• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高血壓易感基因的分子進(jìn)化

    2014-05-25 00:33:02季林丹錢海霞徐進(jìn)2
    遺傳 2014年12期
    關(guān)鍵詞:易感性等位基因非洲

    季林丹,錢海霞,徐進(jìn)2,

    1. 寧波大學(xué)醫(yī)學(xué)院生物化學(xué)系,寧波 315211;

    2. 中國(guó)科學(xué)院昆明動(dòng)物研究所遺傳資源與進(jìn)化國(guó)家重點(diǎn)實(shí)驗(yàn)室, 昆明 650223;

    3. 寧波大學(xué)醫(yī)學(xué)院預(yù)防醫(yī)學(xué)系,寧波 315211

    高血壓易感基因的分子進(jìn)化

    季林丹1,2,錢海霞3,徐進(jìn)2,3

    1. 寧波大學(xué)醫(yī)學(xué)院生物化學(xué)系,寧波 315211;

    2. 中國(guó)科學(xué)院昆明動(dòng)物研究所遺傳資源與進(jìn)化國(guó)家重點(diǎn)實(shí)驗(yàn)室, 昆明 650223;

    3. 寧波大學(xué)醫(yī)學(xué)院預(yù)防醫(yī)學(xué)系,寧波 315211

    利用家系連鎖分析、候選基因法及全基因組關(guān)聯(lián)研究均未能有效發(fā)現(xiàn)普通人群的高血壓易感基因或位點(diǎn)。遺傳學(xué)研究表明,人類許多疾病易感性的形成與走出非洲時(shí)的環(huán)境適應(yīng)性進(jìn)化密切相關(guān),這為高血壓遺傳學(xué)研究提供了新思路。文章系統(tǒng)綜述了高血壓易感基因分子進(jìn)化研究的理論基礎(chǔ)和最新進(jìn)展,介紹了本研究小組運(yùn)用分子進(jìn)化思路在中國(guó)漢族人群高血壓遺傳學(xué)研究中的發(fā)現(xiàn),對(duì)未來的研究方向進(jìn)行了展望,以期為高血壓和其他疾病的遺傳學(xué)研究提供參考。

    高血壓;遺傳易感性;進(jìn)化;適應(yīng)

    原發(fā)性高血壓(Essential hypertension, EH)是一種以血壓升高為主要臨床表現(xiàn)而病因尚未明確的獨(dú)立疾病,約占所有高血壓的90%~95%。在遺傳和環(huán)境因素的共同影響下,EH已經(jīng)成為危害人類健康的世界性公共衛(wèi)生問題[1,2]。在發(fā)達(dá)國(guó)家,超過1/4的成年人患有高血壓;據(jù)世界衛(wèi)生組織估計(jì),到2020年全球高血壓患者將超過15億人[3]。我國(guó)曾進(jìn)行了4次大規(guī)模高血壓流行病學(xué)調(diào)查,高血壓的患病率從50年代的5.11%增加至2002年的18.8%,并且呈現(xiàn)出明顯的低齡化趨勢(shì)。據(jù)衛(wèi)生部估計(jì),我國(guó)高血壓患病人數(shù)已經(jīng)超過 2億,每年高血壓的直接醫(yī)療費(fèi)用高達(dá) 300億元人民幣,與高血壓相關(guān)的心腦血管疾病耗費(fèi)更是達(dá)到3000億元人民幣[4]。由此可見,高血壓已經(jīng)嚴(yán)重影響了中國(guó)及全球諸多國(guó)家的經(jīng)濟(jì)發(fā)展、社會(huì)穩(wěn)定和居民生活質(zhì)量。

    為了更好地開展高血壓及相關(guān)心血管疾病的防治工作,國(guó)內(nèi)外研究人員對(duì)高血壓的遺傳病因進(jìn)行了大量研究。家系研究提示收縮壓和舒張壓具有較高的遺傳度(31%~68%)[5],可是在封閉家系研究中發(fā)現(xiàn)的少數(shù)“高血壓基因”,在普通人群中卻很難證實(shí)與高血壓具有相關(guān)性[6]。在家系連鎖分析無法取得突破時(shí),研究人員開始采用大樣本病例-對(duì)照研究對(duì)大量的候選基因進(jìn)行篩選[7],但不同的研究小組往往得到不同的結(jié)果,目前尚無被廣泛接受的高血壓遺傳易感位點(diǎn)[8,9]。隨著芯片技術(shù)的飛速發(fā)展,全基因組關(guān)聯(lián)研究(Genome-wide association study, GWAS)廣泛地應(yīng)用于高血壓等復(fù)雜疾病的遺傳學(xué)研究。截至2014年5月,已發(fā)表20多項(xiàng)與血壓性狀或高血壓相關(guān)的GWAS(http://www.genome.gov/gwastudies/)。對(duì)國(guó)際上主要的幾個(gè)高血壓 GWAS[10~12]進(jìn)行 meta分析后,得到數(shù)個(gè)單核苷酸多態(tài)性(Single nucleotide polymorphism, SNP)與血壓性狀或高血壓相關(guān),但這些SNP僅僅貢獻(xiàn)了1%~2%的遺傳度[12~14]。雖然GWAS通過全基因組SNP系統(tǒng)掃描避免了偏倚并減少了假陽性,但多重統(tǒng)計(jì)檢驗(yàn)及嚴(yán)格的校正也降低了其檢出真實(shí)信號(hào)的效能[15]。以往連鎖分析和候選基因法得到的“高血壓易感SNP”極少在這些高血壓GWAS中被檢出,不同GWAS之間的陽性結(jié)果也很少有重疊,大樣本人群對(duì)GWAS結(jié)果的驗(yàn)證大部分以失敗而告終[9,16,17]。目前商業(yè)化的 SNP芯片主要依據(jù)高加索人群的遺傳多態(tài)性進(jìn)行設(shè)計(jì),考慮到不同人群遺傳背景的差異,將其直接應(yīng)用于非洲或亞洲人群時(shí)可能存在較大偏倚[18]。利用家系連鎖分析、病例-對(duì)照候選基因法及 GWAS,依舊不能有效地發(fā)現(xiàn)普通人群的高血壓易感基因或位點(diǎn)[19,20]。正是這些困難的存在,需要人們對(duì)高血壓遺傳學(xué)的研究策略做出調(diào)整,嘗試從不同的角度開展研究。

