• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transplanting neural progenitors to build a neuronal relay across the injured spinal cord

    2014-06-01 09:42:34ChristopherHaas,ItzhakFischer
    關(guān)鍵詞:密集黃色藍(lán)色

    Transplanting neural progenitors to build a neuronal relay across the injured spinal cord

    Cellular transplantation for repair of spinal cord injury is a promising therapeutic strategy that includes the use of a variety of neural and non-neural cells isolated or derived from embryonic and adult tissue as well as embryonic stem cells and induced pluripotent stem cells. In particular, transplants of neural progenitor cells (NPCs) have been shown to limit secondary injury and scar formation and create a permissive environment in the injured spinal cord through the provision of neurotrophic molecules and growth supporting matrices that promote growth of injured host axons. Importantly, transplants of NPC are unique in their potential to replace lost neural cells - including neurons, astrocytes, and oligodendrocytes - critical for reconstruction of the normal microenvironment of the spinal cord and restoration of connectivity and function. Different NPC preparations have been used for transplantation experiments in multiple, diverse models of SCI, ranging from the classical work with fetal spinal cord (FSC) that de fi ned the optimal age for donor tissue and its capacity to generate neural cells (Reier et al., 1983; Reier et al., 1986), to studies that demonstrated the formation of a neuronal relay by NPC transplants across the injured spinal cord to reconnect the interrupted sensory system (Bonner et al., 2011). At the developmental stage of embryonic day (E)13.5-14 the FSC is composed primarily of neuronal restricted progenitors (NRP) and glial restricted progenitors (GRP), but also contains a small number of immature neural stem cells, neurons, endothelial cells and fibroblasts (Kalyani et al., 1998; Cai et al., 2002; Lepore and Fischer, 2005; Medalha et al., 2014). While grafts of acutely isolated FSC contain all of these cell subpopulations, the process of isolating and culturing of NRP and GRP from FSC, particularly by adherent, sub-con fl uent culture on a poly-L-lysine/laminin substrate generates pure, de fi ned, and reproducible populations of progenitors (Cai et al., 2002) for cryopreservation or transplantation experiments. NRP and GRP, in contrast to multipotent NSC have a capacity for self-renewal and a restricted differentiation potential, as they are committed to neuronal and glial phenotypes, respectively (Han et al., 2002; Lepore and Fischer, 2005). The injured spinal cord, however, presents a variety of impediments not only to the regeneration of injured host axons in the form of chondroitin sulfated proteoglycans (CSPG) and myelin-associated byproducts, but also signi fi cantly limits the survival and differentiation of graft-derived neurons (Cao et al., 2002; Lepore and Fischer, 2005).

    The model that we have proposed focuses on the formation of a functional relay to reconnect the injured spinal cord and requires the formation of two synaptic connections, one between host axons and graft-derived neurons, and the other between graft axons and target sites within the host (Figure 1). The design of such a relay requires speci fi c steps that assure: 1) graft survival and generation of neurons, 2) axon growth into and out of the graft by host axons and graft-derived neurons, respectively and 3) formation of physiologically active synaptic connections and restoration of function. The analysis of relay formation requires the characterization of graft-derived neurons (usually by using cells derived from transgenic animals expressing Alkaline Phosphatase (AP) or GFP), anatomical evidence for connectivity (including tracing showing regeneration of host axons and possibly immune-EM for detection of synaptic structures), physiological evidence of connectivity (expression of c-Fos following stimulation and electrophysiology), and functional analysis of sensory or motor recovery with speci fi c tests depending on the injury model. The generation of a neuronal relay circumvents many of the obstacles inherent in attempts to achieve functional reconnectivity by long-distance regeneration of lesioned host axons, including the limited intrinsic regenerative capacity of many adult neuronal CNS populations and the sensitivity of these populations to inhibitors of axon growth found in the external environment, such as CSPG. Intriguingly, NRP (derived from embryonic spinal cord) express signi fi cantly lower levels of the CSPG receptors Protein Tyrosine Phosphatase σ (PTP σ) and Leukocyte Common Antigen-related Phosphatase (LAR), compared to more mature primary neuronal populations, and concomitantly retain an ability to extend axons in the presence of such inhibitors (Ketschek et al., 2012). In addition, axons generated by NRP-derived neurons are readily guided to target sites utilizing lentiviral-established gradients of neurotrophins, such as BDNF and NT3, highlighting the ability to direct these axons to speci fi c areas of the cord for synapse formation (Bonner et al., 2010; Bonner et al., 2011) without risking unchecked axonal growth and mis-connectivity. Importantly, grafts of GRP recreate the proper structural and physiological environment necessary for synaptic transmission, as supported by GRP-derived astrocytes. Furthermore, grafts composed entirely of GRP are capable of limiting the formation of the glial scar (e.g., preventing the upregulation of host GFAP and CSPG expression) (Hill et al., 2004; Haas, 2013, 2014; Fischer, 2014), modulating the immune environment by limiting invasion of peripheral macrophages (Haas, 2013, 2014; Fischer, 2014), facilitating axonal regeneration into the graft (Haas et al., 2012; Haas and Fischer, 2013), and differentiating into critically necessary astrocytes and oligodendrocytes (Hill et al., 2004; Haas et al., 2012) thus making them an ideal therapeutic platform for use in combinatorial strategies designed to achieve re-connectivity. In contrast, alternative grafting platforms, such as genetically-modi fi ed marrow stromal cells, while providing a bridge for long-distance axonal regeneration, may contribute to conduction failure of regenerating axons due to their inability to generate CNS cell subtypes (e.g., astrocytes and oligodendrocytes) that support synaptic connectivity (Alto et al., 2009), highlighting the importance of recreating the original environment of the spinal cord. Despite the advantages of utilizing NPC as permissive grafts capable of supporting synaptic transmission across the injured spinal cord by way of synaptic relays, grafting of NPC still faces considerable challenges, particularly in the context of severe spinal cord injuries.

