• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Roles of reinforced nerve conduits and low-level laser phototherapy for long gap peripheral nerve repair

    2014-06-01 09:42:34Bai-ShuanLiu,Tsung-BinHuang,Shiuh-ChuanChan

    Roles of reinforced nerve conduits and low-level laser phototherapy for long gap peripheral nerve repair

    Peripheral nerve injuries are common in clinical practice because of traumas such as crushing and sectioning. Lesions of the nerve structure result in lost or diminished sensitivity and/or motor activity in the innervated territory. The degree of lesion depends on the speci fi c nerve involved, the magnitude and type of pressure exerted, and the duration of the compression. The results of such injuries commonly include axonal degeneration and retrograde degeneration of the corresponding neurons in the spinal medulla, followed by very slow regeneration (Rochkind et al., 2001). The adverse effects on the daily activities of patients with a peripheral nerve injury are a determining factor in establishing the goals of early recovery (Rodriguez et al., 2004). The most severe form of nerve damage involves complete transection of the nerve, which results in the loss of sensory and motor function at the site of injury. Although a degree of recovery can be expected in most untreated nerve injuries, the process is slow and often incomplete. Moreover, despite considerable advances in microsurgical techniques, the functional results of peripheral nerve repair remain largely unsatisfactory. The regrowth of nerves across large gaps is particularly challenging, usually requiring a nerve graft to correctly bridge the proximal and distal nerve stumps. At present, nerve autografting is the most common treatment used to repair peripheral nerve defects. However, this recognized “gold standard” technique has a number of inherent disadvantages, such as limited availability of donor tissue (IJkema-Paassen et al., 2004), secondary deformities, potential differences in tissue structure and size (Nichols et al., 2004), and numbness at donor sites (Bini et al., 2004). Although xenografts and allografts have been proposed as alternatives to autografts, the success rate of these techniques remains poor, often resulting in immune rejection. Thus, researchers have invested considerable effort in developing synthetic nerve conduits for the repair of peripheral nerve defects.

    Nerve guide conduit

    Scientists have developed various non-degradable (Chen et al., 2000) and biodegradable (Wang et al., 2001; Bini et al., 2004; Liu, 2008; Hsu et al., 2011) materials as synthetic nerve conduits, for example, PLGA (Bini et al., 2004) and PLA (Hsu et al., 2011). Of these materials, doctors have widely used non-degradable materials such as silicone rubber in general clinical cases because of its inert and mechanical properties. However, the main disadvantages of non-degradable conduits are that they remain in situ as foreign bodies following nerve regeneration and may require removal via a second surgery, which could possibly cause damage to the nerve. In contrast, biodegradable materials potentially avoid these problems. Therefore, biodegradable conduits seem a more promising alternative for reconstructing nerve gaps. Nerve guidance channels fabricated out of collagen have already shown rather favorable results in nerve repair (Itoh et al., 2002). However, clinical experience with collagen products has demonstrated that cracks and tears can occur when the suture needle penetrates the conduits. In addition, biodegradable conduits that degrade with time may lose their functionality as a structural cuff. Accordingly, an ideal biodegradable conduit should maintain its structural integrity during the regenerative processes (Yannas and Hill, 2004).

    Gelatin is less expensive and much easier to obtain in concentrated solutions than collagen. Moreover, gelatin is a biodegradable polymer with excellent biocompatibility, plasticity, and adhesiveness. However, swelling of the degradable tube walls caused by absorption of body fl uids may occur during the nerve regenerative processes. This swelling could occlude the lumen and therefore impair axonal regeneration. In addition, the handling characteristics are unsatisfactory for suturing, and the lumen of gelatin channels may collapse or be obliterated following implantation. Therefore, the use of proper cross-linking agents to modulate the mechanico-chemical characteristics of gelatin is desirable in order to prevent toxicity and generate stable materials for biomedical applications. Various cross-linkers, such as formaldehyde, glutaraldehyde (Chen et al., 2005), genipin (Yang et al., 2010, 2011), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (Chang et al., 2007) have been used to compensate for the disadvantages inherent in gelatin, and to make gelatin nerve substitutes resistant to natural biodegradation following transplantation. Since crosslinked gelatin may have low mechanical strength under physiological conditions, its applications may prove limited.