    1 人類走出非洲與“節(jié)儉基因假說”

    根據(jù)化石、古人類DNA和現(xiàn)代人DNA等證據(jù),解剖學(xué)上的現(xiàn)代人(Anatomically modern human, AMH),即智人(Homo sapiens)大約于20萬年前起源于非洲[21~23]。大約在10萬年前,非洲人從東非走出非洲,隨后遷徙至世界各地定居生存[24~26]。在歷史遷徙過程中,對(duì)不同環(huán)境選擇壓力的廣泛適應(yīng)形成了今天人類的遺傳多樣性,而這些遺傳多樣性又與不同人群的表型和疾病易感性差異密切相關(guān)[27~35]。隨著人類學(xué)、流行病學(xué)、遺傳學(xué)等研究領(lǐng)域的不斷發(fā)展,科研人員開始從分子進(jìn)化角度對(duì)人類的疾病易感性展開研究[36~39]。

    1962年,美國(guó)密歇根大學(xué)的人類遺傳學(xué)家James V. Neel教授從生物進(jìn)化的角度對(duì)人類肥胖和糖尿病等問題進(jìn)行了分析,首次提出了“節(jié)儉基因假說”(The thrifty gene hypothesis)[40,41]。該假說認(rèn)為:在采集-狩獵型社會(huì)和農(nóng)業(yè)社會(huì)初期,人們經(jīng)常受到食物短缺或饑荒的威脅。人類的祖先為了適應(yīng)當(dāng)時(shí)食物缺乏的環(huán)境,逐漸進(jìn)化出能有效儲(chǔ)存能量的能力,以提高自身生存的機(jī)會(huì)。經(jīng)過長(zhǎng)期的適應(yīng)過程,那些能夠在進(jìn)食后較多地將食物能量?jī)?chǔ)存起來的個(gè)體因?yàn)槠漭^易耐受長(zhǎng)期饑餓而存活下來,那些能有效控制能量?jī)?chǔ)存的基因就叫做“節(jié)儉基因”。因此,節(jié)儉基因在食物貧瘠的時(shí)代,對(duì)人類的生存和種族繁衍具有重要作用。隨著社會(huì)經(jīng)濟(jì)的發(fā)展,食物獲取不再困難,甚至出現(xiàn)了過剩的現(xiàn)象,這些曾經(jīng)有利的節(jié)儉基因反而成了肥胖和糖尿病等疾病的易感基因。

    2 “走出非洲”的環(huán)境溫度適應(yīng)與高血壓易感性

    在非洲炎熱的環(huán)境中,人體主要通過大量出汗來維持體溫恒定,當(dāng)時(shí)的非洲人出汗量最高時(shí)可達(dá)2 L/h[42]。大量出汗導(dǎo)致鈉鹽流失,而在非洲熱帶氣候中鈉鹽的供給又非常少。因此,機(jī)體需要極力阻止鈉鹽的流失以維持正常的生理功能。熱帶環(huán)境中生活的人類及其他靈長(zhǎng)類動(dòng)物均有很強(qiáng)的鈉鹽親和性,為這個(gè)假說提供了很好的證據(jù)。大量出汗還會(huì)造成夜間血容量不足,從而導(dǎo)致動(dòng)脈張力和心肌收縮增強(qiáng)以維持正常的血液供應(yīng)[43]。因此,那些能增強(qiáng)鈉鹽保留及動(dòng)脈、心肌收縮性的基因變異能幫助早期非洲人適應(yīng)當(dāng)?shù)匮谉岬臍夂颦h(huán)境。

    大約在10萬年前,我們的祖先從東非出發(fā),經(jīng)過幾萬年的遷徙,在世界各地繁衍生息。在走出非洲的過程中,氣溫和環(huán)境濕度也發(fā)生了巨大的變化,人體的氣候環(huán)境適應(yīng)需求也發(fā)生改變,如適應(yīng)寒冷氣候人群的需求從散熱逐步轉(zhuǎn)變?yōu)楸E痆44],不需要過多的鈉潴留,血管反應(yīng)性也開始降低[45]。因此,在走出非洲的過程中,鈉鹽親和力及動(dòng)脈、心肌收縮性的選擇壓力也發(fā)生變化以適應(yīng)當(dāng)?shù)氐纳鏆夂颦h(huán)境。隨著近代工業(yè)發(fā)展和交通便利,出現(xiàn)了頻繁的大規(guī)模地域間移民。適應(yīng)世代居住環(huán)境并相對(duì)穩(wěn)定的遺傳背景與移民后新的生活環(huán)境之間的矛盾將可能導(dǎo)致諸多疾病的產(chǎn)生,而不同的鈉鹽親和力與血管反應(yīng)性也可能造成不同人群在同一生活環(huán)境中高血壓的易感性差異。如美國(guó)第3次全國(guó)健康與營(yíng)養(yǎng)調(diào)查發(fā)現(xiàn):在現(xiàn)有美國(guó)居民中,與歐洲移民后代相比,非洲移民的后代更容易發(fā)生高血壓,而且發(fā)病趨于低齡化,病情更嚴(yán)重[46,47]。因此,Young等[29]提出人群間不同的高血壓易感性可能與人類走出非洲時(shí)經(jīng)歷了不同氣候進(jìn)化選擇的遺傳背景相關(guān)。

