• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of ship movement on the sediment transport in shipping channel*

    2014-06-01 12:30:01JIShengchengOUAHSINEAbdellatif

    JI Sheng-cheng, OUAHSINE Abdellatif

    Université de Technologie de Compiègne. Laboratoire Roberval, UMR CNRS 7337, Centre de recherché Royallieu BP 20529, 60206 Compiègne cedex, France, E-mail: jishengcheng@gmail.com

    SMAOUI Hassan

    Université de Technologie de Compiègne. Laboratoire Roberval, UMR CNRS 7337, Centre de recherché Royallieu BP 20529, 60206 Compiègne cedex, France

    CETMEF, 2, Bd Gambetta, Compiègne, France

    SERGENT Philippe

    CETMEF, 2, Bd Gambetta, Compiègne, France

    JING Guo-qing

    School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

    Impacts of ship movement on the sediment transport in shipping channel*

    JI Sheng-cheng, OUAHSINE Abdellatif

    Université de Technologie de Compiègne. Laboratoire Roberval, UMR CNRS 7337, Centre de recherché Royallieu BP 20529, 60206 Compiègne cedex, France, E-mail: jishengcheng@gmail.com

    SMAOUI Hassan

    Université de Technologie de Compiègne. Laboratoire Roberval, UMR CNRS 7337, Centre de recherché Royallieu BP 20529, 60206 Compiègne cedex, France

    CETMEF, 2, Bd Gambetta, Compiègne, France

    SERGENT Philippe

    CETMEF, 2, Bd Gambetta, Compiègne, France

    JING Guo-qing

    School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

    (Received June 21, 2013, Revised April 2, 2014)

    The duration of ship-generated waves (wake waves) and accelerated currents can generate significant influences on the sediment transport. A 3-D numerical model is presented to estimate these effects. The hydrodynamic model is the 3-D Reynolds averaged Navier-Stokes (RANS) equations including the standard -kε model while the 3-D convection-diffusion model is for the resuspended sediment transport. This hydro-sedimentary model is firstly validated with the trench experimental results, and then applied to the open channel with a moving ship. The computed results demonstrate that the resuspension generation mainly depends on ship speeds, barge number, and the relative distance away from ship. The acceleration effects of ship on the sediment transport are analyzed as well.

    resuspension of sediment, shipping channel, ship acceleration, CFD, volume of fluid (VOF) mehtod

    Introduction

    Vessels such as towboats and barges are able of generating wake waves, causing drawdown and return currents along riverbanks in narrow inland waterways, and contributing to sediment resuspension and riverbank erosions[1,2]. Thus, the research subjects have been focusing on various parameters, such as vessel velocity, vessel type, water depth, turbulence intensity and secondary eddies, interaction between vegetation and current[3]etc.. Houser[4]found that the vessel-generated wakes (including drawdown and surge waves) have much more effects on sediment resuspension than wind waves and suspended sediment concentration (SSC) increases with increment of turbulent kinetic energy (TKE) of the supercritical pilot-boat wakes. In Ref.[5], they argued that the maximum wave energy decreases with increasing length for the fast ferry. However, their researches focused on the experimental studies in situ or in laboratory and did not include the ship movement influence on the sediment transport. Hence, we intend to carry out 3-D numerical simulation in shipping channel with moving ship in this paper, in particular, considering the ship acceleration influences on sediment transport.

    A 1-D numerical model of the sediment resuspension induced by the moving vessel has been developed by Hassan[5]and validated with the experimental results performed by Pham et al.[6]. It could be predicted that two peaks of SSC are generated by two ships moving in series, although the 2-D or 1-D model is unable to predict the sediment transport in transverse section of the channel. A 3-D numerical model has been developed by Ji[7,8]to estimate the vessel effects on the sediment transport. The sediment transport modes were analyzed in Ref.[7] while the propellereffects were summarized in Ref.[8]. In this paper, a 3-D convection-diffusion model for the resuspended sediment is implemented to examine the ship movement effects on sediment transport.

    The present paper is structured as follows: the first part deals with the mathematical model. The second part is devoted to the computational procedures. Part three gives the grid sensibility analysis and the validation of the hydro-sedimentary model. Part four is devoted to the numerical results and discussions concerning the relationships between the SSC and the shear stress on the bottom, the SSC and Fr, the shear stress and Fr. The ship acceleration effects are also analyzed at the end of this section. The last part gives conclusion drawn from the above numerical investigations.

