• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Autophagy: a double-edged sword for neuronal survival after cerebral ischemia

    2014-06-01 09:42:34WenqiChenYinyiSunKangyongLiuXiaojiangSun

    Wenqi Chen, Yinyi Sun, Kangyong Liu, Xiaojiang Sun

    1 Department of Neurology, the Sixth People’s Hospital Af fi liated to Shanghai Jiao Tong University, Shanghai, China

    2 Zhoupu Hospital, Pudong New District, Shanghai, China

    Autophagy: a double-edged sword for neuronal survival after cerebral ischemia

    Wenqi Chen1, Yinyi Sun1, Kangyong Liu2, Xiaojiang Sun1

    1 Department of Neurology, the Sixth People’s Hospital Af fi liated to Shanghai Jiao Tong University, Shanghai, China

    2 Zhoupu Hospital, Pudong New District, Shanghai, China

    Evidence suggests that autophagy may be a new therapeutic target for stroke, but whether activation of autophagy increases or decreases the rate of neuronal death is still under debate. This review summarizes the potential role and possible signaling pathway of autophagy in neuronal survival after cerebral ischemia and proposes that autophagy has dual effects.

    nerve regeneration; autophagy; lysosome; autophagosome; neuron; cerebral ischemia; signaling pathway; apoptosis; necrosis; survival; NSFC grant; neural regeneration

    Funding: This work was supported by grants from the project of National Natural Science Foundation of China, No. 31171014 and 31371065; the project of Science and Technology Commission of Board of Health of Shanghai, China, No. 20134125; the Key Specialty (disease) Declaration of Pudong New Area’s Health System.

    Chen WQ, Sun YY, Liu KY, Sun XJ. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res. 2014;9(12):1210-1216.

    Introduction

    Nerve cell survival depends on the balance between the formation and degradation of cellular proteins and damaged organelles. The ubiquitin-proteasome system and autophagy pathway are the two major mechanisms for maintaining this balance. The ubiquitin-proteasome system is an important route for the degradation of short-lived proteins whereas autophagy is responsible for the degradation of long-lived proteins and damaged organelles (Pan et al., 2008). The activation of autophagy has been observed in many diseases such as cardiovascular disease (Martinet et al., 2007), cerebral hemorrhage (Hu et al., 2011), pancreatic cancer (Grasso et al., 2012) and neurodegenerative disease such as Alzheimer’s disease and Parkinson’s disease (Shacka et al., 2008). There are three types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy (Rubinsztein et al., 2005; Levine and Kroemer, 2008). Macroautophagy occurs through autophagosomes, double-membrane-bound vesicles that fuse with lysosomes which subsequently degrade proteins. Microautophagy is the engulfment of cytoplasmic cargo directly by the lysosomal membrane through the processes of invagination, protrusion, and separation. Chaperone-mediated autophagy transports unfolded proteins via lysosomal chaperonin heat-shock constitutive protein 70 (Hsc70) and lysosomal membrane-2A (LAMP-2A), a lysosomal membrane receptor (Periyasamy-Thandavan et al., 2009). Macroautophagy is the most common and the best-studied form of autophagy. Cerebral ischemia is the leading cause of death and disability worldwide. Two major therapeutic strategies are currently being used to treat cerebral ischemia (Gabryel et al., 2012). The fi rst is the use of thrombolytic, antithrombotic and anti-aggregation drugs. However, these drugs have a narrow therapeutic window of 3 hours, and could lead to hemorrhagic complications. The second is neuroprotection. But, most neuroprotective agents show poor ef fi cacy or severe toxicity/side effects and thus new therapeutic agents for the treatment of ischemic stroke need to be developed. Recent studies show that macroautophagy is activated in cerebral ischemia and indicate that autophagic induction might serve as a new therapeutic target for stroke (Wen et al., 2008; Wei et al., 2012). The relationship between autophagy and cerebral ischemia is unclear; one report suggests activation of autophagy protects neurons from death (Carloni et al., 2008), whereas another indicates it has a more destructive role (Koike et al., 2008). In this review, we introduce macroautophagy (herein referred to as autophagy), and focus on its potential role and possible signaling pathways in cerebral ischemia.

    The process of autophagy and its functional complexes

    Autophagy plays an important physiological role in the process of cellular growth and differentiation (Gabryel et al., 2012) and is extremely important in maintaining cellular homeostasis which requires the continual turnover of nonfunctional proteins and organelles. The process of autophagy consists of several sequential steps (Klionsky and Ohsumi, 1999; Mizushima, 2007; He and Klionsky, 2009): (1) Sequestration. A unique membrane, called an isolation membrane,sequesters cytoplasmic constituents including organelles to form an autophagosome. (2) Transportation. The material sequestrated by autophagosomes is transported to the lysosome. (3) Degradation. Autophagosomes fuse with lysosomes. These structures are often called “autolysosomes” or “autophagolysosomes.” Both the inner membrane and the materials contained within the autophagosome are degraded by lysosomal hydrolases. (4) Utilization of degradative products. The degraded material is exported to the cytoplasm for reuse.

    Autophagy depends on the interaction of different complexes that are composed of several different autophagy-related (Atg) proteins. The complexes include (1) two ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8/LC3-PE (microtubule-associated protein 1A/1B-light chain 3 -phosphatidylethanolamine) conjugate systems (Klionsky and Emr, 2000; Suzuki et al., 2005; Periyasamy-Thandavan et al., 2009); (2) a phosphatidylinositol 3-kinase (PI3K) complex; (3) the Atg1/Unc-51-like kinase (ULK) complexes; (4) mAtg9; and (5) the Atg2-Atg18 complexes (Longatti and Tooze, 2009; Chen and Klionsky, 2011; Mizushima et al., 2011).

    Apoptosis, necrosis and autophagy in cerebral ischemia

    Stroke is the third most common cause of death worldwide and the major cause of adult neurological disability. It can be caused by a number of different disorders and results in temporary or permanent disruption of blood supply to the brain. Approximately 80% of stroke cases are due to primary cerebral ischemia resulting in infarction, whilst 20% are attributed to cerebral hemorrhage (Markus, 2012). When blood fl ow to the brain is interrupted, cells undergo a series of molecular events which include excitotoxicity, mitochondrial dysfunction, acidotoxicity, ionic imbalance, oxidative stress and infl ammation. These molecular events can lead to cell death and irreversible tissue injury (Ouyang and Giffard, 2012). There is no doubt that neurons have a vital role in the nervous system and so it is particularly important to protect them from insult and death in cerebral ischemia.