    為了驗(yàn)證這個(gè)觀點(diǎn),3個(gè)研究小組分別對(duì)AGT、CYP3A5和 GNB3等與血壓調(diào)控密切相關(guān)的基因進(jìn)行了自然選擇分析。與高鈉鹽親和力密切相關(guān)的AGT-6A、CYP3A5*1和GNB3 825T等祖先等位基因頻率與緯度均存在顯著的負(fù)相關(guān)性。這些祖先等位基因在赤道附近的非洲人群中具有較高的頻率;而走出非洲后,能降低鈉鹽親和力的衍生等位基因的頻率顯著增高[29,48,49]。對(duì)AGT-6G和GNB3 825C這兩個(gè)衍生等位基因的鄰近序列分析發(fā)現(xiàn),它們兩側(cè)存在廣泛的連鎖不平衡和較少的單倍型[29,48]。這些證據(jù)都證明了這3個(gè)多態(tài)位點(diǎn)中能降低鈉鹽親和性的衍生等位基因頻率在環(huán)境正選擇作用下逐漸升高,以適應(yīng)走出非洲后相對(duì)寒冷的生存環(huán)境。適應(yīng)古老環(huán)境并且相對(duì)穩(wěn)定的遺傳背景很難在進(jìn)化尺度上很短的時(shí)間內(nèi)(比如近代的人群遷徙、定居)重新快速適應(yīng)移民后的新環(huán)境,從而使得人群的遺傳背景與生活環(huán)境產(chǎn)生了偏差。因此,在近代人類移居到寒冷環(huán)境時(shí),能降低鈉鹽親和性的衍生等位基因受到正選擇,而那些適應(yīng)了炎熱氣候的祖先等位基因就可能成了“有害”的高血壓遺傳易感位點(diǎn)[50]。雖然這方面研究目前僅涉及上述 3個(gè)基因,但為高血壓的遺傳學(xué)研究提供了新的思路。

    3 中國(guó)人群環(huán)境溫度適應(yīng)與高血壓易感性研究

    中國(guó)科學(xué)院昆明動(dòng)物研究所張亞平院士領(lǐng)導(dǎo)的研究小組和復(fù)旦大學(xué)金力院士領(lǐng)導(dǎo)的研究小組分別通過線粒體DNA、Y染色體和全基因組遺傳多態(tài)性研究,發(fā)現(xiàn)走出非洲的現(xiàn)代人類祖先約于 1.8~6萬年前首先擴(kuò)散到東南亞大陸,隨后向北方擴(kuò)張和遷移,因此中華民族起源于南方[24,51~54]。我國(guó)的高血壓流行病學(xué)調(diào)查顯示,北方地區(qū)的患病率要高于南方,中部地區(qū)居中[4]。上述流行病學(xué)調(diào)查數(shù)據(jù)及東亞人群的南方起源和史前北遷歷史提示我國(guó)不同地區(qū)人群高血壓的易感性差異也很可能與氣候環(huán)境密切相關(guān)。相較于全球人群,中國(guó)人群遺傳背景相對(duì)均一,但人群居住地域廣闊、居住地氣候環(huán)境復(fù)雜多樣,因此通過分子進(jìn)化研究很有可能發(fā)現(xiàn)中國(guó)人群高血壓的真正致病基因及易感位點(diǎn)。

    本研究小組從CEPH-HGDP數(shù)據(jù)庫(kù)中獲取了腎素-血管緊張素-醛固酮系統(tǒng)(Renin-angiotensin-aldosterone system, RAAS)的 AGT、ACE、AGTR1、AGTR2、CYP11B2和REN等6個(gè)基因共241個(gè)SNP,進(jìn)行環(huán)境因素的Pearson關(guān)聯(lián)分析、多元線性回歸分析和進(jìn)化分析(FST、iHS),發(fā)現(xiàn)有5個(gè)SNP在亞洲人群中與環(huán)境溫度適應(yīng)相關(guān),且均位于AGTR1基因。通過大樣本中國(guó)漢族人群的原發(fā)性高血壓病例-對(duì)照研究,發(fā)現(xiàn)其中的2個(gè)SNP與高血壓的易感性密切相關(guān)。如圖1所示,該項(xiàng)研究中發(fā)現(xiàn)的與溫度適應(yīng)相關(guān)且增加高血壓患病風(fēng)險(xiǎn)的SNP1的C等位基因和SNP2的A等位基因在非洲人群中都是高頻等位基因,而在歐洲和亞洲人群中則是低頻等位基因,這也說明了在近代人類移居到寒冷環(huán)境時(shí),那些適應(yīng)了炎熱氣候的祖先等位基因就可能成了“有害”的高血壓遺傳易感位點(diǎn)。目前本研究小組正從全基因組水平篩選受環(huán)境溫度選擇的 SNP,并明確其與高血壓的相關(guān)性及作用機(jī)理。

    圖1 環(huán)境溫度與高血壓易感等位基因頻率的相關(guān)性與高血壓易感性密切相關(guān)的AGTR1基因SNP1 C和SNP2 A等位基因頻率與環(huán)境溫度存在顯著的正相關(guān)性。

