3.16),we obtain

    Finally

    for all larges≥whereis some constant.Reducing the integral on the left-hand side to Ω′(δ+3),we have

    that is,

    for alls≥whereμ=?ReplacingCbywe see that(3.18)holds for alls≥0.First,letM≥d.Choosings≥0 such that

    we obtain

    Second,letM<d.Then settings=0 in(3.18),we have

    Therefore

    By the a priori boundedness≤Mand the trace theorem,we haved≤CMand so we can haveSince>0 is arbitrarily small,the proof of Theorem 1.1 is completed.

    4 Proof of Theorem 1.2

    The proof relies on Theorem 2.2 and is similar to that in[16].

    Sinceuitself does not satisfy(2.3),we have to introduce a cut-offfunction.Moreover,we have to apply a Carleman estimate by shifting the domain along they′-direction.Thus we need to introduce several notations.We set

    Bywe see thatr>0.We chooseρ>1 sufficiently large so that

    By(4.1)and the assumption onT,we have

    Furthermore,if necessary,we choose smallerβsuch that

    We arbitrarily choose∈Rm?1satisfying

    We set

    and we recall

    Moreover let

    Then(4.2)yields

    and

    Therefore,for small>0 there existsδ>0 such that

    ifT?2δ≤|y1|≤TorT?2δ≤≤Tand

    In order to apply Theorem 2.2,we introduce a cut-offfunctionχ(y)and definesuch that 0≤χ0≤1 and

    Setting=we see thatχ0≤χ≤1 and

    By choosingδ>0 smaller if necessary,we assume

    We set

    Then

    and

    From(4.4),we note that

    By(4.12)–(4.13),we can apply the Carleman estimate(see Theorem 2.2)tow1,w2:

    Here and henceforth,C>0 denotes a generic constant which is independent ofs>0.From the assumption onR,we have

    By(4.10),we see that|y1|≤T?2δorT?δ≤|y1|≤Timpliesχ=χ=0,and|y′?≤T?2δorT?δ≤|y′?≤Timpliesχ=χ=0 for 2≤k≤m.Therefore,if|y1|∈[0,T?2δ]∪[T? δ,T]and|y′?∈[0,T?2δ]∪[T?δ,T],then|?yχ|=Δyχ=0.Hence

    By(4.8),we haveψ(x,y)<?in the regions of the above integrals.Hence

    Here and henceforth we set

    Finally,we obtain

    Here we used(4.14).

    Consequently(4.15)yields

    Next,sinceχ(?T,by(4.10),the Cauchy-Schwarz inequality yields

    For the last inequality,we used(4.16)and

    Hence

    Applying(4.18),we have

    Here we used≤1 andforx∈Dandy∈

    On the other hand,substitutingy1=0 in(1.2)and applyingu(x,0,y′)=0 andR(x,0,y′)≠0forx∈and|y′|≤2T,we have

    Noting by(4.4)that if<T,then|y′|<2T,we apply(4.20)in(4.19),so that

    for all larges>0.Absorbing the first term on the right-hand side into the left-hand side by choosings>0 large,we obtain

    for all larges>0.

    Replacing the integration domain on the left-hand side byD×?D×and using(4.9)–(4.11),we see that=1 there and

    for alls≥s0,wheres0is some constant.By the definition,we haveκ2>κ1and setκ=κ2?κ1>0.Then the last inequality implies

    for alls≥s0.By the same argument as in the proof of Theorem 1.1 after(3.18),we can chooseθ∈(0,1)such that

    for allsatisfying≤M,the trace theorem yieldsd≤CM,which impliesd≤Varyingand noting

    we obtain

    Thus the proof of Theorem 1.2 is completed.