    The concept of relay formation has been applied not only in reference to neural transplants that reconnect with the original targets, but also for connectivity through propriospinal interneurons generating alternative pathways (Courtine et al., 2008).

    This Perspective will be focused on three recent articles that underscore the promise and challenges of relay formation in spinal cord injury. The discussion of one study (Bonner et al., 2011) will demonstrate successful formation of a functional relay in a partial injury of the sensory system, while the other two studies (Lu et al., 2012; Medalha et al., 2014) will present possible solutions when dealing with a severe injury.

    Figure 1 Forming a synaptic relay to reconnect the injured sensory system.

    In the study that serves as the model of relay formation and analysis (Bonner et al., 2011), a preparation of cultured and banked NRPs and GRPs, derived from E14 spinal cord, was transplanted into a dorsal column lesion that interrupted the connections between sensory host axons (of the fasciculus gracilus) with their dorsal column nucleus (DCN) target (gracile tubercle of the DCN) in the brainstem. Evidence for the formation of a functional relay within the injured spinal cord was demonstrated through a number of steps: the survival and differentiation of graft-derived neurons, guidance of graft-derived axons to specific target sites, synaptic connectivity between graft-derived axons and target neurons, the regeneration of lesioned host axons into the graft, and the establishment of synaptic connectivity between lesioned host axons and graft-derived neurons. The ability of NRP/GRP grafts to generate neurons was based upon a series of studies that demonstrated the challenges of neuronal differentiation in the non-neurogenic adult spinal cord (Cao et al., 2002; Han et al., 2002) and the necessity of including GRP to generate astrocytes that would support neuronal survival and differentiation at the injury site (Lepore and Fischer, 2005). Graft-derived axons were directed by chemotropic cues along a BDNF gradient to the DCN, a strategy that was based on work from Tuszynski and Blesch demonstrating the formation of neurotrophic gradient by lentiviral vectors and their ability to promote regeneration of injured dorsal column axons (Blesch, 2004; Taylor et al., 2006; Alto et al., 2009). Numerous studies have shown that the axons of neurons derived from grafted embryonic tissue can grow long distances along white matter (Davies et al., 1999; Lepore and Fischer, 2005; Lu et al., 2012) due to their intrinsic growth potential (Smith and Skene, 1997) and reduced responsiveness to external inhibitory cues compared to adult neurons (Ketschek et al., 2012). In our study, graft-derived axons were able to form synaptic connections with the neurons of the denervated DCN, creating one of the synaptic connections necessary for relay formation. At the same time, lesioned host sensory axons regenerated into the graft, forming synaptic connections with graft-derived neurons, thus creating the other synaptic connection. Interestingly, we found that the robust regeneration of lesioned host axons and synaptic connectivity between these axons and graft-derived neurons occurred without additional intervention (e.g., conditioning). Subsequent studies revealed that the presence of GRP-derived astrocytes was not only critical for the generation of graft-derived neurons (Lepore and Fischer, 2005), but was also suf fi cient for promoting the modest regeneration into the graft and the formation of synaptic connections (Bonner et al., 2011; Haas et al., 2012). Evidence for anatomical connectivity was based upon: 1) following the growth of graft-derived axons to the DCN target using the AP reporter (as NRP/GRP were prepared from AP transgenic rats), 2) tracing of regenerating host sensory axons by cholera toxin b subunit into the graft, and 3) identi fi cation of synaptic proteins by immunocytochemistry and synaptic structures by immune-EM. Evidence for the formation of functional, physiologically active synapses included the findings that: 1) stimulation of the sciatic nerve resulted in c-Fos expression within graft-derived neurons and within neurons at the level of the DCN, 2) physiologically active synapses were shown to have a signal-transmission delay consistent with connectivity by a di-synaptic relay, and 3) transmission of important sensory behaviors was reconstituted, with stroking of the ipsilateral hindlimb resulting in the signal relayed to the DCN by way of a grafted neuron, across the injury. Preliminary resultsusing a lesion model that interrupts the corticospinal tract (CST) suggests that similar principles can be used to reconnect the motor system (Haas, 2013, 2014; Fischer, 2014). Given the particularly poor regenerative capacity of CST neurons, it is likely that the NPC graft will have to be combined with treatments that enhance the intrinsic potential for axon growth to allow for the formation of synaptic connections with graft-derived neurons (e.g., modulation of PTEN and SOCS3).