    該項(xiàng)研究中,RAAS基因受環(huán)境溫度進(jìn)化選擇的所有 SNP均落在編碼 1型血管緊張素 II受體的AGTR1基因上,且其中兩個(gè)SNP與高血壓相關(guān)并非偶然。血管緊張素受體主要有4種類型,其中在人體中以1型受體(Angiotensin type 1 receptor, AT1)和2型受體(AT2)為主。人體內(nèi)參與血壓調(diào)控主要是AT1,它的激活可引起血管收縮、腎小管重吸收鈉增加和心臟收縮能力增強(qiáng)[55,56]。正是血管緊張素受體在血壓調(diào)控中的重要作用,血管緊張素受體拮抗劑已成為血管緊張素轉(zhuǎn)換酶抑制劑后的最新一代的治療高血壓臨床用藥[57]。血管緊張素受體在高血壓病理生理過程中的重要作用與本研究的結(jié)果相互印證,既說明AGTR1基因很可能是原發(fā)性高血壓的易感基因,也說明從分子進(jìn)化角度來研究高血壓的遺傳易感性具有重要的意義。

    4 展 望

    不同的氣候環(huán)境(溫度、濕度、降水等)對(duì)居住人群產(chǎn)生了不同選擇壓力。而近代頻繁的國(guó)際間移民,使得遺傳背景與居住環(huán)境之間產(chǎn)生偏差從而導(dǎo)致了疾病的易感性差異。類似的進(jìn)化研究思路已經(jīng)在人類體型大小、皮膚色素沉著和代謝疾病的研究中得到了很好的證實(shí)和應(yīng)用[37,58~60]。由此可見,從進(jìn)化選擇角度來探索高血壓的遺傳易感性可能為高血壓遺傳學(xué)研究提供了新的切入點(diǎn)。

    此外,疾病易感等位基因的地理分布或流行性顯得尤為重要。通過探索這些疾病易感基因(或位點(diǎn))的群體遺傳學(xué)、分子進(jìn)化史等,如不同地域人群中的等位基因頻率、等位基因的亞群體分化、群體歷史,和鄰近位點(diǎn)的連鎖不平衡等信息對(duì)于理解這些疾病易感基因的起源和人類進(jìn)化歷史非常重要。因而,從疾病易感基因(或位點(diǎn))的分子起源角度來研究臨床疾病可能為今后的研究提供一種新的、行之有效的思路。

    [1] The Lancet. Hypertension: an urgent need for global control and prevention. Lancet, 2014, 383(9932): 1861.

    [2] James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC Jr, Svetkey LP, Taler SJ, Townsend RR, Wright JT Jr, Narva AS, Ortiz E. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA, 2014, 311(5): 507-520.

    [3] Padmanabhan S, Newton-Cheh C, Dominiczak AF. Genetic basis of blood pressure and hypertension. Trends Genet, 2012, 28(8): 397-408.

    [4] 《中國(guó)高血壓防治指南》修訂委員會(huì). 中國(guó)高血壓防治指南(2010 年修訂版). 北京: 人民衛(wèi)生出版社, 2012.

    [5] van Rijn MJ, Schut AF, Aulchenko YS, Deinum J, Sayed-Tabatabaei FA, Yazdanpanah M, Isaacs A, Axenovich TI, Zorkoltseva IV, Zillikens MC, Pols HA, Witteman JC, Oostra BA, van Duijn CM. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens, 2007, 25(3): 565-570.

    [6] Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell, 2001, 104(4): 545-556.

    [7] Basson J, Simino J, Rao DC. Between candidate genes and whole genomes: time for alternative approaches in blood pressure genetics. Curr Hypertens Rep, 2012, 14(1): 46-61.

    [8] Kraja AT, Hunt SC, Rao DC, Dávila-Román VG, Arnett DK, Province MA. Genetics of hypertension and cardiovascular disease and their interconnected pathways: lessons from large studies. Curr Hypertens Rep, 2011, 13(1): 46-54.

    [9] Ji LD, Zhang LN, Xu J. Genome-wide association studies of hypertension: Achievements, difficulties and strategies. World J Hypertens, 2011, 1(1): 10-14.

    [10] Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T, Aulchenko Y, Lumley T, K?ttgen A, Vasan RS, Rivadeneira F, Eiriksdottir G, Guo XQ, Arking DE, Mitchell GF, Mattace-Raso FU, Smith AV, Taylor K, Scharpf RB, Hwang SJ, Sijbrands EJ, Bis J, Harris TB,Ganesh SK, O'Donnell CJ, Hofman A, Rotter JI, Coresh J, Benjamin EJ, Uitterlinden AG, Heiss G, Fox CS, Witteman JC, Boerwinkle E, Wang TJ, Gudnason V, Larson MG, Chakravarti A, Psaty BM, van Duijn CM. Genome-wide association study of blood pressure and hypertension. Nat Genet, 2009, 41(6): 677-687.

    [11] Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, D?ring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvanen AC, Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dorr M, Ernst F, Felix SB, Homuth G, Lorbeer R, Reffelmann T, Rettig R, Volker U, Galan P, Gut IG, Hercberg S, Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai GJ, Salomaa V, Laakso M, Elosua R, Forouhi NG, V?lzke H, Uiterwaal CS, van der Schouw YT, Numans ME, Matullo G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, Elliott P, Abecasis GR, Caulfield M, Munroe PB. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet, 2009, 41(6): 666-676.