    1. Numerical model

    1.1Hydrodynamic model

    The governing equations for mass and momentum conservations are given as

    1.2Three-dimensional resuspended sediment transport

    The 3-D equations of suspended sediment for each granulometric class are given by

    where c is the mean value of SSC, c' is the fluctuation of SSC,iu are the velocity components corresponding toix,iu' is the fluctuation of fluid velocity, and sw is particle falling velocity[5]. sw reads:

    where s=ρs/ρ, ρsis the sediment density, ρ is the fluid density, d50is the median diameter of the sediment, ν is the fluid kinematic viscosity, and g is the acceleration due to gravity.

    The velocity components are computed with Eqs.(1)-(2), while the sediment diffusion flux due to correlation between the velocity fluctuations of turbulence and the fluctuations of the SSC is modeled as

    εsi, the sediment mixing coefficient, is assumed to be isotropic and proportional to the kinematic viscosity of turbulence νt[10]. Then,

    where σc=0.5 is the turbulent Schmidt number. With reference to Ref.[11], σccould vary from 1/8 to 1 for moderately diffusive scalars. Finally σcis defined as 0.5 by calibration with the experimental data from the trench model.

    1.3Boundary conditions

    The distribution of the SSC in the suspended load layer is controlled by the convection-diffusion Eq.(3), while the bedload transport can be governed by the formulae proposed by Van Rijn. To solve Eq.(3), a near-bed equilibrium concentrationbc is specified by the following equation

    β is the calibration coefficient, δ is the saltation thickness, T is the non-dimensional excess shear stress on bottom

    where Re*is the grain Reynolds number, θcris the Shields entrainment function, and ? is the Yalin’s (1979) approach. They are defined as follows:

    1.4Wall roughness effects in turbulent wall-bounded flows

    The wall roughness effects are included via the modified wall function given by

    u+and y+are respectively the non-dimensional velocity and non-dimensional distance from the wall to the first centroid node of the cell, κ=0.4 is the von Kármán constant, E=9.793 is an empirical constant, δBdepends on the type and size of the roughness. Thus, for the sand-grain and similar types of uniform roughness elements, δBmay be correlated with nondimensional roughness height, Ks+

    1.5Computational procedures

    The set of Eq.(1)-Eq.(3) is solved by the finite vo-lume (FV) method with arbitrary hexahedral meshes. Since the values of the variables are stored in thecenters of each cell, a procedure of interpolation, based on a second-order scheme, is then used to assign values to the faces of the control volumes (CV). The variable gradients on each CV face are computed using a multi-dimensional Taylor series expansion with least-squares cell-based approaches. The SIMPLE algorithm was used for the pressure-velocity coupling. For the added scalar quantity c, the first order implicit scheme is used for time discretization and the QUICK scheme for convection terms.

    2. Validation of hydro-sedimentary model by the experimental results

    A set of experiments were conducted in a channel (30 m long, 0.5 m wide and 0.7 m deep) at the Delft Hydraulics Laboratory (Van Rijn 1980) to study the morphological evolution of the different profiles of the open trenches (see Fig.1). The average velocity of flow is 0.51 m/s and water depth is 0.39 m. The sandy bed consists of fine particles (d50=160μ m).

    Fig.1 Trench sketch and locations of profiles

    Fig.2 Graphical representations of Grid 1, Grid 2 and Grid 3

    Mesh sensibility analysis is performed for different grid types (Grid 1, Grid 2, Grid 3 in Fig.2), which contain 18 737, 36 993 and 72 285 3-D hexahedral elements respectively. The grid spacing of coarser meshes (Δxc,Δyc,Δzc) to grid spacing of finer meshes (Δxf,Δyf,Δzf) is given as

    Fig.3 The velocity profiles at the locations 1-4

    Fig.4 The SSC profiles at the locations 1-5

    We define the ratio of the solution changes over N points in the interesting region

    It is found from Fig.3 that velocities agree well with the experimental results while some overestimation of resuspension concentration is observed in the middle of the trench (see Fig.4). It means that the amount of sediment deposition calculated by the model is smaller than that measured in experiment. The slope effect maybe contributes to the overestimation of resuspension concentration. In addition, the concentration caat reference distance δ depends on calibration parameter β since it is adjusted by the experimental results.

    Fig.5 Schematic representation of the model and the boundaries

    Fig.6 Graphical representation of chipping channel with one ship

    3. Simulation of resuspension distribution in restricted channel

    Table 1 Geometric parameters of the ship model and waterway

    Based on the validated hydro-sedimentary model, the influences on the sediment transport induced by the moving ships are examined. The erosion and deposition are assumed to occur on the horizontal bottom rather than the inclined banks. The schematic representation of the model and boundaries for the hydrosedimentary coupling is shown in Fig.5. The grid system is presented in Fig.6. A total number of 2.1×106hexahedra are adopted for the shipping channel. The associated geometrical dimensions are given in Table 1. In addition, we have performed the grid dependence analysis in the previous researches[15]. Herein, we adopted the optimized grid directly.