    There are two morphological types of cell death following cerebral ischemia, necrosis and apoptosis (Puyal and Clarke, 2009). Morphological characteristics of necrosis include vacuolation of the cytoplasm, breakdown of the plasma membrane and an induction of inflammation around the dying cell by release of cellular contents and proinflammatory molecules (Edinger and Thompson, 2004). Apoptosis is also termed type I programmed cell death (type I PCD) (Shintani and Klionsky, 2004) and is characterized by nuclear condensation and fragmentation, cleavage of chromosomal DNA into internucleosomal fragments and the formation of apoptotic bodies, which are removed by phagocytosis without the breakdown of the plasma membrane (Edinger and Thompson, 2004). Recently, studies have identified that aside from necrosis and apoptosis, a third type of cell death that occurs during ischemic stroke, autophagy (Adhami et al., 2006; Rami et al., 2008) which can also be termed type II PCD (Ouyang et al., 2012). The correlation between apoptosis, autophagy and necrosis and their pathologic processes in ischemic stroke is not clear. Some studies have shown that neurons at the core of ischemia tend to undergo necrosis, while neurons in the penumbra (surrounding region) are subjected to apoptosis (Sabri et al., 2013). However, some in vivo experiments indicate that both apoptosis and autophagy are activated in the ischemic penumbra (Pamenter et al., 2012). Terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) and propidium iodide (PI) are used as markers of apoptosis and necrosis, respectively (Unal Cevik and Dalkara, 2003). According to a study by Balduini et al. (2012), autophagy-positive neurons that were also TUNEL-positive were mainly found in super fi cial layers of the cerebral cortex 24 hours after hypoxia-ischemia, with only scattered necrotic cells observed in the same area. They also reported that after ischemia, necrotic cells (PI-positive) were mainly detected in the hippocampus and the deep layers of the cerebral cortex, and most cells in the superficial layers of the cortex were PI-positive (necrotic) at later time points (48-72 hours after hypoxia-ischemia). When 3-methyladenine (3-MA) and wortmannin, two type III PI3K inhibitors), were used to inhibit autophagy in a model of neonatal hypoxia-ischemia, activation of the autophagic pathway was signi fi cantly reduced and there was a switch from apoptosis to necrosis in cell death. In contrast, it could be observed that necrotic cell death and brain injury were reduced when rapamycin, the inhibitor of the mammalian target of rapamycin (mTOR), was administered to increase autophagy (Balduini et al., 2009). The activated pathways of autophagy and apoptosis also share some common components. For example, BCL2L11 (also known as BIM), a BH3-only protein, is considered a novel molecular link between autophagy and apoptosis. BCL2L11 recruits Beclin-1, the homologue of yeast Atg6, to microtubules by bridging Beclin-1 and dynein light chain 1 (DYNLL1, also known as LC8), and it can inhibit autophagy and promote apoptosis (Luo and Rubinsztein, 2013). In summary, the crosstalk among the three types of cell death, especially between autophagy and apoptosis, is very complex and not understood.

    Autophagy in cerebral ischemia

    Autophagy is the process by which a membrane engulfs organelles and cytosolic macromolecules to form an autophagosome, with the engulfed materials being delivered to the lysosome for degradation (Yoshimori, 2007). Neuronal autophagy has two unique features. Autophagy was not observed in the brain of mice that had been deprived of food for 48 hours and it is thought that brain nutrients could be compensated from other organs under conditions of starvation (Mizushima et al., 2004). Second, localization of autophagosomes and lysosomes is different; autophagosomes are located throughout the cytoplasm but lysosomes are mainly located in the juxtanuclear cytoplasm of the cell body in the neuron. To form autolysosomes, autophagosomes which are formed in dendrites and synaptic terminal regions need be transportedto lysosomes in the cell body. This means that when dendrites or axons are damaged, autophagosomes that have formed in dendrites and synaptic terminal regions cannot fuse with lysosomes to degrade sequestrated material (Komatsu et al., 2007).

    Autophagy can be subclassified into basal and induced autophagy. Basal autophagy is considered a “housekeeping”process in neurons (Mizushima and Komatsu, 2011), whereas induced autophagy may be a promising neuroprotective strategy in neurodegenerative diseases. Induction of autophagy may serve to rid neurons of aberrant protein aggregates - a common hallmark of neurodegenerative diseases. Many studies have suggested that either the absence of autophagy or inadequate autophagy may be an underlying cause of neurodegenerative diseases (Puyal et al., 2012). Although currently there is no unified theory as to the role autophagy plays in cerebral ischemia, based on studies over past few years, the following fi ve viewpoints ischemia have emerged.

    (1) Activation of autophagy in cerebral ischemia protects neurons from death. Carloni et al. (2010) suggested that in neonatal hypoxia-ischemia, autophagy may be part of an integrated pro-survival signaling complex that includes PI3K-AktmTOR. When either autophagy or PI3K-Akt-mTOR pathways were interrupted, cells underwent necrotic cell death. Wang et al. (2012) reported that neuronal survival was promoted during cerebral ischemia when autophagy was induced by nicotinamide phosphoribosyltransferase (Nampt, also known as visfatin), which is the rate-limiting enzyme in mammalian NAD+biosynthesis and regulates the TSC2-mTOR-S6K1 signaling pathway. These studies suggest that autophagy may be a potential target for post-ischemic neuronal protection.

    (2) Activation of autophagy in cerebral ischemia has a destructive role. Mice de fi cient in Atg7, the gene essential for autophagy induction, showed nearly complete protection from both hypoxia-ischemia-induced caspase-3 activation and neuronal death, indicating autophagy is essential in triggering neuronal death after hypoxia-ischemia injury (Koike et al., 2008). Wen et al. (2008) con fi rmed autophagy was activated in a permanent middle cerebral artery occlusion (MCAO) model. In their paper, the infarct volume, brain edema and motor deficits could be significantly reduced by administration of 3-MA (an autophagy inhibitor). The neuroprotective effects of 3-MA were associated with an inhibition of ischemia-induced upregulation of LC3-II, a marker of active autophagosomes and autophagolysosomes. Moreover, it was observed that the inhibition of autophagy, either by direct inhibitor 3-MA or by indirect inhibitor 2ME2 (an inhibitor of hypoxia inducible factor-1α; HIF-1α) might prevent pyramidal neuron death after ischemia in the study of Xin et al. (2011).