    5 Appendix

    Thanks to the large parameters,it is sufficient to prove Theorems 2.1–2.2 in the case ofai=bj=0 in(2.1).Let us set

    We prove only Theorem 2.2 and the proof of Theorem 2.1 is obtained by replacing the domainD×G(T,T1)by Ω(δ).Henceforth,we writeand useνto denote the unit outward normal vector to a hypersurface under consideration and we set?νz=(?xz,ν)or?νz=(?yz,ν).Moreover,we set

    and

    By(5.3),we calculate

    where

    The first term on the right-hand side of the Carleman estimate isand it suffices to make a lower estimation ofSince

    we will estimateas follows.Using(5.5)–(5.6),we obtain

    where

    Now,we will estimate the terms Ik,1≤k≤6,using the integration by parts and the boundary condition ofz.Then we have

    and

    Therefore,we can rewrite

    where

    and

    Next we calculate Jk,1≤k≤5 by substituting the concrete form of?.Setting

    we have

    Therefore,we obtain

    and

    We can directly verify

    In fact,

    Consequently,we see that

    Since

    we have

    We can directly verify

    and

    Therefore,we conclude that

    Finally,we obtain the boundary term as follows:

    Then from(5.7),we have

    where

    We have?≥1 onand sok=1,2,3 onMoreover the second,third and fifth terms on the right-hand side of(5.9)are summed up into

    Hence

    By the assumption(2.2),we have

    Therefore,we can write

    In(5.10),the signs of the terms ofandare different.Thus we need to perform another estimation for

    Multiplying the equationPz=by?zand applying the integration by parts,we have

    Now we estimate the terms Kj,1≤j≤5 as follows:

    Therefore we see that

    Here

    becausez=0 onby(2.3).Now we calculate B0given by(5.8),while(2.3)implies?yz=0 andon Γxand all the integrations on Γyvanish.Hence

    So multiplying(5.11)by?sγ(4β+μ),where we chooseμ>0 later,we have

    We add(5.10)and(5.13)to have

    On the other hand,since

    by the Cauchy-Schwarz inequality,we see

    By 0<β<1,we can chooseμ>0 sufficiently small,so that

    Absorbing the term ofwe complete the proof of Theorem 2.2.

    AcknowledgmentThe authors thank the anonymous referees for valuable comments.

    [1]Amirov,A.K.,Doctoral Dissertation in Mathematics and Physics,Sobolev Institute of Mathematics,Novosibirsk,1988.

    [2]Amirov,A.K.,Integral Geometry and Inverse Problems for Kinetic Equations,VSP,Utrecht,2001.

    [3]Amirov,A.K.and Yamamoto,M.,A timelike Cauchy problem and an inverse problem for general hyperbolic equations,Appl.Math.Lett.,21,2008,885–891.

    [4]Bars,I.,Survey of two-time physics,Class.Quantum Grav.,18,2001,3113–3130.

    [5]Baudouin,L.and Puel,J.-P.,Uniqueness and stability in an inverse problem for the Schrdinger equation,Inverse Problems,18,2002,1537–1554.

    [6]Bellassoued,M.,Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,Applicable Analysis,83,2004,983–1014.

    [7]Bellassoued,M.and Yamamoto,M.,Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation,J.Math.Pures Appl.,85,2006,193–224.

    [8]Bellassoued,M.and Yamamoto,M.,Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases,Applicable Analysis,91,2012,35–67.

    [9]Bukhgeim,A.L.and Klibanov,M.V.,Global uniqueness of a class of multidimensional inverse problems,Soviet Math.Dokl.,24,1981,244–247.

    [10]Burskii,V.P.and Kirichenko,E.V.,Unique solvability of the Dirichlet problem for an ultrahyperbolic equation in a ball,Differential Equations,44,2008,486–498.

    [11]Craig,W.and Weinstein,S.,On determinism and well-posedness in multiple time dimensions,Proc.Royal Society A,465,2009,3023–3046.

    [12]Diaz,J.B.and Young,E.C.,Uniqueness of solutions of certain boundary value problems for ultrahyperbolic equations,Proc.Amer.Math.Soc.,29,1971,569–574.

    [13]Hrmander,L.,Linear Partial Differential Operators,Springer-Verlag,Berlin,1963.

    [14]Hrmander,L.,Asgeirsson’s mean value theorem and related identities,J.Funct.Anal.,184,2001,377–401.

    [15]Imanuvilov,O.Y.and Yamamoto,M.,Lipschitz stability in inverse parabolic problems by the Carleman estimate,Inverse Problems,14,1998,1229–1249.

    [16]Imanuvilov,O.Y.and Yamamoto,M.,Global Lipschitz stability in an inverse hyperbolic problem by interior observations,Inverse Problems,17,2001,717–728.

    [17]Isakov,V.,Inverse Problems for Partial Differential Equations,Springer-Verlag,Berlin,2006.