    Table 2 Values of+y in different computation cases

    In Table 2, the values of y+in the vicinity of ship surface are given and found to increase with the increment of the Froude number, which are limited by the maximum value y+=300[15].

    3.1The correlations between SSC and the turbulence fluctuation velocities

    The instantaneous turbulent fluctuating velocitiesare calculated from TKE which are the solutions of the standard k-ε model. The averaged' on each cross section is calculated by

    where A is the area of each transections. The resuspension flux qxSSC is calculated by

    where S is the transection areas vector, u is the fluid velocity vector, ucis the resuspension flux vector through the transections per unit area, and nxis unit vector perpendicular to transections S.

    Fig.7 Average of fluctuating velocities of turbulence u' and qxSSC along the x direction

    Fig.8 Instantaneous fluctuating velocities of turbulence u' in the x direction with one barge and Vb=-0.90 m/s

    3.2The spatial distribution of concentration

    Figure 8 gives the instantaneous turbulence fluctuating velocities u' at lines L1, L2, L3on the symmetry for Vb=-0.90 m/s with one barge. u' rea-ches the maximum value u'=0.08 m/s for the line located at z/ h=-0.975 since the large fluctuating velocities could suspend more sediment. In Fig.9, two peaks of SSC occur. The first peak of SSC is induced by the bow of the ship while the second one is generated by the stern of the ship.

    Fig.9 Instantaneous SSC on lines in x direction with one barge and Vb=-0.90 m/s

    Fig.10(a) Maximum of SSC vs Fr

    Fig.10(b) Maximum of instantaneous shear stressmaxτ vs Fr

    3.3Relationships between SSC and Froude number

    As was known, the wave height and return current velocities are dependent on the vessel speeds (Vb), the water depth (h) and the blocking coefficient. Herein ship speed Vbis used as the only variable involved in estimating the influence on SSC. The depressions of the water plane on both sides of the ship are caused by the accelerated water velocities and then give rise to the increase of SSC.

    Therefore, the maximum SSC and the maximum shear stress increase with the increment of the ship speed (see Fig.10). The maximum SSC increases with the ship forward speeds to maximum when Fr=0.48 (see Fig.10(a)), while the maximum instantaneous shear stresses increase with the ship speeds to maximum when Fr=0.49 (see Fig.10(b)).

    Herein, a sediment net discharge (SND) number is defined in order to estimate the ship’s wake effects on the sediment transport. This SND number indicates the ability of resuspending sediment by the accelerated current for each duration of the ships. We therefore integrate the SSC in a whole duration of ship at a given point near the bottom. The SND is defined as

    The SND number actually demonstrates the surface area under SSC curve in Fig.9 and Fig.14. In our case, the SND number goes up with increasing the Froude number (see Fig.11).

    Fig.11 SND number vs Froude number

    3.4The influences of the ship acceleration on the sediment transport

    Four cases were examined to investigate the influences of the acceleration of the ship on the sediment transport. Four cases are given in Fig.12. In case 1, an acceleration of a1=-0.173m/s2is given at the beginning of the movement with the velocity Vbincreasing from 0 m/s to -0.8 m/s. In the other three cases, the accelerations a2, a3, a4are equal to -0.50 m/s2, -2.00 m/s2, and -26.7 m/s2respectively. In Case 4, the ship starts with Vb=-0.80 m/s without acceleration. In fact, the acceleration a4is appro-ximate to infinity theoretically. However, the ship arrives at Vb=-0.80 m/s in only one time step Δt= 0.03 s due to the numerical implementation. It means that the acceleration a4=Vb/Δt=-26.7 m/s2. Figure 13 shows that the wave elevations at a fixed point y/ Lp=0.1 away from the sailing line. Two waves appear before the bow in all of the cases except for Case 1.

    Fig.12 Accelerations imposed at the start of the ship

    Fig.14 The influence of ship acceleration on the sediment transported

    Figure 14 indicates the SSC associated to the four cases. For the smaller acceleration1a, the flow near the bottom could be more accelerated due to the viscosity of fluid with reference to the other three cases.

    4. Conclusions

    A 3-D numerical model based on hydro-sedimentary coupling is presented to search relationships between the sediment transport and ship length, the ship motion state. The grid sensitivity analysis is also performed for the trench model case. Results highlight the relationship between the maximum SSC, the maximum shear stress and the ship’s speed. The computation results show that sediment spreading area mainly depends on the distance away from the moving ship, on the ship’s speeds. Results also demonstrate that the maximum SSC increase with the ship’s Froude number as

    Both the variables of the maximum shear stress and the maximum SSC are proportional to the ship speeds. The following relation is given based on the computed results

    To estimate the effect of ship’s wakes on the sediment transport, we define the sediment net discharge (SND) number and propose the following formula

    Finally, the acceleration effects are analyzed. The ship at the start with smaller acceleration could produce more sediment.