    (3) The degree of autophagy determines the fate of cells in cerebral ischemia. Kang and Avery (2008) proposed that levels of autophagy were critical for the survival or death of cells: physiological levels of autophagy promote survival, whereas insufficient or excessive levels of autophagy promote death. This hypothesis was confirmed in an oxygen and glucose deprivation model that observed dual roles of the autophagy inhibitor 3-MA in different stages of re-oxygenation (Shi et al., 2012). Twenty-four hours prior to reperfusion, 3-MA triggered a high rate of neuronal death. However, during 48-72 hours of reperfusion, 3-MA significantly protected neurons from death. It is possible that prolonged oxygen and glucose deprivation/reperfusion triggers excessive autophagy, switching its role from protection to deterioration.

    (4) After cerebral ischemia, the time at which autophagy is induced determines its role. Autophagy could play a protective role in ischemic preconditioning but have a different effect once ischemia/reperfusion has occurred (Ravikumar et al., 2010). Infarct volume, brain edema and motor de fi cits induced by permanent focal ischemia were signi fi cantly reduced after ischemic preconditioning treatment. 3-MA suppressed neuroprotection induced by ischemic preconditioning, while rapamycin reduced infarct volume, brain edema and motor deficits induced by permanent focal ischemia (Sheng et al., 2010). This hypothesis was supported by a study by Yan et al. (2011) in which 3-MA administrated through intracerebroventricular injection before hyperbaric oxygen preconditioning, attenuated the neuroprotection of hyperbaric oxygen preconditioning against cerebral ischemia. Moreover, 3-MA treatment before middle cerebral artery occlusion aggravated subsequent cerebral ischemic injury. In contrast, pretreatment with rapamycin mimicked the neuroprotective effect of hyperbaric oxygen preconditioning (Yan et al., 2011). Carloni et al. (2008, 2010) also showed that when 3-MA and rapamycin were injected 20 minutes before hypoxia-ischemia, 3-MA inhibited autophagy, significantly reduced beclin-1 expression and caused neuronal death, while rapamycin increased autophagy and decreased brain injury. In addition, 3-MA administrated by intracerebroventricular injections strongly reduced the lesion volume (by 46%) even when given 4 hours after the beginning of the ischemia (Puyal et al., 2009). Gao et al. (2012) found that rapamycin applied at the onset of reperfusion might attenuate the neuroprotective effects of ischemic postconditioning. Conversely, 3-MA administered before reperfusion significantly reduced infarct size and abolished the increase of brain water content after ischemia. Targeting autophagy either pre- or post-treatment has different results and this may re fl ect the different effects of autophagy at early and late stages (He et al., 2012). The time of intervention could be related to the degree of autophagy at different stages of ischemia and further studies are necessary to con fi rm this.

    (5) Autophagy may be interrupted in cerebral ischemia. A common feature of many neurodegenerative diseases is the accumulation of an abnormally large number of autophagic vacuoles (autophagosomes and autolysosomes) or the frequent appearance of irregularly shaped autophagic vacuoles. Enhanced autophagosome formation seems to be re fl ected by increased density of autophagic vacuoles, but these increased autophagic vacuoles may also imply impaired autolysosomal degradation (Komatsu et al., 2007). Rami et al. (2008) also observed a dramatic up-regulation of Beclin-1 and LC3 in rats after cerebral ischemia. These results indicate that autophagy was activated in the brain following ischemia. Recently, however, it has been hypothesized that the increase in proteins may re fl ect a failure in lysosomal function leading to anaccumulation of autophagosomes, or an improvement in the activity of autophagy (Xu et al., 2012). Liu et al. (2010) found that accumulation of LC3-II was observed in sham-operated rats after treatment with lysosomal inhibitor-chloriquine, but the further change of LC3-II levels in post-ischemic brain tissues was not observed. The results indicated that accumulation of autophagy-associated protein following ischemia could be the result of failure of the autophagy pathway. Puyal and Clarke (2009) demonstrated that lysosomal activity detected by LAMP-1 and cathepsin D was increased in neurons with punctate LC3 expression in neonatal focal cerebral ischemia model. The failure of autophagosome and lysosome fusion caused an increase of autophagosomes. The de fi ciency of acid phosphatase activity in the lysosome could lead to the increase of autophagosomes and autolysosomes. Further studies are required to verify whether the activity of autophagy is enhanced in cerebral ischemia.

    Possible autophagy signaling pathways in cerebral ischemia

    Cerebral ischemia can activate multiple signaling pathways that subsequently feed into the autophagy pathway. Mammalian target of rapamycin (mTOR) is a 289 kDa serine/ threonine protein kinase that regulates transcription, cytoskeleton organization, cell growth and cell survival. By binding to different co-factors, mTOR can form two distinct protein complexes, mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2) (Jung et al., 2010). The classi fi cation of mTORC1 and mTORC2 are based on their components and sensitivity to rapamycin. mTORC1 is responsible for the inhibitory effect of rapamycin, moreso than mTORC2. Recent studies suggest that the PI3K/Akt/mTOR pathway could regulate acute nervous system injury in cerebral hypoxia-ischemia (Chong et al., 2012).

    PI3K consists of class I, class II and class III. Class I PI3K plays an important role in the PI3K-Akt-mTOR pathway. PI3K phosphorylates and activates Akt which in turn phosphorylates and inactivates tuberous sclerosis complex (TSC) 1/2. Inactivated TSC1/2 increases the activation of Rheb which is part of the Ras family GTP-binding protein, and mTOR is subsequently activated. Autophagy is inhibited by activating mTOR (Glick et al., 2010). Beclin-1, a component of the class III PI3K, is essential for the initial steps of autophagy and could also induce autophagy via the interaction with other components of the class III PI3K pathway in cerebral ischemia (Xingyong et al., 2013). Peroxisome proliferator-activated receptor-γ (PPAR-γ), a member of nuclear hormone receptor superfamily, is a ligand-activated transcription factor. PPAR-γ activation antagonizes beclin-1-mediated autophagy via upregulation of Bcl-2/Bcl-xl which interact with beclin-1 in cerebral ischemia/reperfusion (Xu et al., 2013).

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase and consists of three subunits: a catalytic α-subunit and regulatory β and γ-subunits. Each subunit appears to have distinct functions. The most studied is the catalytic α-subunit which contains a threonine phosphorylation site that when phosphorylated, activates AMPK.. AMP which binds to sites located on the γ-subunit can enhance the phosphorylation of AMPK by LKB1, and AMPK activation could subsequently inhibit the activity of mTOR to induce autophagy (Poels et al., 2009; Li and McCullough, 2010).