    Previous studies (Yang et al., 2010, 2011) developed a biodegradable composite (GGT conduit) consisting of genipin crosslinked gelatin annexed with β-tricalcium phosphate (β-TCP) ceramic particles to enhance the mechanical strength as a nerve guidance channel-material for axon regeneration (Figure 1). The results of that study revealed that the TCP ceramic particles provided structural reinforcement to the genipin-cross-linked gelatin (GG) structure. Macroscopic observations show that this study does not observe any unsatisfactory swelling or deformation of the GGT nerve guide conduits. The improvement in the water uptake and swelling ratios may have been attributable to the presence of TCP ceramic particles in the GG matrix. Consequently, the GGT conduits swelled slowly and maintained a lower water uptake and swelling ratios than the GG conduits. Therefore, the hydrated GGT conduits (when grafted in vivo to repair nerve defects) did not stenose and collapse to compress the regenerating nerve fi ber of the lumen. Mechanical measurements showed that these good mechanical properties, which bene fi ted from the addition of TCP ceramic particles, rendered it possible for the GGT conduit to resist the muscular contraction and keep its cylindrical shape unchanged within a considerable period after implantation into the body. Since the collapse of an un fi lled circular conduit is a major block to nerve regeneration in tubulization, the properties of a gelatin tube that can be molded into various con fi gurations and compounded with TCP, can effectively enhance nerve regeneration. Besides, as tricalcium phosphate dissolves during the degradation of GGT, calcium ions could be released from the conduits, and a previous study (Kulbatski et al., 2004) has shown that a post-neuritotomy rise in calcium in fl ux through calcium channels is a necessity for neurite regeneration. In addition, the GGT conduit had the strength necessary to withstand the muscular forces that surrounded it, meaning that a stable support structure for the extended regeneration processes was maintained. These results demonstrate the feasibility of designed GGT conduits in the applications of peripheral nerve repair.

    Laser therapy

    Clinicians have focused on developing more effective methods to promote nerve regeneration, target organ reinnervation, and restore function at the site of injury. Many physical and neurotrophic factors, as well as pharmaceutical drugs, in fl uence nerve regeneration. Physiotherapy commonly involves the use of thera-peutic instruments for regenerative purposes (Gigo-Benato et al., 2005). Various forms of external stimulation have been employed to accelerate the process of regeneration, which in turn accelerates functional recovery. Such techniques include electrical (Mendon?a et al., 2003), ultrasound (Raso et al., 2005), and low-level laser (LLL) stimuli. Clinical and experimental studies have provided evidence that lasers can increase nerve function, reduce the formation of wounds, increase the metabolic activity of neurons, and enhance myelin production (Bagis et al., 2002). The non-invasive nature of laser phototherapy enables treatment without surgical intervention. LLL therapy began to be used in the regeneration and functional recuperation process of peripheral nerves in the 1970s, and the results obtained so far have been inconsistent. Many animal experiments and clinical studies have indicated that LLL irradiation can attenuate injury, promote repair, and stimulate axonal sprouting and propagation, but its mechanism of action is not well understood (Amat et al., 2006). A review of the literature on phototherapy for peripheral nerve repair found that the use of laser was based on several wavelengths (632-904 nm) (Masoumipoor et al., 2014), lesion types (crushing, neurorrhaphy, and tubulation), sample types, the duration and manner of the emission (Marcolino et al., 2013; Akgul et al., 2014), and the assessment types (such as functional, electrophysiological, and morphometric) (Gigo-Benato et al., 2005).

    In many studies, descriptions of the irradiation parameters, such as dose, average power, time, and application methods, have expressly varied, hampering the methodological comprehension required for the reproduction of results and hindering comparisons between studies. Barbosa et al. (2010) sought to analyze the effects of two different GaAlAs laser wavelengths (660 nm and 830 nm) on sciatic nerve regeneration by using the same crushing injuries for a novel comparison of studies reported in the literature. They observed that the 660 nm wavelength treatment group had the best SFI scores on average, indicating that the use of these parameters was more ef fi cient. The possibility that neural tissue is located in more super fi cial layers may have favored a better response to the shorter wavelength. Data also suggested that 660 nm LLL therapy with low (10 J/cm2) or moderate (60 J/ cm2) energy densities is able to accelerate neuromuscular recovery after nerve crush injury in rats (Gigo-Benato et al., 2010). Our own previous studies investigated the in fl uence of large-area irradiation using an aluminum-gallium-indium phosphide (Al-GaInP) diode laser (660 nm) (Shen et al., 2011) and trigger point therapy using gallium-aluminum-arsenide phosphide (GaAlAsP) laser diodes (660 nm) (Shen et al., 2013a, 2013b) on the neurorehabilitation of transected sciatic nerves in rats after bridging them with the GGT nerve conduit (Figure 2). The results for these studies indicated that the GGT/laser system may be very helpful for long-gap nerve regeneration as well as for acceleration of the reinnervation rate of regenerated nerves, which may lead to suf fi cient morphologic and functional recovery of the peripheral nerve.