    [12] Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sober S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, van der Harst P, Kao WH, Sjogren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen KD, Lehtimaki T, Matullo G, Wu Y, Gaunt TR, Onland-Moret NC, Cooper MN, Platou CG, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CS, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, Aspelund T, Garcia M, Chang YP, O'Connell JR, Steinle NI, Grobbee DE, Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day IN, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis JC, Kahonen M, Viikari J, Adair LS, Lee NR, Chen MH, Olden M, Pattaro C, Bolton JA, Kottgen A, Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann J, Kulkarni SR, Bornstein SR, Grassler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw KT, Weder AB, Hunt SC, Sun YV, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand SM, Staessen JA, Wang TJ, Burton PR, Artigas MS, Dong Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann HE, Cho YS, Kim HL, Lee JY, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stancakova A, Raffel LJ, Yao J, Kathiresan S, O'Donnell CJ, Schwartz SM, Ikram MA, Longstreth WT, Jr., Mosley TH, Seshadri S, Shrine NR, Wain LV, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJ, van Gilst WH, Janipalli CS, Mani KR, Yajnik CS, Hofman A, Mattace-Raso FU, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala-Korpela M, Kangas AJ, Lyytikainen LP, Soininen P, Tukiainen T, Wurtz P, Ong RT, Dorr M, Kroemer HK, Volker U, Volzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MV,Denniff M, Zukowska-Szczechowska E, Wagenknecht LE, Fowkes FG, Charchar FJ, Schwarz PE, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, Vineis P, Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han BG, Zhu X, Kooner JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler D, Loos RJ, Shuldiner AR, Gieger C, Meneton P, Uitterlinden AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, Strachan DP, Witteman JC, Hartikainen AL, Beckmann JS, Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Jarvelin MR, Psaty BM, Abecasis GR, Chakravarti A, Elliott P, van Duijn CM, Newton-Cheh C, Levy D, Caulfield MJ, Johnson T, Tang H, Knowles J, Hlatky M, Fortmann S, Assimes TL, Quertermous T, Go A, Iribarren C, Absher D, Risch N, Myers R, Sidney S, Ziegler A, Schillert A, Bickel C, Sinning C, Rupprecht HJ, Lackner K, Wild P, Schnabel R, Blankenberg S, Zeller T, Munzel T, Perret C, Cambien F, Tiret L, Nicaud V, Proust C, Uitterlinden A, van Duijn C, Whitteman J, Cupples LA, Demissie-Banjaw S, Ramachandran V, Smith A, Folsom A, Morrison A, Chen IY, Bis J, Volcik K, Rice K, Taylor KD, Marciante K, Smith N, Glazer N, Heckbert S, Harris T, Lumley T, Kong A, Thorleifsson G, Thorgeirsson G, Holm H, Gulcher JR, Stefansson K, Andersen K, Gretarsdottir S, Thorsteinsdottir U, Preuss M, Schreiber S, Konig IR, Lieb W, Hengstenberg C, Schunkert H, Fischer M, Grosshennig A, Medack A, Stark K, Linsel-Nitschke P, Bruse P, Aherrahrou Z, Peters A, Loley C, Willenborg C, Nahrstedt J, Freyer J, Gulde S, Doering A, Meisinger C, Klopp N, Illig T, Meinitzer A, Tomaschitz A, Halperin E, Dobnig H, Scharnagl H, Kleber M, Laaksonen R, Pilz S, Grammer TB, Stojakovic T, Renner W, Marz W, Bohm BO, Winkelmann BR, Winkler K, Hoffmann MM, Siscovick DS, Musunuru K, Barbalic M, Guiducci C, Burtt N, Gabriel SB, Stewart AF, Wells GA, Chen L, Jarinova O, Roberts R, McPherson R, Dandona S, Pichard AD, Rader DJ, Devaney J, Lindsay JM, Kent KM, Qu L, Satler L, Burnett MS, Li M, Reilly MP, Wilensky R, Waksman R, Epstein S, Matthai W, Knouff CW, Waterworth DM, Hakonarson HH, Walker MC, Hall AS, Balmforth AJ, Wright BJ, Nelson C, Thompson JR, Ball SG, Felix JF, Demissie S, Loehr LR, Rosamond WD, Folsom AR, Benjamin E, Aulchenko YS, Haritunians T, Couper D, Murabito J, Wang YA, Stricker BH, Gottdiener JS, Chang PP, Willerson JT, Boger CA, Fuchsberger C, Gao X, Yang Q, Schmidt H, Ketkar S, Pare G, Atkinson EJ, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Tonjes A, Eiriksdottir G, Launer LJ, Rampersaud E, Mitchell BD, Struchalin M, Cavalieri M, Giallauria F, Metter J, de Boer J, Siscovick D, Zillikens MC, Feitosa M, Province M, de Andrade M, Turner ST, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Zaboli G, Ellinghaus D, Imboden M, Nitsch D, Brandstatter A, Kollerits B, Kedenko L, Magi R, Stumvoll M, Kovacs P, Boban M, Campbell S, Endlich K, Nauck M, Badola S, Curhan GC, Franke A, Rochat T, Paulweber B, Wang W, Schmidt R, Shlipak MG, Borecki I, Kramer BK, Gyllensten U, Hastie N, Heid IM, Fox CS, Felix SB, Watzinger N, Homuth G, Aragam J, Zweiker R, Lind L, Rodeheffer RJ, Greiser KH, Deckers JW, Stritzke J, Lackner KJ, Ingelsson E, Kullo I, Haerting J, Reffelmann T, Redfield MM, Werdan K, Mitchell GF, Arnett DK, Blettner M, Friedrich N, Benjamin EJ, Lord GM, Gale DP, Wass MN, Ahmadi KR, Beckmann J, Bilo HJ, Cook HT, Cotlarciuc I, Davey Smith G, de Silva R, Deng G, Devuyst O, Dikkeschei LD, Dimkovic N, Dockrell M, Dominiczak A, Ebrahim S, Eggermann T, Floege J, Forouhi NG, Gansevoort RT, Han X, Homan van der Heide JJ, Hepkema BG, Hernandez-Fuentes M, Hypponen E, de Jong PE, Kleefstra N, Lagou V, Lapsley M, Luttropp K, Marechal C, Nordfors L, Penninx BW, Perucha E, Pouta A, Roderick PJ, Ruokonen A, Sanna S, Schalling M, Schlessinger D, Schlieper G, Seelen MA, Smit JH, Stenvinkel P, Sternberg MJ, Swaminathan R, Ubink-Veltmaat LJ, Wallace C, Waterworth D, Zerres K, Waeber G, Maxwell PH, McCarthy MI, Lightstone L. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011, 478(7367): 103-109.

