• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contribution of vortex Rossby wave to spiral rainband formation in tropical cyclones*

    2014-06-01 12:30:01RUANKun阮鯤

    RUAN Kun (阮鯤)

    Key Laboratory of Virtual Geographic Environment of Ministry of Education, College of Geographic Science, Nanjing Normal University, Nanjing 210046, China

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China, E-mail: forward_rk@163.com

    ZHA Yong (查勇)

    Key Laboratory of Virtual Geographic Environment of Ministry of Education, College of Geographic Science, Nanjing Normal University, Nanjing 210046, China

    HUANG Hong (黃泓)

    School of Atmospheric Science, Key Laboratory of Mesoscale Severe Weather, Nanjing University, Nanjing 210093, China

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

    HU You-bin (胡友彬)

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

    Contribution of vortex Rossby wave to spiral rainband formation in tropical cyclones*

    RUAN Kun (阮鯤)

    Key Laboratory of Virtual Geographic Environment of Ministry of Education, College of Geographic Science, Nanjing Normal University, Nanjing 210046, China

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China, E-mail: forward_rk@163.com

    ZHA Yong (查勇)

    Key Laboratory of Virtual Geographic Environment of Ministry of Education, College of Geographic Science, Nanjing Normal University, Nanjing 210046, China

    HUANG Hong (黃泓)

    School of Atmospheric Science, Key Laboratory of Mesoscale Severe Weather, Nanjing University, Nanjing 210093, China

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

    HU You-bin (胡友彬)

    College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China

    (Received May 13, 2013, Revised August 7, 2013)

    The contribution of the vortex Rossby wave (VRW) to the spiral rainband in the tropical cyclones (TCs) is studied in the framework of a barotropic non-divergent TC-like vortex model. The spectral function expanding method is used to analyze the disturbance evolution of a defined basic state vortex. The results show that the numerical solution of the model is a superposition of the continuous spectrum component (non-normal modes) and the discrete spectrum component (normal modes). Only the eyewall and the rainbands in the inner core-region in a TC are related to the VRW normal modes, whereas the continuous spectrum wave components play an important role in the formation of secondary-, principal-, and distant- rainbands, especially the outer rainband, through an indirect way. The continuous spectrum can promote the development of the TC circulation for the occurrence of a mesoscale instability. The convection under a favorable moisture condition will trigger the inertial-gravitational wave to cause the formation of unstable spiral bandliked-disturbances outside of the eyewall. The complicated interaction between the basic state-vortex and the VRW disturbances will cause a positive feedback between the TC circulation and the rainband.

    tropical cyclone, spiral bands, vortex Rossby wave, continuous spectrum, discrete spectrum

    Introduction

    The spiral cloud (rain) bands in the TCs were detected in the earliest radar observations, but their formation and thermodynamic and dynamic roles in hurricanes are still not well understood[1].

    According to the wave characteristics, their formation could be explained by using the gravitational wave theory[2]and the vortex Rossby wave (VRW)[3]. When the spiral bands are divided into two classes: the inner and outer bands, they are explained with different mechanisms. The inner rainbands are characterized by the convectively coupled VRW. The movement of the outer rainbands follows the low-level vector winds associated with the azimuthally averaged low-level flow and the radially outward cross-band flow caused by the downdraft-induced cold pool in the boundary layer[4]. Huang and Zhang proposed thatonly the instability of the mixed vortex Rossby- inertial gravitational wave can interpret the generation of the eyewall, the inner and outer spiral bands at the same time[5].

    The exact wave mechanisms leading to the spiral band formation remain unclear, especially, the relative contribution of the vortex Rossby and inertial gravitational wave, which is difficult to be separated within a complicated model. It might be settled with the aid of simple models. In this paper, the role of the vortex Rossby wave will be illustrated by using a baratropic non-divergent tropical cyclone-scale vortex model. This model is the most simplified model of the tropical cyclone-scale vortex and can describe the important properties of the VRW.

    Using a Rankine vortex as the basic flow, Smith and Montgomery proposed that, in a barotropic nondivergent model, the solution is a superposition of the shear wave (continuous spectrum) component and the Rossby edge wave (discrete spectrum) component[6]. Carr and Williams[7]argued that a continuous spectrum disturbance will propagate against the vertical flow (retrogress) more rapidly at smaller radii due to the larger gradient of the symmetric vorticity closer to the center. This variable of retrogression would then tend to counteract the effect of the tilting mechanism and thus decrease the rate of symmetrization. However, the effect of the variable retrogression might be small in the tangential wind profile of a tropical cyclone vortex, decreasing relatively gradually with the radius. Based on their work, Shapiro and Montgomery pointed out that the individual normal modes on the vortex have a fixed structure, they are not affected by the tilting mechanism that ultimately reduces the amplitudes of the asymmetries associated with the continuous part of the spectrum[8].