    Nuclear factor kappa B (NF-κB) is a transcription factor that regulates expression of multiple genes (Chen et al., 2011). Recent experiments have demonstrated that the knockout of p50 (NF-κB1) enhanced autophagy by repression of mTOR in cerebral ischemic mice (Li et al., 2013). NF-κB-dependent p53 signal transduction pathway is also associated with autophagy and apoptosis in the rat hippocampus after cerebral ischemia/reperfusion insult (Cui et al., 2013). Mitogen-activated protein kinases (MAPKs) include extracellular signal-related kinase (ERK), Jun NH2 terminal kinase (JNK) and p38 (Lien et al., 2013). MAPK is one upstream regulator of mTORC1 and autophagy could also be induced via MAPK-mTOR signaling pathway in cerebral ischemia/reperfusion (Wang et al., 2013).

    Hypoxia is a common cause of cell death and occurs in ischemic stroke. Hypoxia-inducible factor 1 (HIF-1) is a key transcriptional factor that is activated in response to hypoxia during cerebral ischemia (Althaus et al., 2006). HIF-1 is composed of a constitutively expressed HIF-1β subunit and an inducibly expressed HIF-1α subunit. Since ubiquitination is inhibited under hypoxic conditions, HIF-1α can accumulate and dimerize with HIF-1β. This dimer activates transcription of a number of downstream hypoxia-responsive genes, including vascular endothelial growth factor (VEGF), erythropoietin (EPO), glucose transporter 1, and glycolytic enzymes (Xin et al., 2011). Bcl-2 and adenovirus E1B 19 kDa interacting proteins 3 (BNIP3) with a single Bcl-2 homology 3 (BH3) domain is a subfamily of Bcl-2 family proteins and also serves as an important target gene of HIF-1α (Cho et al., 2012). BNIP3 can compete with beclin-1 for binding to Bcl-2 and beclin-1 is released to trigger autophagy (He and Klionsky, 2009; Glick et al., 2010). BNIP3 also binds and inhibits Rheb, an upstream activator of mTOR, so it could activate autophagy by inhibiting mTOR activity. However, these models still require additional genetic testing in vivo (Zhang and Ney, 2011). The induced p53 stabilization by up-regulation of HIF-1α also plays an important role in post-ischemic autophagy activation (Xin et al., 2011).

    Autophagic cell death is activated in the nervous system in response to oxidative stress (Kubota et al., 2010). Oxidative stress can occur in cerebral ischemia and could increase reactive oxygen species such as superoxide, hydroxyl radical and hydrogen peroxide. Recent studies have reported that selenium provides neuroprotection through preserving mitochondrial function, decreasing reactive oxygen species production and reducing autophagy (Mehta et al., 2012). Autophagy can also be induced under conditions of excitotoxicity which can also occur in cerebral ischemia (Puyal et al., 2012). Although excitotoxic glutamate blocks autophagic fl ux, it could also induce autophagy in hippocampal neurons (Kulbe et al., 2014). Sustained elevations of Ca2+in the mi-tochondrial matrix are a major feature of the intracellular cascade of lethal events during cerebral ischemia. Recently, it was reported that endoplasmic reticulum stress is one of the effects of excitotoxicity (Ouyang and Giffard, 2012). When endoplasmic reticula were exposed to toxic levels of excitatory neurotransmitters, Ca2+was released via the activation of both ryanodine receptors and IP3R, leading to mitochondrial Ca2+overload and activation of apoptosis. During endoplasmic reticulum stress, Ca2+increase seems to be required for activating autophagy. The signaling pathways mentioned above and their relationship to cerebral ischemia and auto phagy are shown inFigure 1.

    Figure 1 Possible autophagy signaling pathways in cerebral ischemia.

    Conclusions

    Although autophagy has no uni fi ed role in cerebral ischemia, increasing evidence supports the notion that autophagy is a double-edged sword. We believe that the degree of autophagy is critical to its role (neuroprotective or deteriorative) in ischemic stroke. Physiological levels of autophagy are favorable to neuronal survival, but excessive or inadequate levels could be harmful and cause injury. The mechanisms of autophagy underlying cerebral ischemia and whether autophagy activity is really enhanced in cerebral ischemia should be further investigated. It is also important to study the time point at which autophagy inhibitors and activators should be administered. Tian et al. (2010) have used green fl uorescent protein (GFP)-fused LC3 transgenic mice to detect autophagy in vivo and this could be helpful in monitoring autophagic processes in live stroke patients as well as clarifying the detailed roles of autophagy in the ischemic brain. The idea that the time point of autophagy induction determines the fate of neurons during cerebral ischemia provides a new treatment strategy for ischemic stroke patients.

    Author contributions:Liu KY conceived the study. Chen WQ collected the data and wrote the manuscript. Sun YY revised themanuscript. Sun XJ supervised the study. All authors approved the final version of the manuscript.

    Con fl icts of interest:None declared.

    Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY (2006) Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169:566-583.

    Althaus J, Bernaudin M, Petit E, Toutain J, Touzani O, Rami A (2006) Expression of the gene encoding the pro-apoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1alpha (HIF-1alpha) protein following focal cerebral ischemia in rats. Neurochem Int 48: 687-695.

    Balduini W, Carloni S, Buonocore G (2009) Autophagy in hypoxia-ischemia induced brain injury: evidence and speculations. Autophagy 5:221-223.

    Balduini W, Carloni S, Buonocore G (2012) Autophagy in hypoxia-ischemia induced brain injury. J Matern Fetal Neonatal Med 25 Suppl 1:30-34.

    Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32:329-339.

    Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366-377.

    Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, Hamblin MR (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fi broblasts. PLoS One 6:e22453.

    Chen Y, Klionsky DJ (2011) The regulation of autophagy - unanswered questions. J Cell Sci 124:161-170.

    Cho B, Choi SY, Park OH, Sun W, Geum D (2012) Differential expression of BNIP family members of BH3-only proteins during the development and after axotomy in the rat. Mol Cells 33:605-610.

    Chong ZZ, Shang YC, Wang S, Maiese K (2012) A Critical Kinase Cascade in Neurological Disorders: PI 3-K, Akt, and mTOR. Future Neurol 7:733-748.

    Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL (2013) Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience 246:117-132.

    Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663-669.

    Gabryel B, Kost A, Kasprowska D (2012) Neuronal autophagy in cerebral ischemia - a potential target for neuroprotective strategies? Pharmacological Reports 64:1-15.

    Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y (2012) Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 7:e46092.

    Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3-12.