    [1] BERNARD O. B., LORANG M. S. and SHERMAN D. J. Estimating boat wake induced levee erosion using sediment suspension measurements[J]. Journal of Waterway, Port, Coastal, Ocean Engineering, 2002, 128(4): 152-162.

    [2] JOHN R., LUC Z. and KLAUS R. et al. Characteristics of ship’s depression waves and associated sediment resuspension in Venice Lagoon, Italy[J]. Journal of Marine System, 2011, 85(1-2): 45-56.

    [3] HUAI Wen-xin, CHEN Zhen-bing and HAN Jie et al. Mathematical model for the flow with submerged and emerged rigid vegetation[J]. Journal of Hydrodynamics, 2009, 21(5): 722-729.

    [4] HOUSER C. Sediment resuspension by vessel-generated waves along the Savannah River, Georgi[J]. Journal of Waterway, Port, Coastal, Ocean Engineering, 2011, 137(5): 246-257.

    [5] SMAOUI H., ZOUHRI L. and OUAHSINE A. Flux-limiting techniques for simulation of pollutant transport in porous media: Application to groundwater management[J]. Mathematical and Computer Modelling, 2008, 47(1-2): 47-59.

    [6] OUAHSINE A., SMAOUI H. and MEFTAH K. et al. Numerical study of coastal sandbar migration, by hydro-morphodynamical coupling[J]. Journal Environmental Fluid Mechanics, 2013, 13(2): 169-187.

    [7] JI S. C., OUAHSINE A. and SMAOUI H. et al. 3D modeling of sediment movement by ships-generated wakes in confined shipping channels[J]. International Journal of Sediment Research, 2014, 29(1): 60-68.

    [8] JI S. C., OUAHSINE A. and SMAOUI H. et al. 3D numerical modeling of sediment re-suspension induced by the compounding effects of ship-generated waves and the ship propeller[J]. Journal of Engineering Mechanics, 2013, 140(6): 04014034.

    [9] SHEN Y. M., NG C. O. and ZHENG Y. H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation -kε turbulence modeling[J]. Ocean Engineering, 2004, 31(1): 87-95.

    [10] TOORMAN E. A., BRUENS A. W. and KRANENBURG C. et al. Interaction of suspended cohesive sediment and turbulence[C]. Proceedings in Marine Science, 2002, 5: 7-23.

    [11] YEUNG P. K., XU S. Y. Schmidt number effects on turbulent transport with uniform mean scalar gradient[J]. Physics of Fluids, 2002, 14(12): 4178-4191.

    [12] PAPHITIS D. Sediment movement under unidirectional flows: An assessment of empirical threshold curves[J]. Coastal Engineering, 2001, 43(3-4): 227-245.

    [13] SMAOUI H., OUAHSINE A. Extension of the skin shear stress Li’s relationship to the flat bed[J]. Journal of Environmental Fluid Mechanics, 2011, 12(3): 1-7.

    [14] SHEN Hong-cui, YAO Zhen-qiu and WU Bao-shan et al. A new method on uncertainty analysis and assessment in ship CFD[J]. Journal of Ship Mechanics, 2010, 14(10): 1071-1083(in Chinese).

    [15] JI S. C., OUAHSINE A. and SMAOUI H. et al. 3-D numerical simulation of convoy-generated waves in a restricted waterway[J]. Journal of Hydrodynamics, 2012, 24(3): 420-429.

    10.1016/S1001-6058(14)60079-2

    * Biography: JI Sheng-cheng (1982-), Male, Ph. D.