    In a tropical cyclone-like vortex, the discrete modal instability of the pure VRW can account for the generation of the eyewall and the inner spiral bands, but cannot directly account for the generation of the outer spiral bands[5]. Hence, a problem arises, whether the VRW contributes nothing to the outer spiral bands or not, that will be addressed in this paper. It will be resolved in a way of the wave spectrum analysis[9]. In this way, the continuous spectrum (non-normal modes) and the discrete spectrum (normal modes) are decomposed from the disturbed fields to obtain non-mode solutions in the atmosphere. Therefore, the role of the VRW continuous spectrum in the generation of spiral bands in the TCs can be made clear in this paper.

    1. Model and methodology

    1.1Non-divergent barotropic model

    In this study, we use a linearized non-divergent barotropic model on the -fplane. In a cylindrical coordinate-system, the equations can be expressed as:

    Utilizing Eqs.(1), (2) and (3), the following vorticity equation can be obtained

    In order to obtain the eigenvalues and the eigenfunctions numerically, let where λ is the azimuth angle, n is the azimuthal wave-number, σ=σr+iσiis the frequency. Then, substitute it into Eq.(6) to get

    Dividing the radius r from 0 (Vortex center) tointo N sections with an equal distance, discretize Eq.(8) and consider corresponding boundary conditions:

    then, the solution of Eqs.(1)-(3) will become an eigenvalue problem in the matrix form as follows

    1.2Methods to distinguish continuous spectrum from discrete spectrum

    Fig.1 Radial profile of relative vorticity and velocity

    After the spectral points and functions are obtained, we shall distinguish the continuous spectral points from the discrete spectral points. The order of matrix TX(=A-1B) is different with the change of the grid distance[9]. For instance, if the grid number is N, there are (N-1) computed eigenvalues and their corresponding eigenfunctions. In our study, the domainsize of all computation is 200 km in the radial direction, i.e.,=200 km , and the corresponding grid distance is Δr(=/ N). N will be changed as needed.

    The number of the computed spectral points increases with the increase of resolution, but the distribution of the discrete spectral points shall not become denser, whereas the continuous spectral points become denser. In this way, the continuous spectrum can be distinguished from the discrete spectrum.

    The continuous spectrum may be turned into a numerical discrete spectrum in the numerical computation, so the real continuous spectrum shall be identified firstly. Theoretically, the continuous spectrum exists when the wave equation is singular. As for the model used in this paper, when the coefficient before the differential quotient in Eq.(10) is zero, this equation will become singular, and the frequencies of the continuous spectrum shall be located in the region

    Fig.2 Distribution of spectral points (σr) as the function of the radial grid number (s-1)

    Taking account of both the enough exact description of spectral functions and the computation precision, N is taken as 100 in most cases of this study. Then there exist 99 spectral points and corresponding functions, and all of them are located within [0,0.0047 s-1]. The spectral points labeled with 89 and 90 are a couple of the growing (decaying) discrete spectrum modes and the remaining points are all continuous spectral points when they are sorted in the ascending order of the propagation frequency.

    Fig.3 Stream function and relative vorticity of unstable disturbance when r<100 km

    2. Structure and evolution of wave spectrum

    2.1Discrete spectrum

    As mentioned above, the discrete spectrum only includes two spectral points, wherein the one labeled with 89 is a growing, i.e. unstable, mode. Figure 3shows the horizontal distribution, i.e., the distribution on r-λ plane, of the stream function and the relative vorticity of this unstable disturbance, wherein, the relative vorticity,is obtained from its stream function, ψ, as

    Fig.4 Evolution of stream function for unstable disturbance when r<100 km (m2/s)

    where Δ is the Laplace operator in the cylindrical coordinates.

    As shown in Fig.3, both the relative vorticity () and the stream function (ψ) of the unstable disturbance have two opposite-phase extremum centers along the radius, which correspond to the RMWs and the RMV of, respectively. The maximum amplitude of the unstable disturbance appears at the RMWs and decays quickly outside of this radius. Both the stream function and the relative vorticity have a spiral bandlike structure within the region between two peak values.

    The unstable discrete spectrum will grow exponentially. The evolution of its stream function or the relative vorticity can be known by using the computed growth rate (σi) and the phase velocity (cr), where cr=σr/n. It will take 2nπ/σrhours for the unstable disturbance to rotate around the center of the vortex clockwise for a positive cror anticlockwise for a negative cr. Let the azimuthal wave number n=3, its computed propagation frequency σ=2.998× 10-3s-1. As shown in Fig.4, the stream function of the unstable disturbance rotates clockwise in a cycle of about 1.75 h. The basic–state vortex rotates anticlockwise as defined, so the unstable perturbation propagates against the basic flow.

    2.2Continuous spectrum

    With the increase of N, the spectral points and the identifiable modes of the continuous spectrum will increase, but their radial structures change following similar laws. For simplicity, the case of =20N is considered as an example to illustrate the radial structure variation of the continuous spectrum modes. There are 19 spectral points including 17 continuous spectrum modes and 2 discrete spectrum modes labeled with 17 and 18. The continuous spectral points labeled as 1-16 and 19 are turned into the computed discrete spectral points. Their radial structures exhibit no smooth wave properties, but with critical layers at the radius where these spectral functions or their firstorder derivatives are disconnected (Fig.5). The locations of the critical layers are closer to the vortex center from the model boundary with the increase of the label index. The propagation frequencies of the discrete spectrum perturbations are in the order of those of the continuous spectrum perturbation propagating relatively faster.