    It has also previously been shown that LLL enhances Schwann cell proliferation in vitro. Schwann cells myelinate axons of the peripheral nervous system and play a crucial role in post-injury nerve regeneration. They promote neuronal survival, guide axons to their proper targets, and secrete neurotrophic factors that aid axonal elongation (Bhatheja and Field, 2006). Morphological changes in the mitochondria of lymphocytes, as well as in the proliferation of mononuclear cells, have also been observed after radiation with a red laser, and these responses might be bene fi cial in the process of tissue repair (Gulsoy et al., 2006). The underlying mechanism of phototherapy in nerve regeneration has been proposed in previous in vitro studies which showed that phototherapy induced Schwann cell proliferation, as well as massive neurite sprouting and outgrowth in cultured neuronal cells. It has also been suggested that phototherapy may enhance the recovery of neurons by altering the oxidative metabolism of mitochondria (Elles et al., 2003). The same mechanism may guide neuronal growth cones in vitro, perhaps through interaction with cytoplasmic proteins and, in particular, by enhancing actin polymerization at the leading edge of the axon (Ehrlicher et al., 2002). One possible molecular explanation is the increase in growth-associated protein-43 (GAP-43) immunoreactivity during the early stages of nerve regeneration proceeding phototherapy (Shin et al., 2003). In summary, all of the aforementioned effects may play a role in accelerating axonal regeneration and preventing the loss of neurons.

    Although the preliminary results support the mechanical strength and biocompatibility of the GGT conduit and are encouraging in regards to peripheral nerve regeneration, further studies should attempt to improve the design of GGT nerve guide conduits. Examples of such studies could include an introduction of neurotrophic factors or seeding cells to establish the possibility of using GGT grafts as a suitable alternative to nerve autografts for peripheral nerve regeneration. With regard to clinical applicability, LLL phototherapy makes an important contribution towards the development of a safe and effective strategy for rehabilitating peripheral nerve injuries. Further studies on the use of LLL therapy as a noninvasive treatment modality for various nerve diseases and injuries could pave the way for mainstream acceptance and standardization of this innovative therapy.

    Bai-Shuan Liu1, Tsung-Bin Huang2, Shiuh-Chuan Chan3

    1 Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, China

    2 Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan, China

    3 Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan, China

    Akgul T, Gulsoy M, Gulcur HO (2014) Effects of early and delayed laser application on nerve regeneration. Lasers Med Sci 29:351-357.

    Amat A, Rigau J, Waynant RW, Ilev IK, Anders JJ (2006). The electric fi eld induced by light can explain cellular responses to electromagnetic energy: a hypothesis of mechanism. Photochem Photobiol 82:152-160.

    Bagis S, Comelekoglu U, Sahin G, Buyukakilli B, Erdogan C, Kanik A (2002) Acute electrophysiologic effect of pulsed galliumarsenide low energy laser irradiation on configuration of compound nerve action potential and nerve excitability. Lasers Surg Med 30:376-380.

    Barbosa RI, Marcolino AM, Guirro RRD, Mazzer N, Barbieri CH, Fonseca MDR (2010) Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci 25:423-430.

    Bhatheja K, Field J (2006) Schwann cells: Origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 38:1995-1999.

    Figure 1 Smacrograph and scanning electron micrograph (SEM) of the genipin-crosslinked gelatin annexed with tricalcium phosphate (GGT) conduit.

    Bini TB, Gao S, Xu X, Wang S, Ramakrishna S, Leong KW (2004) Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fi bers. J Biomed Mater Res A 68:286-295.

    Chang JY, Lin JH, Yao CH, Chen JH, Lai TY, Chen YS (2007) In vivo evaluation of a biodegradable EDC/NHS-cross-linked gelatin peripheral nerve guide conduit material. Macromol Biosci 7:500-507.

    Chen PR, Chen MH, Lin FH, Su WY (2005) Release characteristics and bioactivity of gelatin-tricalcium phosphate membranes covalently immobilized with nerve growth factors. Biomaterials 26:6579-6587.

    Chen YS, Hsieh CL, Tsai CC, Chen TH, Cheng WC, Hu CL, Yao CH (2000) Peripheral nerve regeneration using silicone rubber chambers fi lled with collagen, laminin and fi bronectin. Biomaterials 21:1541-1547.

    Ehrlicher A, Betz T, Stuhrmann B, Koch D, Milner V, Raizen MG, Kas J (2002) Guiding neuronal growth with light. Proc Natl Acad Sci U S A 99:16024-16028.

    Elles JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, Whelan NT, Whelan HT (2003) Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A 100:3439-3444.

    Gigo-Benato D, Geuna S, Rochkind S (2005) Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31:694-701.

    Gigo-Benato D, Russo TL, Tanaka EH, Assis L, Salvini TF, Parizotto NA (2010) Effects of 660 and 780 nm low-level laser therapy on neuromuscular recovery after crush injury in rat sciatic nerve. Lasers Surg Med 42: 673-682.

    Gulsoy M, Ozer GH, Bozkulak O, Tabakoglu HO, Aktas E, Deniz G, Ertan C (2006) The biological effects of 632.8-nm low energy He-Ne laser on peripheral blood mononuclear cells in vitro. J Photochem Photobiol B 82: 199-202.

    Hsu SH, Chan SH, Chiang CM, Chen CC, Jiang CF (2011) Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials 32:3764-3775.