    日本-黄色视频高清免费观看| 亚洲情色 制服丝袜| 日韩熟女老妇一区二区性免费视频| 亚洲人成网站在线播| 嫩草影院新地址| 日韩精品有码人妻一区| 国产成人精品福利久久| 男人狂女人下面高潮的视频| 精品少妇久久久久久888优播| 欧美日韩视频精品一区| 少妇高潮的动态图| 欧美成人精品欧美一级黄| 91在线精品国自产拍蜜月| 精品久久久久久久久亚洲| 三级经典国产精品| 91成人精品电影| 99久久精品国产国产毛片| 国产亚洲午夜精品一区二区久久| 日日啪夜夜撸| 日韩,欧美,国产一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 国产精品一区www在线观看| 夫妻午夜视频| 这个男人来自地球电影免费观看 | 亚洲精品亚洲一区二区| 亚洲中文av在线| 在线观看免费视频网站a站| 亚洲精品中文字幕在线视频 | 51国产日韩欧美| 日日摸夜夜添夜夜爱| 欧美精品国产亚洲| 22中文网久久字幕| 国产欧美亚洲国产| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩一区二区三区在线 | 亚洲高清免费不卡视频| 久久ye,这里只有精品| 各种免费的搞黄视频| 日韩不卡一区二区三区视频在线| 日韩人妻高清精品专区| 国产精品一区二区在线观看99| 久久婷婷青草| 蜜桃久久精品国产亚洲av| 51国产日韩欧美| 国产在视频线精品| 校园人妻丝袜中文字幕| 99久久中文字幕三级久久日本| 成人黄色视频免费在线看| 99久久中文字幕三级久久日本| 中文精品一卡2卡3卡4更新| 国产精品无大码| 午夜影院在线不卡| 不卡视频在线观看欧美| 国产精品99久久久久久久久| 丰满迷人的少妇在线观看| 亚洲欧美清纯卡通| 免费大片18禁| 一级毛片电影观看| 丰满人妻一区二区三区视频av| 国产一区二区三区av在线| 人妻夜夜爽99麻豆av| 中文欧美无线码| 国产成人一区二区在线| 又爽又黄a免费视频| 亚洲精品第二区| 精品国产国语对白av| 在线观看美女被高潮喷水网站| 日韩av免费高清视频| 日韩大片免费观看网站| 久久久久久伊人网av| 桃花免费在线播放| 国内揄拍国产精品人妻在线| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美xxxx性猛交bbbb| 成人二区视频| 欧美3d第一页| 美女视频免费永久观看网站| 久久久久久人妻| 亚洲精品国产av蜜桃| 老熟女久久久| 伊人久久国产一区二区| 观看免费一级毛片| 精品一区二区三卡| 久久久a久久爽久久v久久| 少妇精品久久久久久久| 在线观看一区二区三区激情| 乱人伦中国视频| 国产一区有黄有色的免费视频| 国产日韩欧美亚洲二区| 国产高清三级在线| 成人午夜精彩视频在线观看| 国产成人精品一,二区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品中文字幕在线视频 | 熟女电影av网| av天堂中文字幕网| 国产成人一区二区在线| 国产午夜精品一二区理论片| 成人美女网站在线观看视频| 亚洲av在线观看美女高潮| 久久久久久久久久久丰满| 亚洲精品一区蜜桃| 极品少妇高潮喷水抽搐| 中文字幕人妻熟人妻熟丝袜美| 国产乱人偷精品视频| 高清毛片免费看| 亚洲不卡免费看| 亚洲精品一区蜜桃| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久亚洲中文字幕| av在线app专区| 精品亚洲乱码少妇综合久久| 丝袜喷水一区| 少妇的逼水好多| 在线播放无遮挡| 伦理电影大哥的女人| 国产av码专区亚洲av| 永久网站在线| 日日啪夜夜撸| 国产熟女午夜一区二区三区 | 国产精品一区二区性色av| 日韩av在线免费看完整版不卡| 免费观看av网站的网址| 夜夜看夜夜爽夜夜摸| 欧美日韩综合久久久久久| 九草在线视频观看| 亚洲在久久综合| 十八禁网站网址无遮挡 | 亚洲av男天堂| 国产精品国产三级国产av玫瑰| 成人特级av手机在线观看| 夜夜骑夜夜射夜夜干| 毛片一级片免费看久久久久| 色婷婷久久久亚洲欧美| 国产成人免费无遮挡视频| 久久影院123| 少妇的逼好多水| 色网站视频免费| 在线精品无人区一区二区三| 久久这里有精品视频免费| 人妻 亚洲 视频| 欧美变态另类bdsm刘玥| 不卡视频在线观看欧美| 国产白丝娇喘喷水9色精品| 成年女人在线观看亚洲视频| 久久久久久久久久成人| 色5月婷婷丁香| .