    [18]Kenig,C.E.,Ponce,G.,Rolvung,C.and Vega,L.,Variable coefficient Schrdinger flows for ultrahyperbolic operators,Advances in Mathematics,196,2005,373–486.

    [19]Kenig,C.E.,Ponce,G.and Vega,L.,Smoothing effects and local existence theory for the generalized nonlinear Schrdinger equations,Inven.Math.,134,1998,489–545.

    [20]Kha?darov,A.,On stability estimates in multidimensional inverse problems for differential equation,Soviet Math.Dokl.,38,1989,614–617.

    [21]Klibanov,M.V.,Inverse problems in the “ large” and Carleman bounds,Differential Equations,20,1984,755–760.

    [22]Klibanov,M.V.,Inverse problems and Carleman estimates,Inverse Problems,8,1992,575–596.

    [23]Klibanov,M.V.and Timonov,A.,Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,VSP,Utrecht,2004.

    [24]Kostomarov,D.P.,A Cauchy problem for an ultrahyperbolic equation,Differential Equations,38,2002,1155–1161.

    [25]Kostomarov,D.P.,Problems for an ultrahyperbolic equation in the half-space with the boundedness condition for the solution,Differential Equations,42,2006,261–268.

    [26]Lavrent’ev,M.M.,Romanov,V.G.and Shishat·ski?,S.P.,Ill-posed Problems of Mathematical Physics and Analysis,American Math.Soc.,Providence,RI,1986.

    [27]Owens,O.G.,Uniqueness of solutions of ultrahyperbolic partial differential equations,Amer.J.Math.,69,1947,184–188.

    [28]Romanov,V.G.,Estimate for the solution to the Cauchy problem for an ultrahyperbolic inequality,Doklady Math.,74,2006,751–754.

    [29]Sparling,G.A.J.,Germ of a synthesis:space-time is spinorial,extra dimensions are time-like,Proc.Royal Soc.A,463,2007,1665–1679.

    [30]Sulem,C.and Sulem,P.-L.,The Nonlinear Schrdinger Equation,Spriner-Verlag,Berlin,1999.

    [31]Tegmark,M.,On the dimensionality of space-time,Class.Quant.Grav.,14,1997,L69–L75.

    [32]Yamamoto,M.,Carleman estimates for parabolic equations and applications,Inverse Problems,25,2009,123013,75 pages.