    As a result of progress with the relay model, attention has shifted to issues that are “beyond regeneration”: how to direct axons to putative targets, how to form active synaptic formations, and how to translate partial connectivity with poor or no mapping into meaningful functional information. For example, when reconnecting the sensory system through long-distance regeneration of lesioned host axons or through synaptic relays utilizing axons from graft-derived neurons, one must consider the endogenous reorganization that occurs in the aftermath of injury to denervated structures, particularly in the somatosensory cortex (Kaas et al., 2008). It is speculated that re-training of the system through specific activity will strengthen the correct or appropriate innervations and promote the necessary plasticity for functional recovery. The relay model however, has also highlighted some limitations, including weak synaptic connectivity at the target site (DCN) and the formation of a relay in an injury model that was based upon a partial, relatively small injury (dorsal column hemisection), in which graft-derived axons were required to extend only a short distance for anatomical and functional connectivity given the proximity of the C1 lesion site to the DCN target.

    Indeed, our next step was to examine the same NPC (NRP/GRP) transplants, isolated from E14 spinal cord, in a complete thoracic transection injury (Medalha et al., 2014). In this model, grafted cells survived poorly despite using a variety of lesion methods (aspiration and knife cut), matrices (Vitrogen, matrigel, and fi brin), a 3-9 day delay in transplantation, and juvenile and adult animals. In contrast, when grafts of “dissociated” or “segmental” FSC, also isolated from E14, were acutely transplanted into the same severe injury model, the grafts survived and generated neural cells including glutaminergic and GABAergic neurons. Importantly, grafts of FSC alone, without the addition of exogenous matrix or growth factors, created a permissive environment that promoted axonal growth of propriospinal and serotonigeric axons into the transplant and extension of graft-derived axons into the host (Medalha et al., 2014), which are critical elements of relay formation. Neural progenitors within the FSC grafts (e.g. GRP) also generated glial cells, including astrocytes and oligodendrocytes, which are necessary to ensure proper synaptic transmission and connectivity. While cultures of NPC and acute preparations of FSC contain mostly the same populations of cells (e.g. NRP and GRP), it is likely that a variety of features inherent to FSC grafts mediate their unique properties. FSC contain permissive matrix, growth promoting molecules, and small populations of endothelial cells, fibroblasts, neurons, and multipotent neuroepithelial cells (Kalyani et al., 1997; Cai et al., 2002) which are removed upon the culturing and preparation of cryopreservable stocks of single-cell suspensions of lineage restricted progenitors (Cai et al., 2002; Han et al., 2002; Lepore and Fischer, 2005). These observations are consistent with early work, which demonstrated that FSC grafts induced regeneration into the lesion area (Reier et al., 1986; Jakeman and Reier, 1991), promoted limited recovery of function (Bregman and Reier, 1986), and rescued axotomized neurons (Mori et al., 1997). Taken together, these studies demonstrate that for large and severe injuries, NPC transplants need to be combined with a set of factors that will support graft survival and growth.

    An important step to resolve the difficulties associated with a severe injury has been taken by a recent study using NPC derived from GFP-transgenic animals, showing that delayed transplantation of a single-cell suspension of NPC, prepared acutely from E14 FSC, together with a fibrin-thrombin matrix and a complex cocktail of factors, resulted in robust cell survival and remarkable long-distance axonal growth from graft-derived neurons (Lu et al., 2012). The reported data included experiments that showed electrophysiological connectivity and functional recovery, as assessed by the motor grading (BBB) scale, which was abolished following re-transection. While this strategy has produced impressive results, it is not clear that it is ready for clinical translation, requiring the optimization and reduction of the number of factors used in the cocktail and a careful analysis of the consequences of the robust and undirected graft-derived axonal growth, particularly in relation to potential undesired effects such as spasticity and pain. Furthermore, a replication study found that there was minimal ingrowth of host axons into the graft and no statistically signi fi cant differences between transplant and control groups with respect to the degree of locomotor recovery (Sharp et al., 2014). It appears that most grafts failed to create a continuous bridge of neural tissue between the rostral and caudal host stumps and were therefore unlikely to form functional bridges. In addition, the replication study also revealed the formation of ectopic masses of graft-derived cells at long distances from the transplant site, highlighting the potential not only for autonomous cell foci formation with concomitant anatomical abnormality (e.g., ventricle compression and stroke) but also aberrant physiological connectivity (Steward et al., 2014; Tuszynski et al., 2014). Nevertheless, it is possible that anatomical differences between rodents and humans and modifications of grafting techniques will reduce the ectopic cell foci observed in rodent models (Tuszynski et al., 2014).

    Taken together, these studies underscore the challenges associated with transplants of NPC in cases of severe and complete SCI, but also offer experimental directions that can be applied to develop a transplantation strategy designed to achieve substantial axonal growth into and out of the graft to restore connectivity. The challenge is not only to identify and optimize the transplantation procedure, limit the potential for unpredictable and potentially undesirable effects by reducing the number of factors, and confi rm the results with human cells, but also make them compatible with FDA requirements and the costs of running a clinical trial, in which cells and factors have to be prepared by an expensive GLP process. Nevertheless, there is growing evidence for the potential efficacy of NPC transplants in diverse models of SCI to restore functional connectivity (Mitsui et al., 2005; Kobayashi et al., 2012; Hou et al., 2013; Mothe et al., 2013; van Gorp et al., 2013; Emgard et al., 2014), highlighting the therapeutic potential of synaptic relays for treatment of SCI.

    Christopher Haas, Itzhak Fischer

    Drexel University College of Medicine, Department of Neurobiology & Anatomy, Philadelphia, PA, USA

    Philadelphia, PA 19129, USA, ifischer@drexelmed.edu.