    IJkema-Paassen J, Jansen K, Gramsbergen A, Meek MF (2004) Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials 25:1583-1592.

    Itoh S, Takakuda K, Kawabata S, Aso Y, Kasai K, Itoh H, Shinomiya K (2002) Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials 23:4475-4481.

    Kulbatski I, Cook DJ, Tator CH (2004) Calcium entry through L-type calcium channels is essential for neurite regeneration in cultured sympathetic neurons. J Neurotrauma 21:357-374.

    Liu BS (2008) Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair. J Biomed Mater Res Part A 87:1092-1102.

    Marcolino AM, Barbosa RI, das Neves LM, Mazzer N, de Jesus Guirro RR, de Cássia Registro Fonseca M (2013) Assessment of functional recovery of sciatic nerve in rats submitted to low-level laser therapy with different fluences. An experimental study: laser in functional recovery in rats. J Hand Microsurg 5:49-53.

    Masoumipoor M, Jameie SB, Janzadeh A, Nasirinezhad F, Soleimani M, Kerdary M (2014) Effects of 660- and 980-nm low-level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Lasers Med Sci [Epub ahead of print].

    Figure 2 Transected nerve was subjected to a large-area irradiated therapy with the 660-nm aluminum-gallium-indium phosphide (AlGaInP) low-level laser (A) or a transcutaneous trigger point therapy with the 660-nm gallium aluminum arsenide phosphide (GaAlAsP) low-level laser (B).

    Mendon?a AC, Barbieri CH, Mazzer N (2003) Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J Neurosci Methods 129:183-190.

    Nichols CM, Brenner MJ, Fox IK, Tung TH, Hunter DA, Rickman, SR, Mackinnon SE (2004) Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol 190:347-355.

    Raso VVM, Barbieri CH, Mazzer N, Fasan VS (2005) Can therapeutic ultrasound in fl uence the regeneration of the peripheral nerves? J Neurosci Methods 142:185-192.

    Rochkind S, Nissan M, Alon M, Shamir M, Salame K (2001) Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rats. Lasers Surg Med 28:216-219.

    Rodriguez FJ, Valero-Cabré A, Navarro X (2004) Regeneration and functional recovery following peripheral nerve injury. Drug Discov Today Dis Models 1:177-185.

    Shen CC, Yang YC, Huang TB, Chan SC, Liu BS (2013a) Low-level laser-accelerated peripheral nerve regeneration within a reinforced nerve conduit across a large gap of the transected sciatic nerve in rats. Evid Based Complement Alternat Med 2013:175629.

    Shen CC, Yang YC, Huang TB, Chan SC, Liu BS (2013b) Neural regeneration in a novel nerve conduit across a large gap of the transected sciatic nerve in rats with low-level laser phototherapy. J Biomed Mater Res A 101:2763-2777.

    Shen CC, Yang YC, Liu BS (2011) Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats. Injury 42:803-813.

    Shin DH, Lee E, Hyun JK, Lee SJ, Chang YP, Kim JW, Choi YS, Kwon BS (2003) Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 344:71-74.

    Wang S, Wan ACA, Xu X, Gao S, Mao HQ, Leong KW, Yu H (2001) A new nerve guide conduit material composed of a biodegradable poly(-phosphoester). Biomaterials 22:1157-1169.

    Yang YC, Shen CC, Cheng HC, Liu BS (2011) Sciatic nerve repair by reinforced nerve conduits made of gelatin-tricalcium phosphate composites. J Biomed Mater Res A 96:288-300.

    Yang YC, Shen CC, Huang TB, Chang SH, Cheng HC, Liu BS (2010) Characteristics and biocompatibility of a biodegradable genipin-crosslinked gelatin/β-tricalcium phosphate reinforced nerve guide conduit. J Biomed Mater Res B Appl Biomater 95:207-217.

    Yannas IV, Hill BJ (2004) Selection of biomaterials for peripheral nerve regeneration using data from the nerve chamber model. Biomaterials 25:1593-1600.

    Bai-Shuan Liu, Ph.D., Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Beitun District, Taichung 406,

    10.4103/1673-5374.135323 http://www.nrronline.org/

    Taiwan, China, bsliu@ctust.edu.tw

    Accepted: 2014-05-28

    Liu BS, Huang TB, Chan SC. Roles of reinforced nerve conduits and low-level laser phototherapy for long gap peripheral nerve repair. Neural Regen Res. 2014;9(12):1180-1182.