    A single mode of the continuous spectrum has no evident physical meaning because of discontinuity of the continuous spectrum itself and its first-order derivative, so its evolution shall be described reasonably and correctly by using the concept of wave packet[9]. When N is taken to be 100, the stream function ()rΨof each mode is discretized as an (1)N- dimensional vector. The stream function of continuous spectrum wave packet is computed by using the following formula

    Fig.5 Radial structure of perturbation stream function in ascending order of propagation frequency (=20)N

    Fig.6 Evolution of horizontal stream function for continuous spectrum wave packet when r<200 km (m2/s)

    3. Discussions

    The theory of idealized tropical cyclone-like vortices suggests that the flow field near the center of a storm contains normal-mode disturbances of the general size and shape of the secondary rainbands in the inner-core region outside of the eyewall zone. The numerical solution shown in Section 2 corresponds well to the analytical solution proposed by Smith and Montgomery with a barotropic nondivergent model[6]. However, the analytical method can only be used to study some special basic-state vortex, such as the Rankine vortex, the numerical method used in this paper can analyze more complex and realistic basicstate vortices, which will result in more credible and valuable conclusions.

    The numerical solution of the non-divergent barotropic model in this study is a superposition of the continuous spectrum component and the discrete spectrum component of the VRW. Such disturbances exhibit different structural characteristics. In order to distinguish the relative contribution of the discrete spectrum components from the continuous spectrum ones, the schematic diagram of the radar reflectivity in a North Hemisphere TC[12]is cited (Fig.7).

    Fig.7 Schematic illustration of radar reflectivity in a North Hemisphere tropical cyclone with a double eyewall[12]

    The development of the discrete spectrum wave packetdψ, which is computed following Eq.(13), for the two modes labeled as 89 and 90, shows the unstable growth of such modes (Fig.8). As shown in the figure, the wave packet exhibits a two-peak structure along the radial direction initially, but the energy is accumulated rapidly near the RMWs after about 2 h’s evolution. The wave packet has no evident variation outside of this radius. Such modes extract energy fromthe basic-state vortex and decrease the rate of symmetrization under the linear assumption with the nonlinear effects neglected. Compared the structure of the unstable discrete spectrum mode with the schematic illustration shown in Fig.7, it can be inferred that the developing discrete spectrum (normal mode) component most likely applies to the smaller, more transient, secondary rainbands.

    Fig.8 Time evolution of the discrete spectrum wave packet as the function of radius

    The primary eyewall and some of the rainbands in the inner core of a TC are related to the VRW normal modes. The unbalanced property of the wave outside the stagnation radius of the VRW is one of the important causes for the formation of the unstable outer spiral bands in the TCs. Accordingly, the outer spiral band in the actual TCs can be identified to possess properties of the inertial-gravitational wave[5].

    Fig.9 Time evolution of the continuous spectrum wave packet as the function of radius

    In the general circulation, the west winds can be nourished by continuous spectrum disturbances[13]. Similarly, it can be inferred that the continuous spectrum of the VRW may enhance the basic state vortex, which will favor the development of mesoscale instabilities. Such assumption is verified by the time evolution of the continuous spectrum wave packetcψ as shown in Fig.9. It can be seen that the amplitudes of the continuous spectrum wave packet are reduced ultimately with time on the whole, which shows an energy transfer from the asymmetries associated with the continuous spectrum to the symmetric basic-state vortex. Such energy transfer mainly occurs in the regions corresponding to the eyeall, principal-, and distantrainband zone shown in Fig.7. Such energy transfer is dominant, especially in the distant rainband region.

    The spiralband-liked region exhibited by the continuous spectrum wave packet (as shown in Fig.6) often corresponds to the potential instability region in the actual TCs. In such a zone, the convection will occur under a favorable moisture condition. As a result, the inertial-gravitational wave will be triggered[10]. In fact, the inertial-gravitational wave triggered by the direct effect of the latent heat release will cause the formation of the unstable spiral bandlike disturbances outside of the eyewall, which was verified in the numerical simulations[14].

    4. Conclusions

    The contribution of the VRW to the spiral rainband in the TCs is studied in the framework of a barotropic non-divergent vortex model. In contrast to previous similar studies, a more complex profile of the basic flow, which is similar to the radial wind profile of some real TCs, is defined using empirical formulas. Then the spectral function expanding method is used to analyze the disturbances for this basic state vortex.

    The results show that the numerical solution is a superposition of the shear wave (continuous spectrum) component and the Rossby edge wave (discrete spectrum) component. All stable spectral points belong to the continuous spectrum, whereas the discrete spectrum only includes the growing and decaying spectral points. The numerical results are consistent with the analytical solution for a simpler basic flow.