    Funding: NIH PO1 NS055976, Craig H. Neilsen Foundation, and Shriner’s Hospital for Children.

    Con fl icts of interest: None declared.

    Accepted: 2014-06-09

    Alto LT, Havton LA, Conner JM, Hollis ER, 2nd, Blesch A, Tuszynski MH (2009) Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12:1106-1113.

    Blesch A (2004) Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods 33:164-172.

    Bonner JF, Blesch A, Neuhuber B, Fischer I (2010) Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res 88:1182-1192.

    Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31:4675-4686.

    Bregman BS, Reier PJ (1986) Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death. J Comp Neurol 244:86-95.

    Cai J, Wu Y, Mirua T, Pierce JL, Lucero MT, Albertine KH, Spangrude GJ, Rao MS (2002) Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol 251:221-240.

    Cao QL, Howard RM, Dennison JB, Whittemore SR (2002) Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp Neurol 177:349-359.

    Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69-74.

    Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810-5822.

    Emgard M, Piao J, Aineskog H, Liu J, Calzarossa C, Odeberg J, Holmberg L, Samuelsson EB, Bezubik B, Vincent PH, Falci SP, Seiger A, Akesson E, Sundstrom E (2014) Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord. Exp Neurol 253:138-145.

    Fischer I, Haas C (2014) Glial Progenitor Transplantation for Promoting Axonal Regeneration. In: 45th Annual American Society for Neurochemistry Meeting Long Beach, CA.

    Haas C, Fischer I (2013) Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord. J Neurotrauma 30:1035-1052.

    Haas C, Neuhuber B, Yamagami T, Rao M, Fischer I (2012) Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration. Exp Neurol 233:717-732.

    Haas C, Fischer I (2013) Advances in Transplantation of Glial Progenitors as a Therapeutic Platform in Treatment of Spinal Cord Injury. In: International Symposium on Neural Regeneration Asilomar Conference Center, Paci fi c Grove, CA.

    Haas C, Fischer I (2014) Combinatorial Strategies to Promote Connectivity Across the Injured Spinal Cord: Glial Restricted Progenitors as a Therapeutic Platform. In: 45th Annual American Society for Neurochemistry Meeting Long Beach, CA.

    (3)從圖中可知,藍(lán)色越深,代表任務(wù)越密集,該區(qū)域越繁華,則價(jià)格越低;反之藍(lán)色越淺,越接近黃色,代表任務(wù)越稀疏,該區(qū)域離中心城市越遠(yuǎn),則價(jià)格越高。

    Han SS, Kang DY, Mujtaba T, Rao MS, Fischer I (2002) Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol 177:360-375.

    Hill CE, Proschel C, Noble M, Mayer-Proschel M, Gensel JC, Beattie MS, Bresnahan JC (2004) Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration. Exp Neurol 190:289-310.

    Hou S, Tom VJ, Graham L, Lu P, Blesch A (2013) Partial restoration of cardiovascular function by embryonic neural stem cell grafts after complete spinal cord transection. J Neurosci 33:17138-17149.

    Jakeman LB, Reier PJ (1991) Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. J Comp Neurol 307:311-334.

    Kaas JH, Qi HX, Burish MJ, Gharbawie OA, Onifer SM, Massey JM (2008) Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Exp Neurol 209:407-416.

    Kalyani A, Hobson K, Rao MS (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev Biol 186:202-223.

    Kalyani AJ, Piper D, Mujtaba T, Lucero MT, Rao MS (1998) Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J Neurosci 18:7856-7868.

    Ketschek AR, Haas C, Gallo G, Fischer I (2012) The roles of neuronal and glial precursors in overcoming chondroitin sulfate proteoglycan inhibition. Exp Neurol 235:627-637.

    Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, Nori S, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Yamanaka S, Nakamura M, Okano H (2012) Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7:e52787.

    Lepore AC, Fischer I (2005) Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp Neurol 194:230-242.

    Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150:1264-1273.

    Medalha CC, Jin Y, Yamagami T, Haas C, Fischer I (2014) Transplanting neural progenitors into a complete transection model of spinal cord injury. J Neurosci Res 92:607-618.

    Mitsui T, Shumsky JS, Lepore AC, Murray M, Fischer I (2005) Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modi fi es intraspinal circuitry. J Neurosci 25:9624-9636.

    Mori F, Himes BT, Kowada M, Murray M, Tessler A (1997) Fetal spinal cord transplants rescue some axotomized rubrospinal neurons from retrograde cell death in adult rats. Exp Neurol 143:45-60.

    Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS (2013) Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials 34:3775-3783.

    Reier PJ, Bregman BS, Wujek JR (1986) Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. J Comp Neurol 247:275-296.

    Reier PJ, Perlow MJ, Guth L (1983) Development of embryonic spinal cord transplants in the rat. Brain Res 312:201-219.

    Sharp KG, Yee KM, Steward O (2014) A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury. Exp Neurol doi:10.1016/j.expneurol.2014.04.008.

    Smith DS, Skene JH (1997) A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J Neurosci 17:646-658.

    Steward O, Sharp KG, Matsudaira Yee K (2014) Long-distance migration and colonization of transplanted neural stem cells. Cell 156:385-387.

    Taylor L, Jones L, Tuszynski MH, Blesch A (2006) Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 26:9713-9721.