    Grasso D, Garcia MN, Iovanna JL (2012) Autophagy in pancreatic cancer. Int J Cell Biol 2012:760498.

    He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67-93.

    He S, Wang C, Dong H, Xia F, Zhou H, Jiang X, Pei C, Ren H, Li H, Li R, Xu H (2012) Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke. Autophagy 8: 1621-1627.

    Hu S, Xi G, Jin H, He Y, Keep RF, Hua Y (2011) Thrombin-induced autophagy: a potential role in intracerebral hemorrhage. Brain Res 1424:60-66.

    Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287-1295.

    Kang C, Avery L (2008) To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4:82-84.

    Klionsky DJ, Ohsumi Y (1999) Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15:1-32.

    Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717-1721.

    Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454-469.

    Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, Tanaka K (2007) Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14:887-894.

    Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T (2010) Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem 285:667-674.

    Kulbe JR, Mulcahy Levy JM, Coultrap SJ, Thorburn A, Ulrich Bayer K (2014) Excitotoxic glutamate insults block autophagic fl ux in hippocampal neurons. Brain Res 1542:12-19.

    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27-42.

    Li J, McCullough LD (2010) Effects of AMP-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab 30:480-492.

    Li WL, Yu SP, Chen D, Yu SS, Jiang YJ, Genetta T, Wei L (2013) The regulatory role of NF-kappaB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience 244:16-30.

    Lien SC, Chang SF, Lee PL, Wei SY, Chang MD, Chang JY, Chiu JJ (2013) Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta 1833:3124-3133.

    Liu C, Gao Y, Barrett J, Hu B (2010) Autophagy and protein aggregation after brain ischemia. J Neurochem 115:68-78.

    Longatti A, Tooze SA (2009) Vesicular traf fi cking and autophagosome formation. Cell Death Differ 16:956-965.

    Luo S, Rubinsztein DC (2013) BCL2L11/BIM: a novel molecular link between autophagy and apoptosis. Autophagy 9:104-105.

    Markus H (2012) Stroke: causes and clinical features. Medicine 40:484-489.

    Martinet W, Knaapen MW, Kockx MM, De Meyer GR (2007) Autophagy in cardiovascular disease. Trends Mol Med 13:482-491.

    Mehta SL, Kumari S, Mendelev N, Li PA (2012) Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci 13:79.

    Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861-2873.

    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728-741.

    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107-132.

    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fl uorescent autophagosome marker. Mol Biol Cell 15:1101-1111.

    Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487-498.

    Ouyang YB, Giffard RG (2012) ER-mitochondria crosstalk during cerebral ischemia: molecular chaperones and ER-mitochondrial calcium transfer. Int J Cell Biol 2012:493934.

    Pamenter ME, Perkins GA, McGinness AK, Gu XQ, Ellisman MH, Haddad GG (2012) Autophagy and apoptosis are differentially induced in neurons and astrocytes treated with an in vitro mimic of the ischemic penumbra. PLoS One 7:e51469.

    Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969-1978.

    Periyasamy-Thandavan S, Jiang M, Schoenlein P, Dong Z (2009) Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol 297:F244-256.

    Poels J, Spasic MR, Callaerts P, Norga KK (2009) Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31:944-952.

    Puyal J, Clarke PG (2009) Targeting autophagy to prevent neonatal stroke damage. Autophagy 5:1060-1061.

    Puyal J, Vaslin A, Mottier V, Clarke PG (2009) Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 66:378-389.

    Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG (2012) Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders. Neuroscientist 18:224-236.

    Rami A, Langhagen A, Steiger S (2008) Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 29:132-141.

    Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383-1435.

    Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin ZH, Ravikumar B, Stefanis L, Tolkovsky A (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1:11-22.

    Sabri M, Lass E, Macdonald RL (2013) Early brain injury: A common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat 2013:9.

    Shacka JJ, Roth KA, Zhang J (2008) The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy. Front Biosci 13:718-736.

    Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH (2010) Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6:482-494.

    Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250-260.

    Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990-995.

    Suzuki NN, Yoshimoto K, Fujioka Y, Ohsumi Y, Inagaki F (2005) The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 1:119-126.

    Tian F, Deguchi K, Yamashita T, Ohta Y, Morimoto N, Shang J, Zhang X, Liu N, Ikeda Y, Matsuura T, Abe K (2010) In vivo imaging of autophagy in a mouse stroke model. Autophagy 6:1107-1114.

    Unal Cevik I, Dalkara T (2003) Intravenously administered propidium iodide labels necrotic cells in the intact mouse brain after injury. Cell Death Differ 10:928-929.

    Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY (2012) Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 8:77-87.

    Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY (2013) Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway. J Ethnopharmacol 149:270-280.

    Wei K, Wang P, Miao CY (2012) A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 18:879-886.

    Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762-769.

    Xin XY, Pan J, Wang XQ, Ma JF, Ding JQ, Yang GY, Chen SD (2011) 2-methoxyestradiol attenuates autophagy activation after global ischemia. Can J Neurol Sci 38:631-638.

    Xingyong C, Xicui S, Huanxing S, Jingsong O, Yi H, Xu Z, Ruxun H, Zhong P (2013) Upregulation of myeloid cell leukemia-1 potentially modulates beclin-1-dependent autophagy in ischemic stroke in rats. BMC Neurosci 14:56.

    Xu F, Gu JH, Qin ZH (2012) Neuronal autophagy in cerebral ischemia. Neurosci Bull 28:658-666.

    Xu F, Li J, Ni W, Shen YW, Zhang XP (2013) Peroxisome proliferator-activated receptor-gamma agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury. PLoS One 8:e55080.

    Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L (2011) Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res 1402:109-121.

    Yoshimori T (2007) Autophagy: paying Charon’s toll. Cell 128:833-836.

    Zhang J, Ney PA (2011) Mechanisms and biology of B-cell leukemia/ lymphoma 2/adenovirus E1B interacting protein 3 and Nip-like protein X. Antioxid Redox Signal 14:1959-1969.

    Copyedited by Paul P, Raye W, Li CH, Song LP, Zhao M

    10.4103/1673-5374.135329

    Xiaojiang Sun, Department of Neurology, the Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China, sunxj155@sohu.com.