    The eyewall and some of the rainbands in the inner core of a TC are mainly related to the VRW normal modes. The unstable perturbation propagates against the cyclonic basic-state vortex and extracts energy from the symmetric basic-state vortex. In such a zone, the continuous spectrum wave packet decays evidently as shown in Fig.9, so the energy is transferred from the disturbances associated with these modes into the basic-state vortex. Moller and Montgomery proposed that, for the disturbance amplitudes of 40% of the basic-state PV at the radius of the maximum wind, a discrete normal mode propagating cyclonically around the vortex is excited as a by-product of the process by which the energy is transferred from the asymmetries into the basic state (axisymmetrization)[15]. Such a process is also observed in our simple model. The continuous spectrum part of the VRW can help developing the discrete normal mode of the VRW and facilitate the formation of unstable inner spiral bands.

    The continuous spectrum components also playan important role in the formation of spiral bands outside of the inner core of a TC, especially the distant rainband, through an indirect way. They can promote the development of the TC circulation favorable for the occurrence of mesoscale instability. Under a desired moisture condition, the real potential instability will be triggered to favor the development of convection. Then the unstable spiral bands will form as a result of the propagation of the inertial gravity wave. At the same time, in such a rainband zone, the energies transfer from the asymmetries associated with the continuous spectrum to the symmetric basic-state vortex, which will result in an asymmetry-induced intensification of the basic flow.

    It can be concluded that the complicated interaction between the basic state-vortex and the VRW disturbances, including the normal modes and the continuous spectrum components, will result in a positive feedback between the TC circulation and the spiral rainband. However, the detailed process and the dynamic mechanism remain a challenge for further studies.

    [1] CHEN Y., YAU M. K. Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification[J]. Journal of the Atmospheric Sciences, 2001, 58(15): 2128-2145.

    [2] CHOW K. C., CHAN K. L. and LAU A. K. H. Generation of moving spiral bands in tropical cyclones[J]. Journal of the Atmospheric Sciences, 2002, 59(20): 2930-2950.

    [3] WANG Y. Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity change[J]. Journal of the Atmospheric Sciences, 2002, 59(7): 1239-1262.

    [4] LI Q., WANG Y. A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone[J]. Monthly Weather Review, 2012, 140(9): 2782-2805.

    [5] HUANG Hong, ZHANG Ming. Unstable dynamical properties of spiral cloud bands in tropical cyclones[J]. Acta Meteorologica Sinica, 2009, 23(4): 485-493.

    [6] SMITH G. S., MONTGOMERY M. T. Vortex axisymmetrization and its dependence on azimuthal wave number or asymmetric radial structure changes[J]. Quarterly Journal of the Royal Meteorological Society, 1995, 121(527): 1615-1650.

    [7] CARR L. E. III , WILLIAMS R. T. Barotropic vortex stability to perturbations from axisymmetry[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3177-3191.

    [8] SHAPIRO L. J., MONTGOMERY M. T. A three-dimensional balance theory for rapidly rotating vortices[J]. Journal of the Atmospheric Sciences, 1993, 50(19): 3322-3335.

    [9] ZHANG Li-feng, ZHANG Ming. Characteristic waves of transversal disturbance at barotropic shear flow, II: Spectral function[J]. Acta Meteorologica Sinica, 2001, 59(2): 143-156(in Chinese).

    [10] NOLAN D. S., MONTGOMERY M. T. Nonhydrostatic, three-dimensional perturbations to balanced, hurricanelike vortices. Part I: Linearized formulation, stability, and evolution[J]. Journal of the Atmospheric Sciences, 2002, 59(21): 2989-3020.

    [11] ZHANG Ming, HUANG Hong and ZHANG Li-feng. Atmospheric wave spectrum analysis and instability (Vol. 3)-Perturbations in tropical cyclones[M]. Beijing, China, Meteorological Press, 2010, 19-22(in Chinese).

    [12] HOUZE R. A. Jr. Clouds in tropical cyclones[J]. Monthly Weather Review, 2010, 138(2): 293-344.

    [13] ZHANG Li-feng, ZHANG Ming. Evolution of the structure of the global disturbance and its expression in spherical Rossby wave envelope[J]. Climatic and Environmental Research, 2005, 10(3): 430-442.

    [14] CHEN Xue-jing. Impact of thermal effects on spiral bands of tropical cyclone[D]. Master Thesis, Nanjing, China: PLA University of Science and Technology, 2011(in Chinese).

    [15] MOLLER J. D., MONTGOMERY M. T. Vortex Rossby waves and hurricane intensification in a barotropic model[J]. Journal of the Atmospheric Sciences, 1999, 56(11): 1674-1687.

    10.1016/S1001-6058(14)60081-0

    * Project supported by the National Nature Science Foundation of China (Grant No. 40905021) the Chinese Postdoctoral Science Foundation (Grant No. 2011M500894).