    Tuszynski MH, Wang Y, Graham L, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Lu P (2014) Neural stem cell dissemination after grafting to CNS injury sites. Cell 156:388-389.

    van Gorp S, Leerink M, Kakinohana O, Platoshyn O, Santucci C, Galik J, Joosten EA, Hruska-Plochan M, Goldberg D, Marsala S, Johe K, Ciacci JD, Marsala M (2013) Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res Ther 4:57.

    Itzhak Fischer, Ph.D., Drexel University College of Medicine, Department of Neurobiology & Anatomy, 2900 Queen Lane,

    10.4103/1673-5374.135321 http://www.nrronline.org/

    Haas C, Fischer I. Transplanting neural progenitors to build a neuronal relay across the injured spinal cord. Neural Regen Res. 2014;9(12):1173-1176.

    猜你喜歡
    密集黃色藍(lán)色
    你瞧,黃色
    耕地保護(hù)政策密集出臺(tái)
    密集恐懼癥
    藍(lán)色的祝愿
    青年歌聲(2021年2期)2021-03-05 09:02:14
    藍(lán)色的祝愿
    青年歌聲(2020年11期)2020-11-24 06:57:20
    藍(lán)色使命
    商周刊(2018年13期)2018-07-11 03:34:10
    藍(lán)色的五月
    海峽姐妹(2017年5期)2017-06-05 08:53:18
    歐盟等一大波家電新標(biāo)準(zhǔn)密集來(lái)襲
    幫孩子擺脫“黃色誘惑”
    人生十六七(2015年5期)2015-02-28 13:08:27
    密集預(yù)披露≠IPO發(fā)行節(jié)奏生變
    法人(2014年5期)2014-02-27 10:44:28
    乱系列少妇在线播放| 久热久热在线精品观看| 少妇的逼好多水| 99久久中文字幕三级久久日本| av免费观看日本| 亚洲av欧美aⅴ国产| 精品酒店卫生间| 亚洲国产日韩一区二区| 一级毛片aaaaaa免费看小| 丝袜喷水一区| 精品亚洲成国产av| 直男gayav资源| 亚洲图色成人| 国产精品麻豆人妻色哟哟久久| 免费看av在线观看网站| 成人毛片a级毛片在线播放| 亚洲精品视频女| 亚洲精品久久久久久婷婷小说| 亚洲怡红院男人天堂| 亚洲自偷自拍三级| 午夜视频国产福利| 久久久精品免费免费高清| 美女高潮的动态| 伦理电影大哥的女人| 少妇丰满av| 久久久久久久久久久丰满| av不卡在线播放| 亚洲精品国产av成人精品| 中文精品一卡2卡3卡4更新| 国产成人精品婷婷| 国产视频首页在线观看| 欧美性感艳星| 亚洲,一卡二卡三卡| 少妇猛男粗大的猛烈进出视频| 青春草亚洲视频在线观看| 天美传媒精品一区二区| 偷拍熟女少妇极品色| 久久97久久精品| 一级毛片我不卡| 2021少妇久久久久久久久久久| 久久久色成人| 51国产日韩欧美| 人妻少妇偷人精品九色| 久久精品久久久久久久性| 蜜桃久久精品国产亚洲av| 亚洲精品乱码久久久v下载方式| 尤物成人国产欧美一区二区三区| 亚洲三级黄色毛片| 欧美变态另类bdsm刘玥| 蜜桃在线观看..| 亚洲,欧美,日韩| 久久精品国产亚洲av涩爱| 国产熟女欧美一区二区| 久久精品人妻少妇| 中文欧美无线码| 亚洲av成人精品一二三区| av免费在线看不卡| 少妇的逼好多水| 日韩成人av中文字幕在线观看| 日韩强制内射视频| 久久国产亚洲av麻豆专区| 女人十人毛片免费观看3o分钟| 亚洲国产高清在线一区二区三| 欧美+日韩+精品| 国产精品人妻久久久久久| av福利片在线观看| 插逼视频在线观看| 全区人妻精品视频| 国产男女超爽视频在线观看| 免费看日本二区| 亚洲色图综合在线观看| 99久久综合免费| 午夜福利视频精品| 亚洲欧美清纯卡通| 在线 av 中文字幕| 在线 av 中文字幕| 久热久热在线精品观看| 99久久人妻综合| 一级爰片在线观看| 国产精品不卡视频一区二区| 亚洲中文av在线| 22中文网久久字幕| 中文字幕av成人在线电影| 国产黄色免费在线视频| 精品人妻视频免费看| 国产真实伦视频高清在线观看| 少妇丰满av| 中文精品一卡2卡3卡4更新| 久久久久久久精品精品| 好男人视频免费观看在线| 毛片女人毛片| 欧美丝袜亚洲另类| 少妇熟女欧美另类| 欧美日韩亚洲高清精品| 国产成人精品一,二区| 97超碰精品成人国产| 成人一区二区视频在线观看| 日韩国内少妇激情av| 永久网站在线| av免费观看日本| 国产国拍精品亚洲av在线观看| 免费久久久久久久精品成人欧美视频 | 国产真实伦视频高清在线观看| 亚洲怡红院男人天堂| 在线观看国产h片| av卡一久久| 老司机影院成人| 国产一级毛片在线| 国产色爽女视频免费观看| 蜜桃在线观看..