    国产激情久久老熟女| 在线观看免费视频网站a站| 黄色片一级片一级黄色片| 亚洲专区中文字幕在线| 国产欧美日韩综合在线一区二区| 日本wwww免费看| 国产精品久久电影中文字幕 | 黑人操中国人逼视频| 色婷婷久久久亚洲欧美| 亚洲精品一卡2卡三卡4卡5卡| 丝袜在线中文字幕| tube8黄色片| 亚洲av成人av| 久久久久久久久久久久大奶| 91国产中文字幕| 99久久国产精品久久久| 人人澡人人妻人| 一本大道久久a久久精品| 无限看片的www在线观看| 下体分泌物呈黄色| 久久香蕉精品热| 国产欧美日韩一区二区三区在线| 国产一区在线观看成人免费| 黄色女人牲交| 大香蕉久久网| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区欧美精品| 亚洲人成电影免费在线| 最近最新中文字幕大全电影3 | 久久久国产一区二区| 国产男女内射视频| 多毛熟女@视频| 国产精品久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费视频网站a站| 丝袜美腿诱惑在线| 麻豆国产av国片精品| 久久久久国产一级毛片高清牌| 精品国内亚洲2022精品成人 | 99精品欧美一区二区三区四区| 少妇裸体淫交视频免费看高清 | 91麻豆精品激情在线观看国产 | 波多野结衣一区麻豆| 99久久综合精品五月天人人| 亚洲av片天天在线观看| 咕卡用的链子| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av香蕉五月 | 亚洲午夜精品一区,二区,三区| 国产无遮挡羞羞视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区在线观看99| 天天操日日干夜夜撸| 日本vs欧美在线观看视频| 久久人人爽av亚洲精品天堂| 久热爱精品视频在线9| 搡老岳熟女国产| 岛国毛片在线播放| 国产成人影院久久av| 99热网站在线观看| 亚洲精品久久午夜乱码| 国产精品免费视频内射| 国产男靠女视频免费网站| 91精品三级在线观看| 久久99一区二区三区| 老司机午夜十八禁免费视频| 欧美最黄视频在线播放免费 | 精品国内亚洲2022精品成人 | 精品国产美女av久久久久小说| 国产欧美日韩精品亚洲av| 99国产精品一区二区蜜桃av | 国产成人系列免费观看| 女性生殖器流出的白浆| a级毛片在线看网站| 女警被强在线播放| 久久久国产成人精品二区 | 黄色a级毛片大全视频| 国产亚洲精品一区二区www | 亚洲人成电影观看| 视频区图区小说| 成人18禁高潮啪啪吃奶动态图| 韩国av一区二区三区四区| 老司机靠b影院| 欧美日本中文国产一区发布| 女人精品久久久久毛片| 水蜜桃什么品种好| 久久中文看片网| 成年人黄色毛片网站| 久久青草综合色| 午夜视频精品福利| 国产精品av久久久久免费| 国产亚洲欧美98| 欧美精品啪啪一区二区三区| 亚洲精品一二三| 青草久久国产| 黑人操中国人逼视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| 真人做人爱边吃奶动态| 日韩精品免费视频一区二区三区| 国产色视频综合| 亚洲欧美日韩高清在线视频| 老熟女久久久| av超薄肉色丝袜交足视频| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三区在线| 久久99一区二区三区| 成人18禁在线播放| 悠悠久久av| 午夜福利免费观看在线| 亚洲成a人片在线一区二区| 日韩免费高清中文字幕av| 亚洲国产看品久久| 欧美色视频一区免费| 精品国产乱子伦一区二区三区| 久久精品亚洲精品国产色婷小说| 午夜福利一区二区在线看| 人人妻人人澡人人爽人人夜夜| 91国产中文字幕| 在线观看免费高清a一片| 精品亚洲成a人片在线观看| 男女之事视频高清在线观看| 最近最新中文字幕大全电影3 | 黄片大片在线免费观看| 亚洲av成人一区二区三| 国产蜜桃级精品一区二区三区 | 十八禁高潮呻吟视频| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 欧美成人午夜精品| 丝袜美腿诱惑在线| av天堂久久9| 久久婷婷成人综合色麻豆| 亚洲av电影在线进入| 欧美丝袜亚洲另类 | 亚洲自偷自拍图片 自拍| 精品一区二区三卡| 亚洲人成电影免费在线| 中文字幕精品免费在线观看视频| 国内毛片毛片毛片毛片毛片| 中出人妻视频一区二区| 国产高清视频在线播放一区| 在线看a的网站| 欧美精品av麻豆av| 欧美亚洲日本最大视频资源| 极品教师在线免费播放| 国产高清国产精品国产三级| 亚洲精品在线观看二区| 最新的欧美精品一区二区| 99精品在免费线老司机午夜| 