    Kangyong Liu, Zhoupu Hospital, Pudong New District, Shanghai, China,

    liukangyong555@aliyun.com.

    http://www.nrronline.org/

    Accepted: 2014-04-01

    一卡2卡三卡四卡精品乱码亚洲| 观看免费一级毛片| 国产成人啪精品午夜网站| 亚洲欧美日韩高清在线视频| 国产精品乱码一区二三区的特点| 久久久久亚洲av毛片大全| 色吧在线观看| 亚洲黑人精品在线| 在线免费观看不下载黄p国产 | 国产免费男女视频| 成人国产一区最新在线观看| 亚洲熟妇中文字幕五十中出| 一本久久中文字幕| 亚洲av不卡在线观看| 一本综合久久免费| 午夜免费成人在线视频| 琪琪午夜伦伦电影理论片6080| 在线观看午夜福利视频| 免费黄网站久久成人精品 | 午夜老司机福利剧场| 欧美极品一区二区三区四区| 一个人看视频在线观看www免费| 波多野结衣高清无吗| 国产成人福利小说| 在线观看午夜福利视频| 国产久久久一区二区三区| 日本熟妇午夜| 亚洲av成人不卡在线观看播放网| 九色成人免费人妻av| 久久性视频一级片| 乱码一卡2卡4卡精品| 免费无遮挡裸体视频| 精品久久久久久,| 一个人免费在线观看的高清视频| 麻豆成人午夜福利视频| 亚洲在线自拍视频| 亚洲 欧美 日韩 在线 免费| 香蕉av资源在线| 性插视频无遮挡在线免费观看| 亚洲欧美精品综合久久99| 特级一级黄色大片| 2021天堂中文幕一二区在线观| 综合色av麻豆| 热99re8久久精品国产| 成人一区二区视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 一二三四社区在线视频社区8| 亚洲最大成人手机在线| 国产精品永久免费网站| 黄色日韩在线| 婷婷六月久久综合丁香| 欧美成人a在线观看| 国产精品久久电影中文字幕| 黄色配什么色好看| 丁香欧美五月| 性色av乱码一区二区三区2| 在线看三级毛片| 日韩欧美在线乱码| 97碰自拍视频| 国产黄a三级三级三级人| 1024手机看黄色片| 免费观看精品视频网站| 亚洲成人久久性| 久久人人爽人人爽人人片va | 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 我的女老师完整版在线观看| a级毛片免费高清观看在线播放| 在线观看美女被高潮喷水网站 | 在现免费观看毛片| 男人的好看免费观看在线视频| 99久久久亚洲精品蜜臀av| 久久国产精品影院| h日本视频在线播放| 国产白丝娇喘喷水9色精品| 在线观看免费视频日本深夜| av福利片在线观看| 亚洲国产高清在线一区二区三| 男人舔奶头视频| 97人妻精品一区二区三区麻豆| 亚洲天堂国产精品一区在线| 又黄又爽又刺激的免费视频.| 搡老熟女国产l中国老女人| 少妇高潮的动态图| 麻豆久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 最近最新免费中文字幕在线| 婷婷丁香在线五月| 看十八女毛片水多多多| 国产精品久久久久久精品电影| 最后的刺客免费高清国语| 久久人妻av系列| 特级一级黄色大片| 九九在线视频观看精品| 日本一二三区视频观看| 一级黄片播放器| 亚洲天堂国产精品一区在线| 亚洲午夜理论影院| 身体一侧抽搐| 国产私拍福利视频在线观看| 91在线精品国自产拍蜜月| 日本黄色片子视频| 午夜免费男女啪啪视频观看 | 一二三四社区在线视频社区8| 天堂动漫精品| 一级毛片久久久久久久久女| 男人和女人高潮做爰伦理| 天堂影院成人在线观看| 在线十欧美十亚洲十日本专区| 国产黄片美女视频| 美女大奶头视频| 九九热线精品视视频播放| 亚洲五月天丁香| xxxwww97欧美| 淫妇啪啪啪对白视频| 99久久精品一区二区三区| 波野结衣二区三区在线| av中文乱码字幕在线| www.999成人在线观看| 一区二区三区四区激情视频 | 噜噜噜噜噜久久久久久91| 精品免费久久久久久久清纯| 亚洲欧美清纯卡通| 欧美色欧美亚洲另类二区| 国产精品永久免费网站| 日本一本二区三区精品| 看片在线看免费视频| 国产午夜精品论理片| 波野结衣二区三区在线| 午夜福利18| 两个人视频免费观看高清| 国产在视频线在精品| 国产极品精品免费视频能看的| 哪里可以看免费的av片| 久久99热6这里只有精品| 亚洲欧美日韩东京热| 久久婷婷人人爽人人干人人爱| 久久天躁狠狠躁夜夜2o2o| 日本一本二区三区精品| 亚洲精品亚洲一区二区| 国产精品人妻久久久久久| 久久精品国产自在天天线| 国产精品av视频在线免费观看| 国产国拍精品亚洲av在线观看| 日日干狠狠操夜夜爽| 99国产精品一区二区蜜桃av| av女优亚洲男人天堂| 欧美中文日本在线观看视频| 99久久成人亚洲精品观看| 亚洲美女搞黄在线观看 | 久久精品91蜜桃| av中文乱码字幕在线| 深夜精品福利| 日韩av在线大香蕉| 亚洲人与动物交配视频| 高清在线国产一区| 18+在线观看网站| 黄色日韩在线| 国产男靠女视频免费网站| 欧美精品国产亚洲| 久久6这里有精品| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看| 成人高潮视频无遮挡免费网站| 人人妻人人澡欧美一区二区| 精品久久久久久久久av| 久久久久九九精品影院| 能在线免费观看的黄片| 国产三级黄色录像| 亚洲av日韩精品久久久久久密| 欧美成人a在线观看| 午夜激情欧美在线| 精品久久久久久久久久久久久| 久久精品国产亚洲av涩爱 | 久久欧美精品欧美久久欧美| 久久中文看片网| 搡老妇女老女人老熟妇| 可以在线观看的亚洲视频| 老司机午夜福利在线观看视频| 久久久久免费精品人妻一区二区| 国产高潮美女av| 变态另类丝袜制服| 亚洲精品久久国产高清桃花| 成人无遮挡网站| av天堂在线播放| 国产乱人视频| 97碰自拍视频| 在线观看66精品国产| 欧美日韩黄片免| 日韩精品中文字幕看吧| 国产高清视频在线播放一区| avwww免费| 天美传媒精品一区二区| 性色avwww在线观看| 日韩 亚洲 欧美在线| 精品久久久久久久久久免费视频| 特级一级黄色大片| 成人特级黄色片久久久久久久| 亚洲乱码一区二区免费版| 久久久精品欧美日韩精品| 免费观看的影片在线观看| 亚洲人成电影免费在线| 