    国产在视频线精品| 中文字幕人妻丝袜制服| 激情视频va一区二区三区| 日本av手机在线免费观看| 大片电影免费在线观看免费| 日日撸夜夜添| 免费在线观看黄色视频的| 91国产中文字幕| 久久人妻熟女aⅴ| 欧美黄色片欧美黄色片| 飞空精品影院首页| 黄色毛片三级朝国网站| 亚洲成人手机| 亚洲精品在线美女| 18禁国产床啪视频网站| 日韩一本色道免费dvd| bbb黄色大片| 夫妻午夜视频| 777久久人妻少妇嫩草av网站| 亚洲美女搞黄在线观看| www.av在线官网国产| 丝袜人妻中文字幕| 日本猛色少妇xxxxx猛交久久| 毛片一级片免费看久久久久| 成年av动漫网址| 国产精品二区激情视频| 亚洲精品久久久久久婷婷小说| 国产成人欧美在线观看 | 精品第一国产精品| 狂野欧美激情性bbbbbb| 午夜影院在线不卡| 欧美xxⅹ黑人| 女人精品久久久久毛片| 最近手机中文字幕大全| 国产乱人偷精品视频| 欧美黄色片欧美黄色片| 亚洲一区二区三区欧美精品| 久久久久精品国产欧美久久久 | 亚洲欧洲国产日韩| xxxhd国产人妻xxx| 中文字幕制服av| a级片在线免费高清观看视频| 黄频高清免费视频| 成人三级做爰电影| 亚洲精品日本国产第一区| 伊人久久国产一区二区| 久久鲁丝午夜福利片| 一区二区三区精品91| 色综合欧美亚洲国产小说| 一区二区三区乱码不卡18| 女人被躁到高潮嗷嗷叫费观| 19禁男女啪啪无遮挡网站| 中文欧美无线码| 国产视频首页在线观看| 麻豆精品久久久久久蜜桃| 国产av一区二区精品久久| 男女之事视频高清在线观看 | 精品午夜福利在线看| 国产亚洲最大av| 亚洲av福利一区| 一区二区av电影网| 成人手机av| 免费高清在线观看视频在线观看| 国产女主播在线喷水免费视频网站| 国产精品av久久久久免费| 亚洲成av片中文字幕在线观看| 久久亚洲国产成人精品v| 亚洲精品视频女| 女性生殖器流出的白浆| 在线精品无人区一区二区三| 午夜免费男女啪啪视频观看| 亚洲久久久国产精品| 天天添夜夜摸| av在线观看视频网站免费| 日韩伦理黄色片| 91国产中文字幕| 欧美精品一区二区大全| 青草久久国产| 亚洲国产av新网站| 欧美另类一区| 久久影院123| 人人澡人人妻人| 天堂8中文在线网| 国产高清国产精品国产三级| 欧美日韩国产mv在线观看视频| 伊人久久大香线蕉亚洲五| 99re6热这里在线精品视频| 国产精品偷伦视频观看了| 欧美国产精品一级二级三级| 下体分泌物呈黄色| 精品视频人人做人人爽| 国产女主播在线喷水免费视频网站| 亚洲综合色网址| 女性被躁到高潮视频| 巨乳人妻的诱惑在线观看| 免费女性裸体啪啪无遮挡网站| 七月丁香在线播放| 国产老妇伦熟女老妇高清| 波多野结衣av一区二区av| 叶爱在线成人免费视频播放| e午夜精品久久久久久久| 男男h啪啪无遮挡| 亚洲专区中文字幕在线 | av国产精品久久久久影院| 久久久久久人人人人人| 香蕉丝袜av| 日日撸夜夜添| 一本大道久久a久久精品| 极品少妇高潮喷水抽搐| 男女下面插进去视频免费观看| 可以免费在线观看a视频的电影网站 | 国产深夜福利视频在线观看| 你懂的网址亚洲精品在线观看| 精品国产乱码久久久久久小说| 国产成人av激情在线播放| 国产精品一二三区在线看| 高清视频免费观看一区二区| 日本午夜av视频| 看免费av毛片| 十八禁高潮呻吟视频| 国产精品av久久久久免费| 十分钟在线观看高清视频www| 一级毛片我不卡| 国产爽快片一区二区三区| 黄色视频不卡| 欧美精品一区二区大全| 欧美精品一区二区大全| 精品国产乱码久久久久久男人| 久久久亚洲精品成人影院| 视频在线观看一区二区三区| 黄片无遮挡物在线观看| 婷婷色麻豆天堂久久| 国产黄色免费在线视频| a级毛片在线看网站| 国产成人精品无人区| 亚洲成人av在线免费| 亚洲国产精品一区二区三区在线| 成人亚洲欧美一区二区av| 在线看a的网站| 香蕉国产在线看| 大码成人一级视频| 中文字幕高清在线视频| 亚洲综合精品二区| 麻豆乱淫一区二区| 一个人免费看片子| 99re6热这里在线精品视频| 中文字幕另类日韩欧美亚洲嫩草| 日韩人妻精品一区2区三区| 国产视频首页在线观看| 亚洲国产精品国产精品| 久久天躁狠狠躁夜夜2o2o | 亚洲一区中文字幕在线| 亚洲国产日韩一区二区| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区 | 免费在线观看黄色视频的| 亚洲成人手机| 考比视频在线观看| 青草久久国产| 欧美人与性动交α欧美软件| 免费在线观看完整版高清| 69精品国产乱码久久久| 欧美人与性动交α欧美软件| 