| 夜夜看夜夜爽夜夜摸| 日本av免费视频播放| 少妇人妻久久综合中文| 久久久国产一区二区| 亚洲,一卡二卡三卡| 国产精品国产三级国产专区5o| 亚洲精品456在线播放app| 欧美一级a爱片免费观看看| 亚洲中文av在线| 2022亚洲国产成人精品| 成人国产av品久久久| 久久精品久久久久久噜噜老黄| 免费久久久久久久精品成人欧美视频 | 性高湖久久久久久久久免费观看| 久久精品人妻少妇| 九九久久精品国产亚洲av麻豆| 亚洲精品色激情综合| 国产免费视频播放在线视频| 啦啦啦啦在线视频资源| 中文字幕免费在线视频6| a级一级毛片免费在线观看| 亚洲成人av在线免费| 2022亚洲国产成人精品| 视频区图区小说| 中国国产av一级| 下体分泌物呈黄色| 亚洲国产毛片av蜜桃av| 夜夜爽夜夜爽视频| 在线播放无遮挡| 亚洲经典国产精华液单| 成人毛片a级毛片在线播放| 日本wwww免费看| 久久人人爽av亚洲精品天堂 | av福利片在线观看| 美女主播在线视频| 欧美另类一区| 日本一二三区视频观看| 纯流量卡能插随身wifi吗| 国产精品不卡视频一区二区| 亚洲欧美一区二区三区黑人 | 少妇的逼水好多| 黄色日韩在线| 亚洲激情五月婷婷啪啪| 精品国产三级普通话版| 爱豆传媒免费全集在线观看| 一二三四中文在线观看免费高清| 国产中年淑女户外野战色| 老女人水多毛片| 免费av不卡在线播放| 中文欧美无线码| 亚洲精品国产成人久久av| 下体分泌物呈黄色| 一级爰片在线观看| 在线天堂最新版资源| av免费观看日本| 精品一区在线观看国产| 国产在视频线精品| 免费黄网站久久成人精品| 91精品一卡2卡3卡4卡| av在线蜜桃| 26uuu在线亚洲综合色| 日韩强制内射视频| 亚洲国产精品成人久久小说| 亚洲人成网站高清观看| 久久久a久久爽久久v久久| 免费看日本二区| 欧美高清成人免费视频www| av.在线天堂| 最新中文字幕久久久久| 色吧在线观看| 久久国产亚洲av麻豆专区| 免费在线观看成人毛片| 欧美一级a爱片免费观看看| 精品国产露脸久久av麻豆| 日本色播在线视频| 激情五月婷婷亚洲| 亚洲高清免费不卡视频| 久久久久久久大尺度免费视频| 久久精品国产亚洲av涩爱| 日本色播在线视频| 99九九线精品视频在线观看视频| 一级毛片我不卡| 99热这里只有精品一区| 三级经典国产精品| 一区在线观看完整版| 日本av手机在线免费观看| 在线免费观看不下载黄p国产| 亚洲三级黄色毛片| 高清黄色对白视频在线免费看 | 最新中文字幕久久久久| 免费大片18禁| 亚洲欧美一区二区三区国产| 久久这里有精品视频免费| 欧美日韩综合久久久久久| 精品国产乱码久久久久久小说| 久久青草综合色| 妹子高潮喷水视频| 午夜免费观看性视频| 欧美xxⅹ黑人| 亚洲国产精品专区欧美| 一二三四中文在线观看免费高清| 国产亚洲一区二区精品| 赤兔流量卡办理| 肉色欧美久久久久久久蜜桃| 国产精品av视频在线免费观看| 亚洲欧美日韩卡通动漫| 国产 精品1| 久久久久久久亚洲中文字幕| 大陆偷拍与自拍| 日韩精品有码人妻一区| 一级毛片久久久久久久久女| 久久99热6这里只有精品| 亚洲人成网站在线观看播放| 亚洲av日韩在线播放| 99久久精品热视频| 在线观看国产h片| 免费在线观看成人毛片| 国产又色又爽无遮挡免| 边亲边吃奶的免费视频| 大片电影免费在线观看免费| 在线 av 中文字幕| 秋霞伦理黄片| 寂寞人妻少妇视频99o| 丝袜脚勾引网站| 亚洲av不卡在线观看| 久久女婷五月综合色啪小说| 男女下面进入的视频免费午夜| 国产精品欧美亚洲77777| 男人爽女人下面视频在线观看| 大又大粗又爽又黄少妇毛片口| 免费观看在线日韩| 精品国产三级普通话版| 王馨瑶露胸无遮挡在线观看| 纯流量卡能插随身wifi吗| av福利片在线观看| 少妇人妻 视频| 精品久久久久久久末码| 日日啪夜夜爽| 免费观看在线日韩| 国产男人的电影天堂91| 日韩免费高清中文字幕av| 又爽又黄a免费视频| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件| 91精品伊人久久大香线蕉| 国产久久久一区二区三区| av福利片在线观看| 亚州av有码| 老司机影院成人| 国产日韩欧美在线精品| 全区人妻精品视频| 日韩中文字幕视频在线看片 | 岛国毛片在线播放| 深夜a级毛片| 校园人妻丝袜中文字幕| 亚洲精品第二区| 中国美白少妇内射xxxbb| 国产极品天堂在线| 搡老乐熟女国产| 韩国高清视频一区二区三区| 欧美日本视频| 亚洲精品,欧美精品| 国产亚洲最大av| 国产精品久久久久久久久免| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久久人人人人人人| 日日啪夜夜爽| 