    [13] Kelly TN, Takeuchi F, Tabara Y, Edwards TL, Kim YJ, Chen P, Li HX, Wu Y, Yang CF, Zhang YH, Gu DF, Katsuya T, Ohkubo T, Gao YT, Go MJ, Teo YY, Lu L, Lee NR, Chang LC, Peng H, Zhao Q, Nakashima E, Kita Y, Shu XO, Kim NH, Tai ES, Wang YQ, Adair LS, Chen CH, Zhang SH, Li CW, Nabika T, Umemura S, Cai QY, Cho YS, Wong TY, Zhu JW, Wu JY, Gao X, Hixson JE, Cai H, Lee J, Cheng CY, Rao DC, Xiang YB, Cho MC, Han BG, Wang AL, Tsai FJ, Mohlke K, Lin X, Ikram MK, Lee JY, Zheng W, Tetsuro M, Kato N, He J. Genome-wide association study meta-analysis reveals transethnic replication ofmean arterial and pulse pressure loci. Hypertension, 2013, 62(5): 853-859.

    [14] Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, Tay WT, Chen CH, Zhang Y, Yamamoto K, Katsuya T, Yokota M, Kim YJ, Ong RT, Nabika T, Gu D, Chang LC, Kokubo Y, Huang W, Ohnaka K, Yamori Y, Nakashima E, Jaquish CE, Lee JY, Seielstad M, Isono M, Hixson JE, Chen YT, Miki T, Zhou XY, Sugiyama T, Jeon JP, Liu JJ, Takayanagi R, Kim SS, Aung T, Sung YJ, Zhang XG, Wong TY, Han BG, Kobayashi S, Ogihara T, Zhu DL, Iwai N, Wu JY, Teo YY, Tai ES, Cho YS, He J. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet, 2011, 43(6): 531-538.

    [15] Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet, 2013, 14(6): 379-389.

    [16] Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep, 2010, 12(1): 17-25.

    [17] Xu J, Ji LD, Zhang LN, Dong CZ, Fei LJ, Hua S, Tsai JY, Zhang YP. Lack of association between STK39 and hypertension in the Chinese population. J Hum Hypertens, 2013, 27(5): 294-297.

    [18] Franceschini N, Fox E, Zhang ZG, Edwards TL, Nalls MA, Sung YJ, Tayo BO, Sun YV, Gottesman O, Adeyemo A, Johnson AD, Young JH, Rice K, Duan Q, Chen F, Li Y, Tang H, Fornage M, Keene KL, Andrews JS, Smith JA, Faul JD, Zhang GF, Guo W, Liu Y, Murray SS, Musani SK, Srinivasan S, Velez Edwards DR, Wang HM, Becker LC, Bovet P, Bochud M, Broeckel U, Burnier M, Carty C, Chasman DI, Ehret G, Chen WM, Chen G, Chen W, Ding JZ, Dreisbach AW, Evans MK, Guo XQ, Garcia ME, Jensen R, Keller MF, Lettre G, Lotay V, Martin LW, Moore JH, Morrison AC, Mosley TH, Ogunniyi A, Palmas W, Papanicolaou G, Penman A, Polak JF, Ridker PM, Salako B, Singleton AB, Shriner D, Taylor KD, Vasan R, Wiggins K, Williams SM, Yanek LR, Zhao W, Zonderman AB, Becker DM, Berenson G, Boerwinkle E, Bottinger E, Cushman M, Eaton C, Nyberg F, Heiss G, Hirschhron JN, Howard VJ, Karczewsk KJ, Lanktree MB, Liu K, Liu YM, Loos R, Margolis K, Snyder M, Asian Genetic Epidemiology Network C, Psaty BM, Schork NJ, Weir DR, Rotimi CN, Sale MM, Harris T, Kardia SLR, Hunt SC, Arnett D, Redline S, Cooper RS, Risch NJ, Rao DC, Rotter JI, Chakravarti A, Reiner AP, Levy D, Keating BJ, Zhu XF. Genome-wide association analysis of bloodpressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet, 2013, 93(3): 545-554.

    [19] Wang XL, Prins BP, S?ber S, Laan M, Snieder H. Beyond genome-wide association studies: new strategies for identifying genetic determinants of hypertension. Curr Hypertens Rep, 2011, 13(6): 442-451.

    [20] Simino J, Rao DC, Freedman BI. Novel findings and future directions on the genetics of hypertension. Curr Opin Nephrol Hypertens, 2012, 21(5): 500-507.

    [21] Cavalli-Sforza LL, Feldman MW. The application of molecular genetic approaches to the study of human evolution. Nat Genet, 2003, 33(Suppl.3): 266-275.

    [22] McDougall I, Brown FH, Fleagle JG. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature, 2005, 433(7027): 733-736.