十八禁网站网址无遮挡| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 欧美在线黄色| 亚洲美女黄色视频免费看| 天堂8中文在线网| 免费黄网站久久成人精品| 波野结衣二区三区在线| 色综合欧美亚洲国产小说| 国产精品99久久99久久久不卡 | 国产成人a∨麻豆精品| 国产在线一区二区三区精| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 欧美 日韩 精品 国产| 久久女婷五月综合色啪小说| 国产亚洲欧美精品永久| 狠狠精品人妻久久久久久综合| 精品国产露脸久久av麻豆| 国产亚洲最大av| 久久久久久久国产电影| 中文天堂在线官网| 91精品伊人久久大香线蕉| 国产精品麻豆人妻色哟哟久久| 纵有疾风起免费观看全集完整版| 亚洲美女黄色视频免费看| 久久久久久久久免费视频了| 国产成人系列免费观看| 波多野结衣一区麻豆| 天天躁日日躁夜夜躁夜夜| avwww免费| 黄片无遮挡物在线观看| 亚洲精品日本国产第一区| 亚洲男人天堂网一区| 纵有疾风起免费观看全集完整版| 国产精品一国产av| 国产精品 欧美亚洲| 亚洲精品久久午夜乱码| 一本久久精品| 亚洲欧美日韩另类电影网站| 中文字幕亚洲精品专区| 精品亚洲乱码少妇综合久久| 大香蕉久久网| 国产男女内射视频| 男人舔女人的私密视频| 久久久久久久久久久久大奶| 99久久综合免费| 无遮挡黄片免费观看| 亚洲国产精品一区二区三区在线| 亚洲色图综合在线观看| 久久久欧美国产精品| 欧美日韩福利视频一区二区| 国产黄色视频一区二区在线观看| 国产精品一区二区在线观看99| 亚洲国产欧美在线一区| 久久人人97超碰香蕉20202| 免费观看人在逋| 伦理电影免费视频| 十八禁高潮呻吟视频| 国产精品 国内视频| 最近中文字幕高清免费大全6| 精品亚洲乱码少妇综合久久| 国产精品一国产av| 人妻人人澡人人爽人人| 亚洲精品一二三| 日本一区二区免费在线视频| 免费黄色在线免费观看| 亚洲中文av在线| 狂野欧美激情性xxxx| 亚洲成人一二三区av| 黑丝袜美女国产一区| 欧美国产精品一级二级三级| 亚洲少妇的诱惑av| 成人手机av| 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| 国产一区二区在线观看av| 侵犯人妻中文字幕一二三四区| 亚洲av电影在线进入| 久久午夜综合久久蜜桃| 免费黄频网站在线观看国产| 久久性视频一级片| 五月天丁香电影| 在线精品无人区一区二区三| 国产男女内射视频| 精品亚洲乱码少妇综合久久| 69精品国产乱码久久久| 亚洲欧美激情在线| 成人毛片60女人毛片免费| 美女福利国产在线| 国产午夜精品一二区理论片| 日韩中文字幕视频在线看片| 人人妻,人人澡人人爽秒播 | 久久精品亚洲av国产电影网| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 中文字幕高清在线视频| 久久久久精品人妻al黑| 久久午夜综合久久蜜桃| 老司机亚洲免费影院| 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲av一区麻豆 | 成人国产麻豆网| 亚洲欧美中文字幕日韩二区| 在线天堂最新版资源| 日韩成人av中文字幕在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩一级在线毛片| 一级黄片播放器| 丝袜美腿诱惑在线| 成人影院久久| 日本欧美国产在线视频| 晚上一个人看的免费电影| 两个人免费观看高清视频| 制服丝袜香蕉在线| 日韩精品有码人妻一区| 免费av中文字幕在线| 国产在视频线精品| 晚上一个人看的免费电影| 国产精品麻豆人妻色哟哟久久| 19禁男女啪啪无遮挡网站| 国产黄频视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品视频女| 制服诱惑二区| 国产1区2区3区精品| 国产深夜福利视频在线观看| 国产av精品麻豆| 久久性视频一级片| 午夜日韩欧美国产| 亚洲精品久久成人aⅴ小说| 别揉我奶头~嗯~啊~动态视频 | 国产国语露脸激情在线看| 一本大道久久a久久精品| 宅男免费午夜| 亚洲国产av影院在线观看| 美女国产高潮福利片在线看| 在线天堂中文资源库| 国产男人的电影天堂91| 亚洲成人一二三区av| 人体艺术视频欧美日本| 久久久久精品国产欧美久久久 | 麻豆av在线久日| 国产精品三级大全| 亚洲国产欧美日韩在线播放| 免费观看av网站的网址| 亚洲欧洲日产国产| 精品少妇一区二区三区视频日本电影 | 91老司机精品| 