    Biography: RUAN Kun (1978-), Male, Ph. D. Candidate,

    Lecturer

    HUANG Hong,

    E-mail: hhong7782@163.com

    人人妻人人爽人人添夜夜欢视频| 日韩中文字幕欧美一区二区| 国产高清国产精品国产三级| 午夜老司机福利片| 亚洲五月婷婷丁香| 18禁美女被吸乳视频| 深夜精品福利| 热99久久久久精品小说推荐| 在线视频色国产色| 精品福利观看| 黄色怎么调成土黄色| 成人国语在线视频| 国产极品粉嫩免费观看在线| 精品福利永久在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 一级片免费观看大全| 亚洲精品粉嫩美女一区| tube8黄色片| 成人国产一区最新在线观看| 黑人巨大精品欧美一区二区mp4| 女性被躁到高潮视频| 高清欧美精品videossex| 国产成人精品久久二区二区免费| 国产高清国产精品国产三级| 亚洲综合色网址| 久久精品91无色码中文字幕| 亚洲欧美一区二区三区黑人| 视频区欧美日本亚洲| 欧美激情 高清一区二区三区| 亚洲熟女毛片儿| 少妇 在线观看| 国产亚洲精品一区二区www | ponron亚洲| 亚洲一区中文字幕在线| xxxhd国产人妻xxx| 中出人妻视频一区二区| aaaaa片日本免费| 国产精华一区二区三区| 大香蕉久久成人网| 亚洲欧美一区二区三区黑人| 露出奶头的视频| 久久久水蜜桃国产精品网| 国产精品免费一区二区三区在线 | 成人av一区二区三区在线看| 99国产精品一区二区三区| 看片在线看免费视频| 久久ye,这里只有精品| 久久草成人影院| 波多野结衣一区麻豆| 一级片免费观看大全| 欧美激情高清一区二区三区| 国产精品av久久久久免费| 女性生殖器流出的白浆| 日韩欧美一区二区三区在线观看 | 丁香欧美五月| 亚洲欧美色中文字幕在线| 中文字幕制服av| 动漫黄色视频在线观看| 久久久久国产精品人妻aⅴ院 | 亚洲欧美色中文字幕在线| 免费在线观看影片大全网站| 妹子高潮喷水视频| 亚洲中文字幕日韩| 欧美精品亚洲一区二区| 无限看片的www在线观看| 精品少妇久久久久久888优播| 丁香六月欧美| 9色porny在线观看| 国产区一区二久久| 久9热在线精品视频| 三上悠亚av全集在线观看| 久久精品91无色码中文字幕| 美女高潮到喷水免费观看| 高清视频免费观看一区二区| 精品国产美女av久久久久小说| 男女午夜视频在线观看| 国产精品综合久久久久久久免费 | 久久精品亚洲精品国产色婷小说| 人人澡人人妻人| 在线av久久热| 亚洲一区高清亚洲精品| 亚洲成国产人片在线观看| 首页视频小说图片口味搜索| 日韩有码中文字幕| 热99re8久久精品国产| 亚洲欧美激情综合另类| 国产97色在线日韩免费| 欧美色视频一区免费| 最新的欧美精品一区二区| 这个男人来自地球电影免费观看| 黄色视频,在线免费观看| 精品国产一区二区三区久久久樱花| 国产男女超爽视频在线观看| 啦啦啦 在线观看视频| 欧美黄色片欧美黄色片| 亚洲第一青青草原| 美女高潮喷水抽搐中文字幕| 丰满的人妻完整版| 国产欧美日韩一区二区三| 国产蜜桃级精品一区二区三区 | 国产精品久久视频播放| cao死你这个sao货| 电影成人av| 在线观看午夜福利视频| 中国美女看黄片| a在线观看视频网站| 久久精品成人免费网站| 老鸭窝网址在线观看| 99国产精品一区二区蜜桃av | 在线av久久热| 欧美黄色淫秽网站| 色婷婷av一区二区三区视频| 精品欧美一区二区三区在线| 可以免费在线观看a视频的电影网站| 操美女的视频在线观看| 亚洲成a人片在线一区二区| 首页视频小说图片口味搜索| 亚洲成a人片在线一区二区| 欧美黄色淫秽网站| svipshipincom国产片| 国产片内射在线| xxxhd国产人妻xxx| 在线观看舔阴道视频| 丝袜美足系列| 亚洲午夜精品一区,二区,三区| 国产精品98久久久久久宅男小说| 亚洲欧美日韩另类电影网站| 成人特级黄色片久久久久久久| 国产视频一区二区在线看| 国产免费男女视频| 亚洲欧美一区二区三区久久| 啦啦啦在线免费观看视频4| 夜夜躁狠狠躁天天躁| 国产成人精品久久二区二区免费| 中文字幕高清在线视频| 亚洲国产欧美网| 欧美乱码精品一区二区三区| 国产精品久久久久成人av| 天天躁日日躁夜夜躁夜夜| 一本综合久久免费| 免费在线观看视频国产中文字幕亚洲| 一本综合久久免费| 岛国在线观看网站| 亚洲三区欧美一区| 亚洲专区中文字幕在线| 黄频高清免费视频| 日韩 欧美 亚洲 中文字幕| 久久天堂一区二区三区四区| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 一边摸一边抽搐一进一小说 | 岛国在线观看网站| av免费在线观看网站| 中文亚洲av片在线观看爽 | 这个男人来自地球电影免费观看| 国产av又大| 18禁裸乳无遮挡动漫免费视频| www.