日韩成人伦理影院| 亚洲av日韩在线播放| 最近最新中文字幕免费大全7| 亚洲国产最新在线播放| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 国产精品国产三级国产av玫瑰| 国产亚洲一区二区精品| 插逼视频在线观看| 久久ye,这里只有精品| 99热这里只有是精品在线观看| 人人妻人人爽人人添夜夜欢视频 | 另类亚洲欧美激情| 国产精品成人在线| 精品久久久精品久久久| 美女高潮的动态| 最近中文字幕2019免费版| 少妇人妻 视频| 国语对白做爰xxxⅹ性视频网站| 国内精品宾馆在线| 毛片女人毛片| 久久久a久久爽久久v久久| 亚洲精品中文字幕在线视频 | 夜夜骑夜夜射夜夜干| 欧美成人午夜免费资源| 成人免费观看视频高清| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 日韩一区二区三区影片| 丰满乱子伦码专区| 乱系列少妇在线播放| 中国美白少妇内射xxxbb| 久久精品久久久久久噜噜老黄| 91久久精品国产一区二区成人| 伊人久久国产一区二区| 大陆偷拍与自拍| 日韩中文字幕视频在线看片 | 久久精品国产亚洲av涩爱| 国产精品av视频在线免费观看| 在线免费十八禁| 人妻一区二区av| 日韩制服骚丝袜av| 国内精品宾馆在线| 欧美高清成人免费视频www| 哪个播放器可以免费观看大片| 美女福利国产在线 | 亚洲成色77777| 国产男女内射视频| 少妇 在线观看| 三级经典国产精品| 亚洲自偷自拍三级| 亚洲欧美日韩另类电影网站 | 最黄视频免费看| 欧美日韩国产mv在线观看视频 | 丰满乱子伦码专区| 国产精品蜜桃在线观看| 亚洲电影在线观看av| 亚洲精品国产成人久久av| 久久精品国产鲁丝片午夜精品| 国内少妇人妻偷人精品xxx网站| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 日产精品乱码卡一卡2卡三| 啦啦啦视频在线资源免费观看| 老师上课跳d突然被开到最大视频| 午夜福利在线观看免费完整高清在| 一级a做视频免费观看| 热re99久久精品国产66热6| 久久久久久久久久久免费av| 免费久久久久久久精品成人欧美视频 | 日韩制服骚丝袜av| 黄色视频在线播放观看不卡| 国产成人一区二区在线| 美女国产视频在线观看| 在线免费观看不下载黄p国产| 国产精品一区二区在线观看99| 亚洲怡红院男人天堂| 久久精品夜色国产| h日本视频在线播放| av一本久久久久| 特大巨黑吊av在线直播| 久久综合国产亚洲精品| 中文字幕亚洲精品专区| 午夜福利网站1000一区二区三区| 一级二级三级毛片免费看| 久久久久久久国产电影| 男女免费视频国产| 少妇裸体淫交视频免费看高清| 丝袜喷水一区| av国产免费在线观看| 一本一本综合久久| 91精品一卡2卡3卡4卡| 久久久久久久久大av| 亚洲欧美中文字幕日韩二区| 91精品一卡2卡3卡4卡| 国产精品一及| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 日韩大片免费观看网站| 欧美丝袜亚洲另类| 在线天堂最新版资源| 亚洲av电影在线观看一区二区三区| 极品少妇高潮喷水抽搐| 亚洲精品亚洲一区二区| 性色avwww在线观看| 国产在线男女| www.色视频.com| 免费在线观看成人毛片| 精品国产露脸久久av麻豆| 欧美一区二区亚洲| 在线观看一区二区三区激情| 精华霜和精华液先用哪个| 狂野欧美激情性bbbbbb| 人人妻人人澡人人爽人人夜夜| 噜噜噜噜噜久久久久久91| 精品亚洲成国产av| 91aial.com中文字幕在线观看| 99久国产av精品国产电影| 久久久久国产网址| 91久久精品国产一区二区三区| 最近最新中文字幕大全电影3| 亚洲熟女精品中文字幕| 女性被躁到高潮视频| 性高湖久久久久久久久免费观看| 激情五月婷婷亚洲| 久久久久久久久久久丰满| 亚洲精品久久久久久婷婷小说| av不卡在线播放| 成人高潮视频无遮挡免费网站| 伦理电影免费视频| 国产成人a区在线观看| 99热国产这里只有精品6| 国产 精品1| 日本免费在线观看一区| 91久久精品国产一区二区三区| 精品亚洲成国产av| 精品久久久久久久久亚洲| 久久久久国产精品人妻一区二区| 一个人看的www免费观看视频| 搡女人真爽免费视频火全软件| 最后的刺客免费高清国语| 国产毛片在线视频| 国产亚洲最大av| 亚洲av成人精品一区久久| 欧美日韩视频精品一区| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 亚洲av成人精品一二三区| 亚洲av综合色区一区| 久久精品人妻少妇| 老司机影院成人| 九九在线视频观看精品| 日本爱情动作片www.