97超级碰碰碰精品色视频在线观看| av在线老鸭窝| 国产精品98久久久久久宅男小说| 少妇人妻一区二区三区视频| 哪里可以看免费的av片| 亚洲五月婷婷丁香| 女人被狂操c到高潮| 中文字幕av在线有码专区| 悠悠久久av| 国产午夜精品久久久久久一区二区三区 | 老女人水多毛片| 少妇熟女aⅴ在线视频| 永久网站在线| 日本 av在线| 亚洲av电影在线进入| 欧美成人性av电影在线观看| 男人的好看免费观看在线视频| 成人性生交大片免费视频hd| 亚洲人成伊人成综合网2020| 免费黄网站久久成人精品 | 一级黄色大片毛片| 国产真实伦视频高清在线观看 | 18禁在线播放成人免费| 一级作爱视频免费观看| 国产在视频线在精品| 天天一区二区日本电影三级| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区三| 天美传媒精品一区二区| 欧美zozozo另类| 亚洲欧美精品综合久久99| 亚洲无线观看免费| 国产男靠女视频免费网站| 美女xxoo啪啪120秒动态图 | 一本综合久久免费| 欧美最新免费一区二区三区 | 成人三级黄色视频| 国产精品,欧美在线| 亚洲aⅴ乱码一区二区在线播放| 桃色一区二区三区在线观看| 亚洲天堂国产精品一区在线| 亚洲人成网站在线播放欧美日韩| 18禁黄网站禁片免费观看直播| 欧美午夜高清在线| 乱人视频在线观看| 欧美成人一区二区免费高清观看| 精品日产1卡2卡| 色综合婷婷激情| 永久网站在线| 国产高清视频在线观看网站| 亚洲国产色片| 久久久久久久久中文| 午夜影院日韩av| 一夜夜www| 亚洲avbb在线观看| 日本黄色视频三级网站网址| 97超视频在线观看视频| 99在线视频只有这里精品首页| 日日摸夜夜添夜夜添小说| 又粗又爽又猛毛片免费看| 黄色视频,在线免费观看| 国产成人欧美在线观看| 99久久九九国产精品国产免费| 久久99热这里只有精品18| 一本久久中文字幕| 欧美潮喷喷水| 久久久久亚洲av毛片大全| 国产精品自产拍在线观看55亚洲| 99热这里只有是精品在线观看 | 噜噜噜噜噜久久久久久91| 观看美女的网站| 亚洲美女搞黄在线观看 | 亚洲精品在线美女| 欧美zozozo另类| 18+在线观看网站| 欧美黑人欧美精品刺激| 亚洲不卡免费看| 国产三级在线视频| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 欧美成人性av电影在线观看| 18+在线观看网站| 精品午夜福利在线看| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费成人在线视频| 简卡轻食公司| 国产精品久久久久久久电影| 日本免费a在线| 精品国内亚洲2022精品成人| 国产91精品成人一区二区三区| 老司机午夜十八禁免费视频| 啦啦啦观看免费观看视频高清| 久9热在线精品视频| 欧美色欧美亚洲另类二区| 黄色丝袜av网址大全| av福利片在线观看| 欧美黄色片欧美黄色片| 国产人妻一区二区三区在| av专区在线播放| 在线观看66精品国产| 色吧在线观看| 88av欧美| 欧美色视频一区免费| 亚洲久久久久久中文字幕| 国产人妻一区二区三区在| 亚洲中文日韩欧美视频| 村上凉子中文字幕在线| 丝袜美腿在线中文| 又黄又爽又刺激的免费视频.| 好男人电影高清在线观看| 久久6这里有精品| 十八禁国产超污无遮挡网站| 国产乱人视频| 最近中文字幕高清免费大全6 | 欧美黑人巨大hd| 淫妇啪啪啪对白视频| 国产一区二区三区视频了| 国产一区二区亚洲精品在线观看| 桃色一区二区三区在线观看| 精品人妻偷拍中文字幕| 真人一进一出gif抽搐免费| 网址你懂的国产日韩在线| 最近中文字幕高清免费大全6 | 久久久久国产精品人妻aⅴ院| 色综合站精品国产| 啦啦啦观看免费观看视频高清| 国产精品免费一区二区三区在线| 直男gayav资源| 男女下面进入的视频免费午夜| 97超级碰碰碰精品色视频在线观看| 日韩免费av在线播放| 给我免费播放毛片高清在线观看| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 国产毛片a区久久久久| 乱人视频在线观看| 国产亚洲精品av在线| 天堂√8在线中文| 久久人妻av系列| 国产欧美日韩一区二区三| 亚洲人成网站在线播| 97碰自拍视频| bbb黄色大片| ponron亚洲| 久久性视频一级片| 国产精品久久久久久久电影| 亚洲精品久久国产高清桃花| 国产精品98久久久久久宅男小说| 色播亚洲综合网| 99国产精品一区二区三区| 欧美性猛交╳xxx乱大交人| 日韩欧美在线乱码| 舔av片在线| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看| 国产又黄又爽又无遮挡在线| 亚洲av.av天堂| 色尼玛亚洲综合影院| 国产不卡一卡二| 免费看日本二区| 精品人妻视频免费看| 麻豆av噜噜一区二区三区| 久久久久亚洲av毛片大全| 美女 人体艺术 gogo| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费| 免费观看的影片在线观看| 久久精品91蜜桃| 青草久久国产| 国产一区二区三区视频了| 精品欧美国产一区二区三| 动漫黄色视频在线观看| 欧美乱妇无乱码| 亚洲 欧美 日韩 在线 免费| 青草久久国产| 婷婷亚洲欧美| 国产成年人精品一区二区| 三级毛片av免费| 国产伦在线观看视频一区| 亚洲国产精品999在线| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 亚洲精品在线美女| 亚洲av日韩精品久久久久久密| 欧美丝袜亚洲另类 | 熟妇人妻久久中文字幕3abv| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 丁香六月欧美| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 天堂影院成人在线观看| 婷婷精品国产亚洲av在线| 99riav亚洲国产免费| 国产精品99久久久久久久久| 亚州av有码| 女人被狂操c到高潮| 永久网站在线| 国产精品久久久久久人妻精品电影| 免费一级毛片在线播放高清视频| 草草在线视频免费看| 99热6这里只有精品| 亚洲第一区二区三区不卡| 