熟女人妻精品国产| 韩国av一区二区三区四区| 精品久久久精品久久久| 在线观看www视频免费| 12—13女人毛片做爰片一| 成人三级做爰电影| 成年动漫av网址| 国产成人精品久久二区二区免费| 人妻 亚洲 视频| 在线天堂中文资源库| 久久久久国产精品人妻aⅴ院 | 日韩欧美国产一区二区入口| 国产野战对白在线观看| 中文字幕人妻丝袜一区二区| 极品教师在线免费播放| 亚洲aⅴ乱码一区二区在线播放 | 757午夜福利合集在线观看| 国产乱人伦免费视频| 亚洲 国产 在线| 久久精品熟女亚洲av麻豆精品| 精品久久久久久久毛片微露脸| 亚洲人成电影观看| 很黄的视频免费| 女人精品久久久久毛片| 国产精品一区二区在线不卡| 美女福利国产在线| 少妇 在线观看| 精品国产亚洲在线| 一进一出抽搐gif免费好疼 | 999精品在线视频| 久久国产乱子伦精品免费另类| 在线永久观看黄色视频| 久久久久精品人妻al黑| 亚洲av成人av| 亚洲精品中文字幕一二三四区| 在线观看日韩欧美| 国产亚洲欧美精品永久| 在线观看免费高清a一片| 精品少妇一区二区三区视频日本电影| 人人妻,人人澡人人爽秒播| 国产免费av片在线观看野外av| 久久久国产精品麻豆| 51午夜福利影视在线观看| 中文字幕人妻熟女乱码| √禁漫天堂资源中文www| 国产成人精品久久二区二区免费| 一二三四在线观看免费中文在| 国产精品影院久久| 免费少妇av软件| 亚洲视频免费观看视频| 捣出白浆h1v1| 国内毛片毛片毛片毛片毛片| 久久精品91无色码中文字幕| 性少妇av在线| 国产单亲对白刺激| 国产精品一区二区免费欧美| www日本在线高清视频| 日韩免费av在线播放| tube8黄色片| 一二三四社区在线视频社区8| 久久精品国产亚洲av高清一级| 男人操女人黄网站| 日韩欧美在线二视频 | 精品一区二区三卡| 久久精品国产清高在天天线| 国产成人精品在线电影| 最新的欧美精品一区二区| 少妇的丰满在线观看| 久久青草综合色| 黄色成人免费大全| 午夜免费成人在线视频| www.999成人在线观看| 男女下面插进去视频免费观看| 国产成人一区二区三区免费视频网站| svipshipincom国产片| 日韩免费高清中文字幕av| 精品电影一区二区在线| 欧美黑人精品巨大| 91av网站免费观看| 一区在线观看完整版| 免费av中文字幕在线| 免费在线观看视频国产中文字幕亚洲| 国产高清视频在线播放一区| 国产精品久久久人人做人人爽| 国产三级黄色录像| 欧美在线一区亚洲| 久久这里只有精品19| xxxhd国产人妻xxx| 亚洲专区国产一区二区| 亚洲欧美色中文字幕在线| 午夜福利在线免费观看网站| 91国产中文字幕| 午夜久久久在线观看| 中文字幕高清在线视频| 动漫黄色视频在线观看| 亚洲精品久久成人aⅴ小说| 色94色欧美一区二区| 超色免费av| 久久久国产成人精品二区 | 日本撒尿小便嘘嘘汇集6| 久久久国产成人精品二区 | 99国产精品99久久久久| 欧美精品亚洲一区二区| 国产精品久久久人人做人人爽| 一边摸一边抽搐一进一小说 | 久久99一区二区三区| av超薄肉色丝袜交足视频| 黑人猛操日本美女一级片| 建设人人有责人人尽责人人享有的| 欧美乱色亚洲激情| 激情在线观看视频在线高清 | 电影成人av| 国产成人精品无人区| 老司机影院毛片| 亚洲国产精品一区二区三区在线| 欧美激情极品国产一区二区三区| 亚洲第一青青草原| 久久国产精品男人的天堂亚洲| 在线视频色国产色| 日韩熟女老妇一区二区性免费视频| 黄频高清免费视频| 久久久国产一区二区| 亚洲熟女毛片儿| 老司机影院毛片| 人人澡人人妻人| 一级a爱片免费观看的视频| 国产极品粉嫩免费观看在线| 欧美亚洲日本最大视频资源| a在线观看视频网站| 欧美性长视频在线观看| 19禁男女啪啪无遮挡网站| 91大片在线观看| 国产成人系列免费观看| 99热网站在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲色图 男人天堂 中文字幕| av免费在线观看网站| 欧美激情高清一区二区三区| netflix在线观看网站| 99热只有精品国产| 在线播放国产精品三级| 午夜福利一区二区在线看| 夜夜夜夜夜久久久久| 999久久久精品免费观看国产| av网站免费在线观看视频| 国产亚洲精品一区二区www | 免费在线观看视频国产中文字幕亚洲| 视频区欧美日本亚洲| 精品国产乱子伦一区二区三区| 成年动漫av网址| 国产麻豆69| 激情视频va一区二区三区| av网站免费在线观看视频| 亚洲一区二区三区不卡视频| 国内毛片毛片毛片毛片毛片| 