日韩一区二区视频免费看| 欧美精品一区二区免费开放| 黄网站色视频无遮挡免费观看| 男女下面插进去视频免费观看| 王馨瑶露胸无遮挡在线观看| 岛国毛片在线播放| 观看美女的网站| 国产午夜精品一二区理论片| 欧美国产精品一级二级三级| 国产精品久久久av美女十八| 亚洲精品乱久久久久久| 在线观看人妻少妇| 久久国产精品大桥未久av| 成人三级做爰电影| 国产又爽黄色视频| 一本色道久久久久久精品综合| 熟妇人妻不卡中文字幕| 在线观看免费午夜福利视频| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av高清一级| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 成人漫画全彩无遮挡| 在线观看一区二区三区激情| 女人精品久久久久毛片| 亚洲av在线观看美女高潮| 亚洲精品,欧美精品| 国产黄色视频一区二区在线观看| 电影成人av| 在现免费观看毛片| 欧美日韩亚洲综合一区二区三区_| 国产av国产精品国产| 宅男免费午夜| 欧美少妇被猛烈插入视频| tube8黄色片| 精品一区二区三区四区五区乱码 | 老司机影院成人| 男女无遮挡免费网站观看| 一级,二级,三级黄色视频| 久久久久久久久免费视频了| 蜜桃国产av成人99| 日韩熟女老妇一区二区性免费视频| 日韩不卡一区二区三区视频在线| 日日摸夜夜添夜夜爱| 如何舔出高潮| 亚洲中文av在线| 校园人妻丝袜中文字幕| 欧美人与善性xxx| 国产亚洲午夜精品一区二区久久| 国产色婷婷99| av网站在线播放免费| 日本91视频免费播放| 精品国产一区二区久久| 亚洲av在线观看美女高潮| 中文字幕人妻熟女乱码| 久久久久久久大尺度免费视频| 一区二区三区精品91| 99热全是精品| 久久精品亚洲av国产电影网| 国产亚洲一区二区精品| 中文欧美无线码| 久久人人爽人人片av| 交换朋友夫妻互换小说| 亚洲精品日本国产第一区| 精品国产露脸久久av麻豆| 热re99久久国产66热| 性高湖久久久久久久久免费观看| 黄色毛片三级朝国网站| videosex国产| 国产1区2区3区精品| 黄色视频不卡| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 亚洲色图综合在线观看| 精品酒店卫生间| 久久99热这里只频精品6学生| 熟女av电影| 久久久久精品国产欧美久久久 | 最近2019中文字幕mv第一页| 男女边摸边吃奶| 9热在线视频观看99| 亚洲七黄色美女视频| 无限看片的www在线观看| 亚洲成人av在线免费| 色播在线永久视频| 大陆偷拍与自拍| 天天躁日日躁夜夜躁夜夜| 国产av精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 国产av精品麻豆| av电影中文网址| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区久久| 你懂的网址亚洲精品在线观看| 精品久久久精品久久久| 免费女性裸体啪啪无遮挡网站| 好男人视频免费观看在线| 久久久久久久久久久免费av| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密 | 色婷婷久久久亚洲欧美| 黄频高清免费视频| 欧美日韩av久久| a级毛片在线看网站| 久久久久国产精品人妻一区二区| 久久精品亚洲av国产电影网| 999精品在线视频| 观看av在线不卡| 国产精品久久久久久精品古装| 青草久久国产| 亚洲国产欧美日韩在线播放| 久久久精品国产亚洲av高清涩受| 女人高潮潮喷娇喘18禁视频| 一本色道久久久久久精品综合| 日本91视频免费播放| 最近最新中文字幕免费大全7| 国产日韩欧美亚洲二区| 中文字幕色久视频| 国产又爽黄色视频| 久久久久视频综合| 巨乳人妻的诱惑在线观看| 国产亚洲欧美精品永久| 国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久| 欧美人与性动交α欧美软件| 欧美激情 高清一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 免费久久久久久久精品成人欧美视频| 欧美成人午夜精品| 成人亚洲欧美一区二区av| 黑人猛操日本美女一级片| 久久久精品区二区三区| 亚洲av电影在线进入| 成人国语在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区四区激情视频| 免费少妇av软件| 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 