    [23] McEvoy BP, Powell JE, Goddard ME, Visscher PM. Human population dispersal "Out of Africa" estimated from linkage disequilibrium and allele frequencies of SNPs. Genome Res, 2011, 21(6): 821-829.

    [24] Ke YH, Su B, Song XF, Lu DR, Chen LF, Li HY, Qi CJ, Marzuki S, Deka R, Underhill P, Xiao CJ, Shriver M, Lell J, Wallace D, Wells RS, Seielstad M, Oefner P, Zhu DL, Jin JZ, Huang W, Chakraborty R, Chen Z, Jin L. African origin of modern humans in East Asia: a tale of 12,000 Y chromosomes. Science, 2001, 292(5519): 1151-1153.

    [25] Bowler JM, Johnston H, Olley JM, Prescott JR, Roberts RG, Shawcross W, Spooner NA. New ages for human occupation and climatic change at Lake Mungo, Australia. Nature, 2003, 421(6925): 837-840.

    [26] Pitulko VV, Nikolsky PA, Girya EY, Basilyan AE, Tumskoy VE, Koulakov SA, Astakhov SN, Pavlova EY, Anisimov MA. The Yana RHS site: humans in the Arctic before the last glacial maximum. Science, 2004, 303(5654): 52-56.

    [27] Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Riva S, Clerici M, Bresolin N, Sironi M. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J Exp Med, 2009, 206(6): 1395-1408.

    [28] Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K, Mortensen HM, Hirbo JB, Osman M, Ibrahim M, Omar SA, Lema G, Nyambo TB, Ghori J, Bumpstead S, Pritchard JK, Wray GA, Deloukas P. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet, 2007, 39(1): 31-40.

    [29] Young JH, Chang YP, Kim JDO, Chretien JP, Klag MJ, Levine MA, Ruff CB, Wang NY, Chakravarti A. Differential susceptibility to hypertension is due to selection duringthe out-of-Africa expansion. PLoS Genet, 2005, 1(6): e82.

    [30] Cagliani R, Sironi M. Pathogen-driven selection in the human genome. Int J Evol Biol, 2013, 2013: 204240.

    [31] Ranciaro A, Campbell MC, Hirbo JB, Ko WY, Froment A, Anagnostou P, Kotze MJ, Ibrahim M, Nyambo T, Omar SA, Tishkoff SA. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am J Hum Genet, 2014, 94(4): 496-510.

    [32] Jablonski NG, Chaplin G. Human skin pigmentation, migration and disease susceptibility. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1590): 785-792.

    [33] Jobling MA. The impact of recent events on human genetic diversity. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1590): 793-799.

    [34] McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol, 2012, 8(3): 371-382.

    [35] Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol, 2011, 29: 447-491.

    [36] Jobling M, Hollox E, Hurles M, Kivisild T, Tyler-Smith C. Human evolutionary genetics (2nd edition). New York: Garland Science, 2013.

    [37] Canfield VA, Berg A, Peckins S, Wentzel SM, Ang KC, Oppenheimer S, Cheng KC. Molecular phylogeography of a human autosomal skin color locus under natural selection. G3 (Bethesda), 2013, 3(11): 2059-2067.

    [38] Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol, 2013, 5(11): a021220.

    [39] Quintana-Murci L, Clark AG. Population genetic tools for dissecting innate immunity in humans. Nat Rev Immunol, 2013, 13(4): 280-293.

    [40] Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am J Hum Genet, 1962, 14(4): 353-362.

    [41] Neel JV, Weder AB, Julius S. Type II diabetes, essential hypertension, and obesity as "syndromes of impaired genetic homeostasis": the "thrifty genotype" hypothesis enters the 21st century. Perspect Biol Med, 1998, 42(1): 44-74.

    [42] Ladell WSS. Terrestrial animals in humid heat: Man. In: Dill DB, Adolph EF, Wilber CG (eds). Handbook of physiology, section 4: Adaption to the environment. Washington DC: American Physiological Society, 1964, 625-659.

    [43] Sawka MN, Montain SJ, Latzka WA. Hydration effects on thermoregulation and performance in the heat. Comp Biochem Physiol A Mol Integr Physiol, 2001, 128(4): 679-690.

    [44] Makinen TM. Different types of cold adaptation in humans. Front Biosci (Schol Ed), 2010, 2: 1047-1067.

    [45] Stein CM, Lang CC, Singh I, He HB, Wood AJJ. Increased vascular adrenergic vasoconstriction and decreased vasodilation in blacks. Additive mechanisms leading to enhanced vascular reactivity. Hypertension, 2000, 36(6): 945-951.

    [46] Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, Horan MJ, Labarthe D. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension, 1995, 25(3): 305-313.

    [47] Tu WZ, Pratt JH. A consideration of genetic mechanisms behind the development of hypertension in blacks. Curr Hypertens Rep, 2013, 15(2): 108-113.

    [48] Nakajima T, Wooding S, Sakagami T, Emi M, Tokunaga K, Tamiya G, Ishigami T, Umemura S, Munkhbat B, Jin F, Guan-Jun J, Hayasaka I, Ishida T, Saitou N, Pavelka K, Lalouel JM, Jorde LB, Inoue I. Natural selection and population history in the human angiotensinogen gene (AGT): 736 complete AGT sequences in chromosomes from around the world. Am J Hum Genet, 2004, 74(5): 898-916.

    [49] Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A. CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet, 2004, 75(6): 1059-1069.

    [50] Weder AB. Evolution and hypertension. Hypertension, 2007, 49(2): 260-265.