中文字幕高清在线视频| 亚洲精品美女久久av网站| 伦理电影免费视频| 精品国产美女av久久久久小说| 很黄的视频免费| 天堂俺去俺来也www色官网| 男女免费视频国产| 国产亚洲精品一区二区www | 国产亚洲精品久久久久久毛片 | 久久国产精品影院| 中亚洲国语对白在线视频| 亚洲一区二区三区不卡视频| 国产免费现黄频在线看| 久久青草综合色| 18禁国产床啪视频网站| 丰满人妻熟妇乱又伦精品不卡| 91成人精品电影| 亚洲人成电影免费在线| 午夜精品国产一区二区电影| 一级作爱视频免费观看| 亚洲三区欧美一区| 久久久久国内视频| 777久久人妻少妇嫩草av网站| 黄频高清免费视频| 好看av亚洲va欧美ⅴa在| 国产一区二区激情短视频| 正在播放国产对白刺激| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 久久久久久人人人人人| 波多野结衣一区麻豆| 亚洲熟女毛片儿| 中亚洲国语对白在线视频| 欧美 亚洲 国产 日韩一| 一个人免费在线观看的高清视频| 欧美最黄视频在线播放免费 | 天天添夜夜摸| 国产1区2区3区精品| 亚洲av成人av| 看片在线看免费视频| 男女床上黄色一级片免费看| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 国产人伦9x9x在线观看| 两个人免费观看高清视频| 中出人妻视频一区二区| 99国产极品粉嫩在线观看| 欧美日韩福利视频一区二区| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 在线观看免费视频日本深夜| 久久天躁狠狠躁夜夜2o2o| 九色亚洲精品在线播放| 一级片免费观看大全| 欧美日韩瑟瑟在线播放| 久久人妻熟女aⅴ| 久久精品国产综合久久久| 久久久国产精品麻豆| 免费观看精品视频网站| www.999成人在线观看| 最新美女视频免费是黄的| 热99久久久久精品小说推荐| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三| 国产激情久久老熟女| 国产不卡一卡二| 午夜久久久在线观看| 亚洲欧美色中文字幕在线| av片东京热男人的天堂| 亚洲少妇的诱惑av| 国产97色在线日韩免费| 国产不卡一卡二| 亚洲免费av在线视频| 99久久人妻综合| 日韩有码中文字幕| 男女午夜视频在线观看| 18禁裸乳无遮挡动漫免费视频| 婷婷精品国产亚洲av在线 | av欧美777| 亚洲avbb在线观看| 欧美黑人精品巨大| 国产精品一区二区免费欧美| 99热只有精品国产| 国产精品电影一区二区三区 | 女性被躁到高潮视频| 亚洲七黄色美女视频| 99国产精品一区二区三区| 欧美激情高清一区二区三区| 757午夜福利合集在线观看| 亚洲av欧美aⅴ国产| 欧美激情久久久久久爽电影 | 天天添夜夜摸| 欧美日韩国产mv在线观看视频| 香蕉丝袜av| 国产成+人综合+亚洲专区| 黑丝袜美女国产一区| 搡老熟女国产l中国老女人| 黄频高清免费视频| 欧美激情久久久久久爽电影 | 久久中文字幕一级| 中文字幕精品免费在线观看视频| 男女下面插进去视频免费观看| 在线十欧美十亚洲十日本专区| 亚洲性夜色夜夜综合| 欧美乱码精品一区二区三区| 久久久久久久精品吃奶| 免费在线观看视频国产中文字幕亚洲| 国产午夜精品久久久久久| www.精华液| 久久久国产欧美日韩av| 欧美精品一区二区免费开放| 王馨瑶露胸无遮挡在线观看| av在线播放免费不卡| 国产欧美日韩一区二区精品| 欧美日韩精品网址| 国产精品一区二区在线观看99| 最新的欧美精品一区二区| 色老头精品视频在线观看| 日本黄色日本黄色录像| 最新在线观看一区二区三区| 欧美日韩av久久| 一本一本久久a久久精品综合妖精| 又大又爽又粗| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 欧美丝袜亚洲另类 | 欧美日韩av久久| 99在线人妻在线中文字幕 | 欧美av亚洲av综合av国产av| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 中文字幕人妻熟女乱码| 超碰97精品在线观看| 夜夜爽天天搞| av电影中文网址| 亚洲精品美女久久av网站| 高清av免费在线| 精品人妻1区二区| 欧美人与性动交α欧美精品济南到| 国产精品一区二区精品视频观看| 国产精品九九99| 色尼玛亚洲综合影院| 涩涩av久久男人的天堂| 久久九九热精品免费| 色播在线永久视频| av在线播放免费不卡| 国产国语露脸激情在线看| 国产精品免费视频内射| 大陆偷拍与自拍| 国内久久婷婷六月综合欲色啪| 亚洲av成人不卡在线观看播放网| 男人的好看免费观看在线视频 | 久久这里只有精品19| 