国产精品久久| 伊人亚洲综合成人网| 久久国产乱子免费精品| 18禁裸乳无遮挡动漫免费视频| 有码 亚洲区| 高清不卡的av网站| 中文字幕精品免费在线观看视频 | 色94色欧美一区二区| 欧美日本中文国产一区发布| 看十八女毛片水多多多| 欧美最新免费一区二区三区| 黄色日韩在线| 色网站视频免费| 午夜福利在线观看免费完整高清在| 高清午夜精品一区二区三区| 国产av码专区亚洲av| 日本免费在线观看一区| 久久人妻熟女aⅴ| 久久人妻熟女aⅴ| 日本黄大片高清| 日韩欧美 国产精品| 天天操日日干夜夜撸| 精品人妻偷拍中文字幕| 22中文网久久字幕| 男的添女的下面高潮视频| 永久免费av网站大全| av网站免费在线观看视频| 精品人妻偷拍中文字幕| 亚洲av国产av综合av卡| 蜜臀久久99精品久久宅男| 自拍偷自拍亚洲精品老妇| 亚洲欧美精品专区久久| 欧美精品一区二区免费开放| 一区在线观看完整版| 国产欧美日韩综合在线一区二区 | 噜噜噜噜噜久久久久久91| 亚洲av电影在线观看一区二区三区| 青春草亚洲视频在线观看| 在线观看美女被高潮喷水网站| 精品少妇久久久久久888优播| 日日摸夜夜添夜夜爱| 亚洲婷婷狠狠爱综合网| 夜夜骑夜夜射夜夜干| 老司机亚洲免费影院| 国产美女午夜福利| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久久免| 欧美成人午夜免费资源| 新久久久久国产一级毛片| 夜夜爽夜夜爽视频| 久热这里只有精品99| 人妻一区二区av| 国产成人精品福利久久| 最近中文字幕2019免费版| 日本黄大片高清| 亚洲精品日韩在线中文字幕| 国产一区二区三区av在线| 日本wwww免费看| 国产精品国产三级国产av玫瑰| 国产国拍精品亚洲av在线观看| 国国产精品蜜臀av免费| 欧美性感艳星| 91精品伊人久久大香线蕉| 高清欧美精品videossex| 下体分泌物呈黄色| 国产精品一二三区在线看| 久久久久久久大尺度免费视频| av黄色大香蕉| 国产日韩欧美在线精品| 亚洲人成网站在线观看播放| 十八禁网站网址无遮挡 | 日韩成人av中文字幕在线观看| 国产免费视频播放在线视频| 国产精品久久久久成人av| 最近的中文字幕免费完整| 亚洲成人一二三区av| 黑人巨大精品欧美一区二区蜜桃 | 视频区图区小说| 亚洲自偷自拍三级| av天堂久久9| 大片免费播放器 马上看| 亚洲精品日本国产第一区| 在线观看人妻少妇| 在线精品无人区一区二区三| 伊人亚洲综合成人网| av在线观看视频网站免费| 最新中文字幕久久久久| 亚州av有码| 9色porny在线观看| 国模一区二区三区四区视频| 黄色视频在线播放观看不卡| 人妻系列 视频| 九九爱精品视频在线观看| 亚洲第一av免费看| 亚洲性久久影院| 成人亚洲精品一区在线观看| 边亲边吃奶的免费视频| 国产一区二区三区av在线| 一级毛片 在线播放| 亚洲国产精品一区三区| 亚洲欧美清纯卡通| 国产精品一二三区在线看| 精品亚洲乱码少妇综合久久| 亚洲人成网站在线观看播放| 成人免费观看视频高清| av网站免费在线观看视频| www.色视频.com| 国产高清国产精品国产三级| 女性被躁到高潮视频| 久久久久久人妻| 高清视频免费观看一区二区| 欧美日韩综合久久久久久| 午夜日本视频在线| 亚洲怡红院男人天堂| 精品午夜福利在线看| 午夜福利视频精品| 精品人妻熟女av久视频| 超碰97精品在线观看| 免费人成在线观看视频色| av福利片在线观看| 亚洲av国产av综合av卡| 大码成人一级视频| 久久韩国三级中文字幕| 内地一区二区视频在线| 97超碰精品成人国产| 欧美精品人与动牲交sv欧美| 国产男女内射视频| 国产日韩欧美视频二区| 男人添女人高潮全过程视频| 人人妻人人澡人人爽人人夜夜| 中文欧美无线码| 黑人猛操日本美女一级片| 啦啦啦啦在线视频资源| 久久久久久久久久成人| 3wmmmm亚洲av在线观看| 一级二级三级毛片免费看| 在现免费观看毛片| 亚洲精品一区蜜桃| 十八禁网站网址无遮挡 | 国产免费视频播放在线视频| 日韩 亚洲 欧美在线| 精品一区二区三卡| 男的添女的下面高潮视频| 日韩大片免费观看网站| 卡戴珊不雅视频在线播放| 麻豆乱淫一区二区| 欧美变态另类bdsm刘玥| 交换朋友夫妻互换小说| av免费在线看不卡| 91精品国产国语对白视频| 亚洲人成网站在线播| 国产在线免费精品| 欧美日韩视频精品一区| 在线观看国产h片| 欧美日韩av久久| 久久狼人影院| 天堂中文最新版在线下载| 国产亚洲欧美精品永久| 国产日韩欧美视频二区| 三级经典国产精品| av福利片在线| 观看美女的网站| 韩国高清视频一区二区三区| 