在线观看| 人妻 亚洲 视频| 日韩三级伦理在线观看| 国产久久久一区二区三区| 欧美日韩在线观看h| 欧美精品亚洲一区二区| 精品熟女少妇av免费看| 美女xxoo啪啪120秒动态图| 日韩电影二区| 久久久久久伊人网av| 特大巨黑吊av在线直播| 日产精品乱码卡一卡2卡三| 婷婷色综合www| 18+在线观看网站| 大片电影免费在线观看免费| 九九爱精品视频在线观看| 亚洲欧美精品专区久久| 五月天丁香电影| 高清午夜精品一区二区三区| 嫩草影院入口| 99国产精品免费福利视频| 国产精品欧美亚洲77777| 精品亚洲成国产av| 草草在线视频免费看| 国产一级毛片在线| 日韩人妻高清精品专区| 日韩免费高清中文字幕av| 国产成人精品福利久久| 偷拍熟女少妇极品色| 久久久精品免费免费高清| 五月玫瑰六月丁香| 国产乱人偷精品视频| 美女主播在线视频| 国产视频内射| 日韩av不卡免费在线播放| 高清欧美精品videossex| 日韩,欧美,国产一区二区三区| 精品一区二区免费观看| 国产精品一区二区在线不卡| 亚洲成人手机| 男人和女人高潮做爰伦理| 国产精品一区www在线观看| 少妇精品久久久久久久| 久久女婷五月综合色啪小说| 亚洲国产精品专区欧美| 97热精品久久久久久| 老师上课跳d突然被开到最大视频| 99re6热这里在线精品视频| 亚洲欧美精品自产自拍| 午夜老司机福利剧场| 在线精品无人区一区二区三 | 久久精品国产亚洲av天美| 欧美精品一区二区免费开放| 久久人人爽人人片av| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 欧美三级亚洲精品| 亚洲婷婷狠狠爱综合网| 少妇高潮的动态图| 91在线精品国自产拍蜜月| 一边亲一边摸免费视频| 涩涩av久久男人的天堂| 纵有疾风起免费观看全集完整版| 美女cb高潮喷水在线观看| av福利片在线观看| 天天躁日日操中文字幕| kizo精华| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 久久影院123| 国产成人一区二区在线| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| 人妻 亚洲 视频| 成人特级av手机在线观看| 亚洲精品乱码久久久v下载方式| 亚洲图色成人| 亚洲精品久久久久久婷婷小说| a 毛片基地| 永久免费av网站大全| 天天躁日日操中文字幕| 国产熟女欧美一区二区| 五月天丁香电影| freevideosex欧美| 蜜桃亚洲精品一区二区三区| 免费观看a级毛片全部| 久久久久久人妻| av免费在线看不卡| 又爽又黄a免费视频| 成人国产麻豆网| 一级av片app| 最黄视频免费看| 中文字幕人妻熟人妻熟丝袜美| 一边亲一边摸免费视频| 国产精品人妻久久久久久| 国产黄片视频在线免费观看| 黑丝袜美女国产一区| 99久久精品国产国产毛片| 1000部很黄的大片| 亚洲精品第二区| 哪个播放器可以免费观看大片| 国产深夜福利视频在线观看| 亚州av有码| 亚洲三级黄色毛片| 在线观看三级黄色| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品古装| 国产精品无大码| 美女视频免费永久观看网站| 日本av免费视频播放| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 久久久久久久大尺度免费视频| 久久精品久久久久久噜噜老黄| 中文字幕免费在线视频6| 在线观看一区二区三区| 国产欧美日韩一区二区三区在线 | 国产成人aa在线观看| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 精品99又大又爽又粗少妇毛片| 亚洲天堂av无毛| 免费看av在线观看网站| av免费观看日本| 亚洲图色成人| 老女人水多毛片| 成人国产av品久久久| 男人爽女人下面视频在线观看| 人体艺术视频欧美日本| 国产精品久久久久成人av| 国产精品一区二区性色av| 国产 精品1| 亚洲真实伦在线观看| 国产亚洲一区二区精品| 美女主播在线视频| av线在线观看网站| 国产成人免费观看mmmm| 免费少妇av软件| 国产精品欧美亚洲77777| 久久亚洲国产成人精品v| 免费观看性生交大片5| 国产精品一区二区在线观看99| 一区二区三区乱码不卡18| 1000部很黄的大片| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| 国产精品久久久久久精品古装| 又大又黄又爽视频免费| 国产色爽女视频免费观看| 国产精品免费大片| 久久毛片免费看一区二区三区| 欧美一区二区亚洲| 国产一区二区三区综合在线观看 | 亚洲欧美一区二区三区国产| www.av在线官网国产| 91精品国产国语对白视频| 大陆偷拍与自拍| 男人爽女人下面视频在线观看| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 视频区图区小说| 最近最新中文字幕大全电影3| 精品久久久久久久久av| 久久av网站| 天堂8中文在线网| 国产精品一区二区三区四区免费观看| 欧美成人一区二区免费高清观看| 永久网站在线| 丝袜脚勾引网站| 国产午夜精品久久久久久一区二区三区| 在线亚洲精品国产二区图片欧美 | 亚洲精品一二三| 视频中文字幕在线观看| 亚洲成色77777| 国产精品嫩草影院av在线观看| 男女边摸边吃奶| 嘟嘟电影网在线观看| 99热国产这里只有精品6| 涩涩av久久男人的天堂| 国产亚洲欧美精品永久| 久久久欧美国产精品| 久久久久久久精品精品| 国产高清不卡午夜福利|