国产亚洲一区二区精品| 最近最新中文字幕大全免费视频| 91精品国产国语对白视频| 宅男免费午夜| 老司机福利观看| 国产深夜福利视频在线观看| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 又大又爽又粗| 婷婷成人精品国产| 黄色片一级片一级黄色片| 天天影视国产精品| 国产精品一区二区在线不卡| 天堂√8在线中文| 国产99久久九九免费精品| 国产免费现黄频在线看| 国产免费男女视频| 亚洲精品自拍成人| 午夜精品国产一区二区电影| 可以免费在线观看a视频的电影网站| 啦啦啦免费观看视频1| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇熟女久久| 国产免费男女视频| 亚洲一区二区三区欧美精品| 黄色 视频免费看| 女人被狂操c到高潮| 国产不卡一卡二| 国产高清国产精品国产三级| 国产精品.久久久| 757午夜福利合集在线观看| 丝袜人妻中文字幕| 自线自在国产av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美黄色片欧美黄色片| 色综合婷婷激情| 日本a在线网址| 精品福利观看| 国产精品美女特级片免费视频播放器 | 久久99一区二区三区| 又紧又爽又黄一区二区| 69精品国产乱码久久久| 成人国产一区最新在线观看| 午夜成年电影在线免费观看| www.999成人在线观看| 亚洲av片天天在线观看| 99国产精品一区二区蜜桃av | 日本撒尿小便嘘嘘汇集6| 久久精品熟女亚洲av麻豆精品| 看免费av毛片| 日韩欧美免费精品| 变态另类成人亚洲欧美熟女 | 亚洲精华国产精华精| 老司机靠b影院| 成人国语在线视频| 午夜福利一区二区在线看| 国产精品电影一区二区三区 | 999精品在线视频| 久久久精品国产亚洲av高清涩受| 日韩欧美一区视频在线观看| 精品久久久久久久久久免费视频 | 51午夜福利影视在线观看| 一边摸一边做爽爽视频免费| av片东京热男人的天堂| 精品人妻在线不人妻| 一级毛片高清免费大全| 亚洲七黄色美女视频| 午夜两性在线视频| 久久这里只有精品19| 欧美黑人精品巨大| 欧美最黄视频在线播放免费 | 色精品久久人妻99蜜桃| 伊人久久大香线蕉亚洲五| 99久久综合精品五月天人人| 亚洲视频免费观看视频| 王馨瑶露胸无遮挡在线观看| 久久精品91无色码中文字幕| www.自偷自拍.com| 成人三级做爰电影| 亚洲熟妇中文字幕五十中出 | 在线观看一区二区三区激情| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区在线臀色熟女 | 国产精品久久久人人做人人爽| 国产成人免费无遮挡视频| 狠狠婷婷综合久久久久久88av| 欧美激情久久久久久爽电影 | 视频在线观看一区二区三区| 久久精品国产a三级三级三级| 黑人猛操日本美女一级片| 国产欧美亚洲国产| 国产精品国产高清国产av | 精品一区二区三卡| 看免费av毛片| 99国产精品一区二区蜜桃av | 久久久国产一区二区| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美软件| 久久久国产成人免费| 国产一区在线观看成人免费| 人人澡人人妻人| 国产伦人伦偷精品视频| 激情视频va一区二区三区| av片东京热男人的天堂| 国产不卡av网站在线观看| 91在线观看av| 男人的好看免费观看在线视频 | 亚洲九九香蕉| 午夜两性在线视频| 99热网站在线观看| 亚洲av美国av| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区精品| 一级a爱片免费观看的视频| 亚洲欧美日韩高清在线视频| 精品福利永久在线观看| 老熟妇仑乱视频hdxx| 亚洲精品乱久久久久久| 亚洲av成人av| 九色亚洲精品在线播放| 一级作爱视频免费观看| 欧美黑人精品巨大| 看片在线看免费视频| 最近最新免费中文字幕在线| 国产在线一区二区三区精| 久久午夜综合久久蜜桃| 极品教师在线免费播放| 日韩中文字幕欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 十八禁网站免费在线| 激情在线观看视频在线高清 | 久久国产精品男人的天堂亚洲| 午夜免费鲁丝| 久久99一区二区三区| av线在线观看网站| 正在播放国产对白刺激| 99精国产麻豆久久婷婷| 精品一区二区三区视频在线观看免费 | 成年人黄色毛片网站| 巨乳人妻的诱惑在线观看| 淫妇啪啪啪对白视频| 久久99一区二区三区| 大型黄色视频在线免费观看| 久久人妻av系列| 18禁美女被吸乳视频| 国产欧美日韩一区二区三区在线| 成人影院久久| 日韩欧美免费精品| 成人av一区二区三区在线看|