欧美成人性av电影在线观看| 99热精品在线国产| 午夜a级毛片| 免费在线观看成人毛片| 全区人妻精品视频| av视频在线观看入口| 欧美高清成人免费视频www| 十八禁网站免费在线| 蜜桃亚洲精品一区二区三区| 少妇丰满av| 国产久久久一区二区三区| 香蕉av资源在线| 九色国产91popny在线| 美女高潮喷水抽搐中文字幕| 国产探花在线观看一区二区| 国产亚洲欧美在线一区二区| 欧美日本视频| 狠狠狠狠99中文字幕| 亚洲av二区三区四区| 91在线精品国自产拍蜜月| 国产精品野战在线观看| 91午夜精品亚洲一区二区三区 | 网址你懂的国产日韩在线| 一进一出好大好爽视频| 亚洲人成伊人成综合网2020| 欧美日韩黄片免| 色播亚洲综合网| 中文资源天堂在线| 亚洲国产欧洲综合997久久,| 校园春色视频在线观看| 久久精品人妻少妇| 桃红色精品国产亚洲av| 国产乱人伦免费视频| 制服丝袜大香蕉在线| 免费一级毛片在线播放高清视频| 国产精品久久久久久精品电影| 老司机午夜福利在线观看视频| 久久精品人妻少妇| 国产欧美日韩一区二区精品| 婷婷亚洲欧美| 亚洲国产高清在线一区二区三| 九色成人免费人妻av| 黄色丝袜av网址大全| 亚洲国产精品sss在线观看| 热99re8久久精品国产| 亚洲专区中文字幕在线| 国产精品伦人一区二区| 国产欧美日韩一区二区三| 怎么达到女性高潮| 听说在线观看完整版免费高清| 亚洲,欧美,日韩| av视频在线观看入口| 女同久久另类99精品国产91| 真人一进一出gif抽搐免费| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 国产不卡一卡二| 国产色爽女视频免费观看| 少妇的逼好多水| 亚洲成av人片在线播放无| 久久6这里有精品| 国产精品亚洲一级av第二区| 成人性生交大片免费视频hd| 搡老岳熟女国产| 精品久久久久久久久久久久久| 99在线人妻在线中文字幕| 搡老熟女国产l中国老女人| 毛片一级片免费看久久久久 | 麻豆成人av在线观看| 国产淫片久久久久久久久 | 一边摸一边抽搐一进一小说| 12—13女人毛片做爰片一| 午夜激情福利司机影院| 久久精品夜夜夜夜夜久久蜜豆| av黄色大香蕉| 97超视频在线观看视频| 丁香六月欧美| 国产欧美日韩精品亚洲av| 人妻久久中文字幕网| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产探花在线观看一区二区| 亚洲乱码一区二区免费版| 欧美xxxx黑人xx丫x性爽| 黄色一级大片看看| 国产一区二区三区在线臀色熟女| 午夜精品一区二区三区免费看| 宅男免费午夜| 成熟少妇高潮喷水视频| 婷婷色综合大香蕉| 国产单亲对白刺激| 精品人妻1区二区| 亚洲成人久久爱视频| 国内精品美女久久久久久| 男人的好看免费观看在线视频| 亚洲专区国产一区二区| 免费看美女性在线毛片视频| 午夜日韩欧美国产| 国产三级黄色录像| 99久久精品一区二区三区| 波多野结衣高清作品| 精品日产1卡2卡| 免费看a级黄色片| 午夜激情欧美在线| 免费在线观看影片大全网站| 日韩高清综合在线| 国产乱人伦免费视频| 成人午夜高清在线视频| 国产成人a区在线观看| 亚洲精品成人久久久久久| 欧美黄色淫秽网站| 久久国产乱子免费精品| 成年免费大片在线观看| 国产一区二区三区视频了| 亚洲最大成人手机在线| 全区人妻精品视频| 亚洲av免费高清在线观看| 日韩欧美 国产精品| 久9热在线精品视频| 亚洲精品在线美女| 久久久色成人| 动漫黄色视频在线观看| 毛片女人毛片| 午夜两性在线视频| 国产精华一区二区三区| 精品福利观看| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 超碰av人人做人人爽久久| 一个人看视频在线观看www免费| 亚洲av一区综合| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 一级毛片久久久久久久久女| 中文资源天堂在线| 偷拍熟女少妇极品色| 国产亚洲精品综合一区在线观看| 九九热线精品视视频播放| 国产亚洲精品综合一区在线观看| 极品教师在线免费播放| 亚洲最大成人中文| 久久亚洲真实| 99久久九九国产精品国产免费| 欧美在线一区亚洲| 国产精品一区二区三区四区免费观看 | 国产伦人伦偷精品视频| 搞女人的毛片| 我要看日韩黄色一级片| 美女被艹到高潮喷水动态| 亚洲av日韩精品久久久久久密| 日韩欧美在线乱码| 少妇裸体淫交视频免费看高清| 在线十欧美十亚洲十日本专区| 日韩av在线大香蕉| 看十八女毛片水多多多| 日日干狠狠操夜夜爽| 白带黄色成豆腐渣| 久久亚洲真实| 一个人看的www免费观看视频| 嫩草影院入口| 婷婷亚洲欧美| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱 | 亚洲精品456在线播放app | 麻豆久久精品国产亚洲av| a在线观看视频网站| 亚洲成人免费电影在线观看| 久久久久国内视频| 亚洲中文字幕一区二区三区有码在线看| 桃红色精品国产亚洲av| 悠悠久久av| 非洲黑人性xxxx精品又粗又长| 久久国产乱子伦精品免费另类| 精品99又大又爽又粗少妇毛片 | 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 亚洲国产精品sss在线观看| 精品日产1卡2卡| 亚洲美女视频黄频| 国产又黄又爽又无遮挡在线| 亚洲,欧美精品.| 国产激情偷乱视频一区二区| 黄色视频,在线免费观看| 一个人看视频在线观看www免费| 我要看日韩黄色一级片| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩乱码在线| 亚洲色图av天堂| 免费观看的影片在线观看| 成人av一区二区三区在线看| 欧美xxxx性猛交bbbb| 日韩精品青青久久久久久| 国产单亲对白刺激| 国产高清激情床上av| 亚洲在线自拍视频| 丰满乱子伦码专区| 日本熟妇午夜| 男人的好看免费观看在线视频| 91午夜精品亚洲一区二区三区 | 欧美高清性xxxxhd video| 久久精品国产清高在天天线| 国产高清三级在线| 天堂动漫精品| 欧美日韩国产亚洲二区| 最近最新免费中文字幕在线| 免费在线观看影片大全网站| 女人被狂操c到高潮| www.色视频.com| 国产av麻豆久久久久久久|