国产xxxxx性猛交| 18在线观看网站| 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| 国产成人影院久久av| 久久国产亚洲av麻豆专区| 精品久久久久久,| 一级,二级,三级黄色视频| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦免费观看视频1| 桃红色精品国产亚洲av| 国产成人免费无遮挡视频| 十八禁高潮呻吟视频| 交换朋友夫妻互换小说| 免费一级毛片在线播放高清视频 | 91字幕亚洲| 18禁美女被吸乳视频| 中文字幕最新亚洲高清| 精品人妻1区二区| 国产精品 国内视频| 精品一区二区三区av网在线观看| 欧美在线黄色| 国产欧美日韩综合在线一区二区| 久久精品亚洲熟妇少妇任你| 黄色视频不卡| 久久草成人影院| 国产亚洲av高清不卡| 女人久久www免费人成看片| 欧美一级毛片孕妇| 国产无遮挡羞羞视频在线观看| 久久中文看片网| av超薄肉色丝袜交足视频| 看免费av毛片| 国产精品综合久久久久久久免费 | 亚洲少妇的诱惑av| 1024视频免费在线观看| 香蕉久久夜色| 亚洲精品美女久久久久99蜜臀| e午夜精品久久久久久久| 久热爱精品视频在线9| 女性生殖器流出的白浆| 最近最新中文字幕大全电影3 | 久99久视频精品免费| 亚洲va日本ⅴa欧美va伊人久久| 国产一卡二卡三卡精品| 国产单亲对白刺激| 亚洲精品在线美女| 免费人成视频x8x8入口观看| 中文字幕av电影在线播放| 在线观看一区二区三区激情| 久久久国产成人免费| 久久精品亚洲精品国产色婷小说| 亚洲精品粉嫩美女一区| 国产高清videossex| 日韩制服丝袜自拍偷拍| 嫁个100分男人电影在线观看| 男男h啪啪无遮挡| 精品一品国产午夜福利视频| 亚洲欧美激情综合另类| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 在线av久久热| 大型黄色视频在线免费观看| 超色免费av| 咕卡用的链子| 99精品欧美一区二区三区四区| 亚洲成国产人片在线观看| 成人特级黄色片久久久久久久| 成在线人永久免费视频| 亚洲精品久久午夜乱码| 亚洲视频免费观看视频| 欧美一级毛片孕妇| 人人妻,人人澡人人爽秒播| 18禁裸乳无遮挡免费网站照片 | 亚洲中文av在线| 亚洲国产中文字幕在线视频| 亚洲专区中文字幕在线| 1024视频免费在线观看| 色婷婷久久久亚洲欧美| 99国产综合亚洲精品| xxx96com| 久久久精品免费免费高清| 日本wwww免费看| 午夜两性在线视频| 18禁美女被吸乳视频| 国产精品电影一区二区三区 | xxxhd国产人妻xxx| 1024香蕉在线观看| 欧美另类亚洲清纯唯美| videos熟女内射| tocl精华| 亚洲精品成人av观看孕妇| 精品国产一区二区三区久久久樱花| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美色中文字幕在线| 久9热在线精品视频| a级毛片黄视频| 露出奶头的视频| 正在播放国产对白刺激| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码| 免费在线观看影片大全网站| 在线观看免费日韩欧美大片| 精品福利观看| 91av网站免费观看| 黑人操中国人逼视频| 亚洲久久久国产精品| 国产激情久久老熟女| 午夜免费成人在线视频| 青草久久国产| 亚洲熟女毛片儿| 亚洲国产精品一区二区三区在线| 咕卡用的链子| 亚洲人成77777在线视频| xxx96com| 欧美老熟妇乱子伦牲交| 婷婷丁香在线五月| 男女午夜视频在线观看| 人人妻人人澡人人看| 一边摸一边做爽爽视频免费| 狠狠狠狠99中文字幕| 在线观看免费高清a一片| 黄片小视频在线播放| 老司机福利观看| av线在线观看网站| 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区mp4| 91av网站免费观看| 天天躁日日躁夜夜躁夜夜| 91精品三级在线观看| 色尼玛亚洲综合影院| 色在线成人网| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 国产成人影院久久av| 国产精品国产高清国产av | 午夜激情av网站| 免费观看人在逋| 一级毛片高清免费大全| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 精品国产美女av久久久久小说| 欧美一级毛片孕妇| av线在线观看网站| 人人妻人人澡人人看| 国产99白浆流出| 中亚洲国语对白在线视频| 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| 热re99久久国产66热| 高清视频免费观看一区二区| 久久人人爽av亚洲精品天堂| 人妻一区二区av| www.