少妇被粗大的猛进出69影院 | 日本午夜av视频| 色视频在线一区二区三区| 天堂俺去俺来也www色官网| 赤兔流量卡办理| 日本黄大片高清| 亚洲精品色激情综合| videossex国产| 高清在线视频一区二区三区| 国产av精品麻豆| 亚洲国产精品专区欧美| 嫩草影院入口| 欧美成人精品欧美一级黄| 久久久久久久久久成人| 久久久午夜欧美精品| 亚洲精品国产色婷婷电影| 丰满饥渴人妻一区二区三| 国产精品不卡视频一区二区| 国产黄色免费在线视频| 夫妻午夜视频| 秋霞在线观看毛片| 97超碰精品成人国产| 亚洲美女黄色视频免费看| 在线观看美女被高潮喷水网站| a级毛色黄片| 精品国产露脸久久av麻豆| 少妇人妻 视频| 亚洲欧美日韩卡通动漫| 欧美丝袜亚洲另类| 国产在线男女| 男的添女的下面高潮视频| 国产国拍精品亚洲av在线观看| 亚洲va在线va天堂va国产| 亚洲精品乱码久久久v下载方式| 伦理电影大哥的女人| a级毛片在线看网站| 精品午夜福利在线看| 精品国产国语对白av| 女的被弄到高潮叫床怎么办| 欧美老熟妇乱子伦牲交| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 国产日韩一区二区三区精品不卡 | 亚洲内射少妇av| 美女内射精品一级片tv| 亚洲美女搞黄在线观看| 看十八女毛片水多多多| 亚洲av成人精品一二三区| 狂野欧美激情性xxxx在线观看| 人人澡人人妻人| 国产淫片久久久久久久久| 成人综合一区亚洲| 日日啪夜夜撸| 国产成人免费无遮挡视频| 亚洲美女搞黄在线观看| 高清午夜精品一区二区三区| 高清av免费在线| 少妇 在线观看| 久久av网站| 久久精品国产自在天天线| 99九九在线精品视频 | 最黄视频免费看| 啦啦啦视频在线资源免费观看| 亚洲图色成人| 大陆偷拍与自拍| 国产成人91sexporn| 王馨瑶露胸无遮挡在线观看| av线在线观看网站| 最近中文字幕2019免费版| 一本—道久久a久久精品蜜桃钙片| 精品卡一卡二卡四卡免费| 十八禁高潮呻吟视频 | 9色porny在线观看| 亚洲成人一二三区av| 欧美人与善性xxx| 欧美激情极品国产一区二区三区 | 人人澡人人妻人| 美女视频免费永久观看网站| 亚洲欧美日韩东京热| 久久久久精品久久久久真实原创| 热re99久久国产66热| 成人国产麻豆网| 日韩伦理黄色片| 国产精品久久久久久av不卡| 日日啪夜夜爽| 夜夜看夜夜爽夜夜摸| 国产成人精品婷婷| 丝袜脚勾引网站| kizo精华| 国产真实伦视频高清在线观看| 久久青草综合色| 亚洲人成网站在线播| 久久国产精品大桥未久av | 韩国高清视频一区二区三区| 久久精品国产亚洲av涩爱| 国产欧美日韩综合在线一区二区 | 国产精品伦人一区二区| 人妻制服诱惑在线中文字幕| 人人妻人人澡人人看| 国语对白做爰xxxⅹ性视频网站| 一个人免费看片子| 国产成人精品无人区| 国产伦在线观看视频一区| 成人午夜精彩视频在线观看| 午夜日本视频在线| 大片免费播放器 马上看| 久久久精品免费免费高清| av播播在线观看一区| 国语对白做爰xxxⅹ性视频网站| 久久久精品免费免费高清| 国产一区二区三区av在线| 最后的刺客免费高清国语| 日韩欧美一区视频在线观看 | 日韩亚洲欧美综合| 久久毛片免费看一区二区三区| 国内揄拍国产精品人妻在线| 一本一本综合久久| 伦理电影大哥的女人| √禁漫天堂资源中文www| 一级av片app| 日本免费在线观看一区| av天堂久久9| 久久精品国产亚洲av天美| 亚洲一区二区三区欧美精品| 国产精品久久久久久av不卡| 久久精品熟女亚洲av麻豆精品| 一区在线观看完整版| 夜夜骑夜夜射夜夜干| 人人妻人人爽人人添夜夜欢视频 | 91精品国产国语对白视频| 久久久精品免费免费高清| 九九久久精品国产亚洲av麻豆| 少妇 在线观看| 国产精品一区二区在线观看99| 国产男女内射视频| 中文字幕制服av| 制服丝袜香蕉在线| 人人妻人人添人人爽欧美一区卜| 涩涩av久久男人的天堂| 国产黄频视频在线观看| 国产精品久久久久久精品电影小说| 久久久久久久久久人人人人人人| 观看美女的网站| 精品一区二区三卡| 街头女战士在线观看网站| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区 | 99热全是精品| 日本黄色日本黄色录像| 精品久久久久久久久av| 中文字幕亚洲精品专区| 欧美精品一区二区免费开放| 国产精品偷伦视频观看了| 2021少妇久久久久久久久久久| 99re6热这里在线精品视频| 黑人高潮一二区| 中文字幕亚洲精品专区| 