免费观看av网站的网址| 黄色怎么调成土黄色| 在线观看免费视频网站a站| av在线观看视频网站免费| 欧美精品av麻豆av| 国产在视频线精品| 一区福利在线观看| 欧美日韩一级在线毛片| 精品卡一卡二卡四卡免费| 亚洲av成人不卡在线观看播放网 | 国产色婷婷99| 一区二区av电影网| 秋霞在线观看毛片| 欧美最新免费一区二区三区| 国产精品欧美亚洲77777| 国产精品免费视频内射| 久久久精品免费免费高清| 韩国精品一区二区三区| 日韩欧美一区视频在线观看| 亚洲av国产av综合av卡| 免费黄色在线免费观看| 人成视频在线观看免费观看| 蜜桃国产av成人99| 亚洲精品久久久久久婷婷小说| 91精品国产国语对白视频| 国产精品av久久久久免费| 色播在线永久视频| 精品福利永久在线观看| av女优亚洲男人天堂| 国产精品成人在线| 欧美精品亚洲一区二区| 大香蕉久久成人网| 久久人人爽人人片av| 日韩伦理黄色片| 亚洲专区中文字幕在线 | 久久久精品区二区三区| av网站免费在线观看视频| 97人妻天天添夜夜摸| 看免费成人av毛片| 国产免费视频播放在线视频| 一区二区日韩欧美中文字幕| 日本色播在线视频| 亚洲熟女毛片儿| 国产高清国产精品国产三级| 老熟女久久久| 丝袜美腿诱惑在线| 精品一区二区免费观看| 国产老妇伦熟女老妇高清| 久久精品久久久久久久性| 国产不卡av网站在线观看| 亚洲一区二区三区欧美精品| 亚洲一级一片aⅴ在线观看| 欧美 亚洲 国产 日韩一| 精品一区二区三卡| 91国产中文字幕| 久久久久久久精品精品| 国产在线一区二区三区精| 久久久欧美国产精品| 制服丝袜香蕉在线| 男女高潮啪啪啪动态图| 男男h啪啪无遮挡| 1024香蕉在线观看| 青草久久国产| 观看美女的网站| 国产爽快片一区二区三区| 亚洲成人国产一区在线观看 | 天堂俺去俺来也www色官网| 在线天堂最新版资源| 精品卡一卡二卡四卡免费| 国产成人精品福利久久| 一本色道久久久久久精品综合| 18禁动态无遮挡网站| 制服丝袜香蕉在线| av不卡在线播放| 最近中文字幕2019免费版| 精品国产国语对白av| 十八禁网站网址无遮挡| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 久久久久人妻精品一区果冻| 亚洲欧美成人精品一区二区| 91精品伊人久久大香线蕉| 国产伦理片在线播放av一区| 夜夜骑夜夜射夜夜干| bbb黄色大片| 亚洲成人免费av在线播放| 欧美日韩一级在线毛片| 久久狼人影院| 最近最新中文字幕免费大全7| 欧美激情 高清一区二区三区| 久久人人爽av亚洲精品天堂| 天天添夜夜摸| 日韩欧美精品免费久久| 18在线观看网站| 欧美成人午夜精品| 午夜日本视频在线| 黄网站色视频无遮挡免费观看| 久久久久久久久久久久大奶| 中文乱码字字幕精品一区二区三区| 亚洲视频免费观看视频| 欧美另类一区| 搡老岳熟女国产| 99热国产这里只有精品6| 99热全是精品| 中文天堂在线官网| 女人爽到高潮嗷嗷叫在线视频| 精品人妻在线不人妻| 久久精品亚洲av国产电影网| 国产精品免费视频内射| 亚洲男人天堂网一区| 成人漫画全彩无遮挡| 日本欧美视频一区| 午夜久久久在线观看| 女人被躁到高潮嗷嗷叫费观| 交换朋友夫妻互换小说| 两性夫妻黄色片| 咕卡用的链子| 男女免费视频国产| 日本av手机在线免费观看| 婷婷色av中文字幕| 亚洲av国产av综合av卡| 一本久久精品| 亚洲精品一二三| 午夜老司机福利片| a 毛片基地| 中文字幕另类日韩欧美亚洲嫩草| 久久青草综合色| 国产精品香港三级国产av潘金莲 | 久久韩国三级中文字幕| 国产爽快片一区二区三区| 黄片小视频在线播放| 亚洲美女视频黄频| 韩国av在线不卡| kizo精华| 久久久久国产一级毛片高清牌| 另类精品久久| 国产成人精品久久二区二区91 | 青春草亚洲视频在线观看| 亚洲成人一二三区av| 波野结衣二区三区在线| 国产麻豆69| 天天躁日日躁夜夜躁夜夜| 美女高潮到喷水免费观看| av天堂久久9| 亚洲精品中文字幕在线视频| 男女免费视频国产| av在线播放精品| 在线天堂最新版资源| 日本av手机在线免费观看| 久久精品久久久久久久性| 别揉我奶头~嗯~啊~动态视频 | 五月开心婷婷网| 国产 一区精品| 晚上一个人看的免费电影| 欧美日韩视频精品一区| 青春草视频在线免费观看| 精品一区在线观看国产| 欧美日韩一区二区视频在线观看视频在线| 中文字幕最新亚洲高清| 天天添夜夜摸| 日韩大片免费观看网站| 在线精品无人区一区二区三| 国产精品女同一区二区软件| 国产成人精品久久二区二区91 |