精华液| 天天影视国产精品| 大码成人一级视频| 国产一区有黄有色的免费视频| bbb黄色大片| 美女视频免费永久观看网站| 中文欧美无线码| 水蜜桃什么品种好| a级毛片在线看网站| 岛国在线观看网站| 亚洲一码二码三码区别大吗| 色老头精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 韩国av一区二区三区四区| 成人免费观看视频高清| 亚洲欧洲精品一区二区精品久久久| 久久狼人影院| 欧美另类亚洲清纯唯美| 亚洲精品久久成人aⅴ小说| 老司机午夜福利在线观看视频| 日韩欧美国产一区二区入口| x7x7x7水蜜桃| av天堂在线播放| 亚洲人成电影免费在线| 大型黄色视频在线免费观看| 精品国产一区二区久久| 久久久久久人人人人人| 中文字幕人妻熟女乱码| 婷婷成人精品国产| 如日韩欧美国产精品一区二区三区| 久热爱精品视频在线9| av网站免费在线观看视频| 国产精品乱码一区二三区的特点 | 国产亚洲欧美在线一区二区| 免费一级毛片在线播放高清视频 | 精品乱码久久久久久99久播| 国产高清国产精品国产三级| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| 国产成人av激情在线播放| 欧美黄色片欧美黄色片| 人妻丰满熟妇av一区二区三区 | 成人18禁在线播放| 亚洲精品一二三| 久久ye,这里只有精品| 成年动漫av网址| 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区激情| 欧美另类亚洲清纯唯美| 日韩欧美一区二区三区在线观看 | 天天影视国产精品| 熟女少妇亚洲综合色aaa.| 在线视频色国产色| 校园春色视频在线观看| 久久精品aⅴ一区二区三区四区| 777米奇影视久久| 欧美av亚洲av综合av国产av| 欧美一级毛片孕妇| 国产高清激情床上av| 熟女少妇亚洲综合色aaa.| 久久精品熟女亚洲av麻豆精品| 中出人妻视频一区二区| 国产高清激情床上av| 日韩欧美在线二视频 | 日日夜夜操网爽| 黄色视频不卡| 黑人操中国人逼视频| 黄色视频,在线免费观看| 黑人操中国人逼视频| 亚洲性夜色夜夜综合| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 成年版毛片免费区| 又大又爽又粗| 婷婷成人精品国产| 无人区码免费观看不卡| 女人高潮潮喷娇喘18禁视频| 精品午夜福利视频在线观看一区| 亚洲片人在线观看| 久久人妻av系列| 在线免费观看的www视频| 最近最新中文字幕大全电影3 | 亚洲欧洲精品一区二区精品久久久| 国产精品国产av在线观看| 国内久久婷婷六月综合欲色啪| 国产xxxxx性猛交| 亚洲精品国产一区二区精华液| 人妻 亚洲 视频| 免费av中文字幕在线| 久久天堂一区二区三区四区| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲精品一区二区精品久久久| 午夜福利欧美成人| 少妇的丰满在线观看| 日韩欧美国产一区二区入口| videosex国产| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| 淫妇啪啪啪对白视频| 国产一区二区三区视频了| 久久久国产欧美日韩av| av超薄肉色丝袜交足视频| 国产激情欧美一区二区| 两个人免费观看高清视频| 三级毛片av免费| 变态另类成人亚洲欧美熟女 | 好看av亚洲va欧美ⅴa在| 国产一区二区三区综合在线观看| 国产高清国产精品国产三级| 亚洲片人在线观看| 国产区一区二久久| 中文字幕制服av| 欧美日韩成人在线一区二区| 激情在线观看视频在线高清 | 韩国av一区二区三区四区| 黄色视频不卡| 91大片在线观看| av在线播放免费不卡| aaaaa片日本免费| 欧美日韩黄片免| 人成视频在线观看免费观看| 9191精品国产免费久久| 99re6热这里在线精品视频| 美女扒开内裤让男人捅视频| 新久久久久国产一级毛片| 18禁黄网站禁片午夜丰满| 999久久久精品免费观看国产| 久久久久久久久久久久大奶| av不卡在线播放| 大型av网站在线播放| 国产精品1区2区在线观看. | 中文亚洲av片在线观看爽 | 国产又爽黄色视频| 成人影院久久| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩另类电影网站| 操出白浆在线播放| tube8黄色片| √禁漫天堂资源中文www| 人妻一区二区av| 男男h啪啪无遮挡| 一夜夜www| 在线观看66精品国产| 亚洲熟女精品中文字幕| 