亚洲一区二区三区欧美精品| 国产av国产精品国产| 在线观看免费视频网站a站| 日本wwww免费看| 国产精品一二三区在线看| 日本-黄色视频高清免费观看| 日本av手机在线免费观看| 国产色婷婷99| 精品国产乱码久久久久久小说| 亚洲人与动物交配视频| 日本-黄色视频高清免费观看| av卡一久久| 精品人妻熟女毛片av久久网站| 中文精品一卡2卡3卡4更新| 国产欧美日韩一区二区三区在线 | 国产白丝娇喘喷水9色精品| 国产亚洲午夜精品一区二区久久| 老熟女久久久| 免费人妻精品一区二区三区视频| 男人和女人高潮做爰伦理| 黄色日韩在线| 日日爽夜夜爽网站| a级片在线免费高清观看视频| 爱豆传媒免费全集在线观看| 在线亚洲精品国产二区图片欧美 | 国产精品.久久久| 午夜激情久久久久久久| 亚洲人成网站在线播| 亚洲真实伦在线观看| 老司机亚洲免费影院| 男女免费视频国产| 一本久久精品| 熟女电影av网| 久久国内精品自在自线图片| 欧美精品一区二区大全| 老司机影院成人| 久久热精品热| 日韩亚洲欧美综合| 国产免费一级a男人的天堂| 我要看黄色一级片免费的| 九草在线视频观看| 国产精品欧美亚洲77777| 亚洲美女搞黄在线观看| 如日韩欧美国产精品一区二区三区 | 日本黄色片子视频| 久久久久久久久久久久大奶| 国产精品嫩草影院av在线观看| 国产男女超爽视频在线观看| 嫩草影院新地址| 亚洲精华国产精华液的使用体验| 国产一区亚洲一区在线观看| 蜜桃久久精品国产亚洲av| 午夜av观看不卡| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 亚洲av免费高清在线观看| 色94色欧美一区二区| 日本爱情动作片www.在线观看| 另类亚洲欧美激情| 国产亚洲91精品色在线| 亚洲精品一区蜜桃| 国产 一区精品| 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 亚洲精品国产av成人精品| 波野结衣二区三区在线| 大片免费播放器 马上看| 大香蕉久久网| 国产成人免费无遮挡视频| 亚洲国产日韩一区二区| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线观看播放| 一级片'在线观看视频| 久久婷婷青草| 色吧在线观看| 亚洲国产精品国产精品| 少妇人妻一区二区三区视频| a 毛片基地| 亚洲国产精品一区二区三区在线| 天堂8中文在线网| 熟女av电影| 久久午夜综合久久蜜桃| 国产精品人妻久久久久久| 亚洲内射少妇av| 成年女人在线观看亚洲视频| 亚洲内射少妇av| 中文字幕久久专区| 国产伦精品一区二区三区视频9| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| av线在线观看网站| 七月丁香在线播放| 国产淫语在线视频| 欧美精品国产亚洲| 在线观看一区二区三区激情| 最近最新中文字幕免费大全7| 99久久人妻综合| 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 26uuu在线亚洲综合色| 丝袜在线中文字幕| 亚洲天堂av无毛| 免费看日本二区| 美女主播在线视频| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影| 成人国产麻豆网| 三上悠亚av全集在线观看 | 国模一区二区三区四区视频| 黑丝袜美女国产一区| 国产免费一区二区三区四区乱码| 成人亚洲精品一区在线观看| av卡一久久| .国产精品久久| 99九九在线精品视频 | 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频 | 97精品久久久久久久久久精品| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 亚洲一区二区三区欧美精品| 一级黄片播放器| 国产亚洲5aaaaa淫片| 国产亚洲一区二区精品| 国产午夜精品久久久久久一区二区三区| 日本黄色片子视频| 精品久久久久久久久亚洲| 亚洲成人一二三区av| 亚洲怡红院男人天堂| 精品一区二区三卡| 久久久久人妻精品一区果冻| 在线播放无遮挡| 在线观看美女被高潮喷水网站| 精品人妻熟女毛片av久久网站| av在线播放精品| 国产精品一区二区在线观看99| 亚洲国产最新在线播放| 你懂的网址亚洲精品在线观看| 老司机亚洲免费影院| 国产亚洲5aaaaa淫片| 久久久久久久国产电影| 桃花免费在线播放| 女人精品久久久久毛片|