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| 啪啪无遮挡十八禁网站| 精品一区二区三区视频在线观看免费 | 国产成人系列免费观看| 搡老乐熟女国产| 国产亚洲欧美在线一区二区| 国产精品乱码一区二三区的特点 | 国产成人精品久久二区二区91| 久热爱精品视频在线9| 久久久国产成人免费| 新久久久久国产一级毛片| 亚洲精品国产一区二区精华液| 日韩欧美三级三区| 黑人操中国人逼视频| 亚洲黑人精品在线| 亚洲国产欧美日韩在线播放| 亚洲成国产人片在线观看| 在线永久观看黄色视频| 啦啦啦在线免费观看视频4| 狠狠婷婷综合久久久久久88av| 国产精品国产高清国产av | 国产在线一区二区三区精| 色综合欧美亚洲国产小说| 免费在线观看完整版高清| 看黄色毛片网站| 亚洲精品中文字幕一二三四区| 中文亚洲av片在线观看爽 | 久久精品aⅴ一区二区三区四区| 夜夜躁狠狠躁天天躁| 欧美日韩中文字幕国产精品一区二区三区 | 男女免费视频国产| 亚洲中文字幕日韩| 免费不卡黄色视频| 在线永久观看黄色视频| 精品高清国产在线一区| 男女下面插进去视频免费观看| 热re99久久精品国产66热6| 精品久久久久久电影网| 国产av一区二区精品久久| 啦啦啦在线免费观看视频4| 性色av乱码一区二区三区2| 在线观看免费视频日本深夜| 免费观看a级毛片全部| 久久婷婷成人综合色麻豆| 男人操女人黄网站| 久久国产乱子伦精品免费另类| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产精品久久久不卡| 免费日韩欧美在线观看| 波多野结衣一区麻豆| 亚洲国产精品sss在线观看 | 天天躁日日躁夜夜躁夜夜| 中国美女看黄片| 丝瓜视频免费看黄片| 亚洲国产中文字幕在线视频| 美女高潮到喷水免费观看| 美女国产高潮福利片在线看| 99精品久久久久人妻精品| 国产xxxxx性猛交| 黄色怎么调成土黄色| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站| 亚洲欧美激情综合另类| 91麻豆精品激情在线观看国产 | tube8黄色片| 久久久久久久久免费视频了| 性色av乱码一区二区三区2| 妹子高潮喷水视频| 亚洲第一欧美日韩一区二区三区| 亚洲熟妇中文字幕五十中出 | 精品一区二区三卡| 日日夜夜操网爽| 亚洲aⅴ乱码一区二区在线播放 | 一区福利在线观看| 免费久久久久久久精品成人欧美视频| 久久香蕉精品热| 老司机靠b影院| 后天国语完整版免费观看| 欧美日韩亚洲高清精品| 后天国语完整版免费观看| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 极品少妇高潮喷水抽搐| 91麻豆av在线| 欧美黑人精品巨大| 国产精品永久免费网站| 成年动漫av网址| av一本久久久久| www.999成人在线观看| 中文字幕高清在线视频| 99国产综合亚洲精品| 曰老女人黄片| 午夜福利在线观看吧| 水蜜桃什么品种好| 青草久久国产| 伊人久久大香线蕉亚洲五| 日韩有码中文字幕| 午夜影院日韩av| 成人国语在线视频| 国产主播在线观看一区二区| 黄片播放在线免费| videosex国产| 免费在线观看视频国产中文字幕亚洲| 亚洲av熟女| 国产免费男女视频| 69av精品久久久久久| 建设人人有责人人尽责人人享有的| 18禁黄网站禁片午夜丰满| 成人国产一区最新在线观看| 国产成人av教育| videos熟女内射| 欧美另类亚洲清纯唯美| 另类亚洲欧美激情| 精品国产乱子伦一区二区三区| 久久精品人人爽人人爽视色| 欧美 亚洲 国产 日韩一| 在线观看午夜福利视频| 欧美亚洲日本最大视频资源| 嫁个100分男人电影在线观看| 午夜视频精品福利| 女人精品久久久久毛片| 一区福利在线观看| 两个人看的免费小视频| 女人久久www免费人成看片| 亚洲专区字幕在线| 久久久久久久精品吃奶| 天堂俺去俺来也www色官网| 国产欧美日韩综合在线一区二区| 好男人电影高清在线观看| 最新在线观看一区二区三区| 午夜福利欧美成人| 最新美女视频免费是黄的| 久久久久精品人妻al黑| 99国产精品99久久久久| 久久人妻熟女aⅴ| 一级黄色大片毛片| 久9热在线精品视频| 精品亚洲成国产av| 丰满人妻熟妇乱又伦精品不卡| 国产精品二区激情视频| 亚洲午夜理论影院| 亚洲七黄色美女视频| 日韩中文字幕欧美一区二区| 国产成人av教育| 99re在线观看精品视频| 久久人人爽av亚洲精品天堂| 国产男女超爽视频在线观看| 9热在线视频观看99| 成年人黄色毛片网站| 女人高潮潮喷娇喘18禁视频| www.精华液| 在线天堂中文资源库| 欧美性长视频在线观看| 一区二区三区精品91| 99国产极品粉嫩在线观看| 欧美国产精品一级二级三级|