    [51] Su B, Xiao JH, Underhill P, Deka R, Zhang WL, Akey J, Huang W, Shen D, Lu DR, Luo JC, Chu JY, Tan JZ, Shen PD, Davis R, Cavalli-Sforza L, Chakraborty R, Xiong MM, Du RF, Oefner P, Chen Z, Jin L. Y-Chromosome evidence for a northward migration of modern humans into Eastern Asia during the last Ice Age. Am J Hum Genet, 1999, 65(6): 1718-1724.

    [52] Kong QP, Yao YG, Sun C, Bandelt HJ, Zhu CL, Zhang YP. Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences. Am J Hum Genet, 2003, 73(3): 671-676.

    [53] Yao YG, Kong QP, Bandelt HJ, Kivisild T, Zhang YP. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet, 2002, 70(3): 635-651.

    [54] Abdulla MA, Ahmed I, Assawamakin A, Bhak J, Brahmachari SK, Calacal GC, Chaurasia A, Chen CH, Chen J, Chen YT, Chu J, Cutiongco-de la Paz EM, De Ungria MC, Delfin FC, Edo J, Fuchareon S, Ghang H,Gojobori T, Han J, Ho SF, Hoh BP, Huang W, Inoko H, Jha P, Jinam TA, Jin L, Jung J, Kangwanpong D, Kampuansai J, Kennedy GC, Khurana P, Kim HL, Kim K, Kim S, Kim WY, Kimm K, Kimura R, Koike T, Kulawonganunchai S, Kumar V, Lai PS, Lee JY, Lee S, Liu ET, Majumder PP, Mandapati KK, Marzuki S, Mitchell W, Mukerji M, Naritomi K, Ngamphiw C, Niikawa N, Nishida N, Oh B, Oh S, Ohashi J, Oka A, Ong R, Padilla CD, Palittapongarnpim P, Perdigon HB, Phipps ME, Png E, Sakaki Y, Salvador JM, Sandraling Y, Scaria V, Seielstad M, Sidek MR, Sinha A, Srikummool M, Sudoyo H, Sugano S, Suryadi H, Suzuki Y, Tabbada KA, Tan A, Tokunaga K, Tongsima S, Villamor LP, Wang E, Wang Y, Wang H, Wu JY, Xiao H, Xu S, Yang JO, Shugart YY, Yoo HS, Yuan W, Zhao G, Zilfalil BA. Mapping human genetic diversity in Asia. Science, 2009, 326(5959): 1541-1545.

    [55] Horiuchi M, Iwanami J, Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond), 2012, 123(4): 193-203.

    [56] Savoia C, Volpe M. Angiotensin receptor modulation and cardiovascular remodeling. J Renin Angiotensin Aldosterone Syst, 2011, 12(3): 381-384.

    [57] de la Sierra A, Barrios V. Blood pressure control with angiotensin receptor blocker-based three-drug combinations: key trials. Adv Ther, 2012, 29(5): 401-415.

    [58] Ji LD, Xu J, Zhang YP. Environmental adaptation studies in human populations (in Chinese). Chin Sci Bull (Chin Ver), 2012, 57(2-3): 112-119.

    [59] Jeong C, Di Rienzo A. Adaptations to local environments in modern human populations. Curr Opin Genet Dev, 2014, 29: 1-8.

    [60] Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations. Mol Biol Evol, 2012, 29(11): 3359-3370.

    (責(zé)任編委: 趙彥艷)

    The evolutionary study of susceptibility genes for essential hypertension

    Lindan Ji1,2, Haixia Qian3, Jin Xu2,3

    1. Department of Biochemistry, School of Medicine, Ningbo University, Ningbo 315211, China;
    2. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
    3. Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China

    Genetic studies, including familial linkage analysis, candidate gene approach and genome-wide association study, to some extent, have failed in detecting confirmative susceptibility genes/loci for essential hypertension (EH) in the general population. Previous genetic studies have suggested that differential susceptibility to many metabolic diseases is due to different environmental adaptation patterns during the out-of-Africa expansion, which provides a new strategy for the genetic study of EH. In this review, we introduce the principle and the latest progress of evolutionary study of susceptibility genes for EH. Furthermore, our recent evolutionary screening for EH susceptible genes/loci in Chinese Han population is also summarized. This review is expected to provide useful information for future genetic studies of EH and many other diseases.

    essential hypertension; genetic susceptibility; evolution; adaptation

    2014-08-20;

    2014-09-15

    國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):81402747)和浙江省自然科學(xué)基金項(xiàng)目(編號(hào):LQ13C060001)資助

    季林丹,博士后,講師,研究方向:分子進(jìn)化與疾病遺傳學(xué)。E-mail: jilindan@nbu.edu.cn

    徐進(jìn),副教授,碩士生導(dǎo)師,研究方向:分子進(jìn)化與疾病遺傳學(xué)。E-mail: xujin1@nbu.edu.cn

    10.3724/SP.J.1005.2014.1195

    時(shí)間: 2014-9-24 14:08:02

    URL: http://www.cnki.net/kcms/detail/11.1913.R.20140926.1342.003.html

    猜你喜歡
    易感性等位基因非洲
    親子鑒定中男性個(gè)體Amelogenin基因座異常1例
    智慧健康(2021年17期)2021-07-30 14:38:32
    《走出非洲》:關(guān)于非洲最美的一本書
    非洲反腐敗新觀察
    刑法論叢(2018年2期)2018-10-10 03:31:38
    非洲鼓,打起來
    WHOHLA命名委員會(huì)命名的新等位基因HLA-A*24∶327序列分析及確認(rèn)
    DXS101基因座稀有等位基因的確認(rèn)1例
    CD14啟動(dòng)子-260C/T基因多態(tài)性與胃癌易感性的Meta分析
    α1抗胰蛋白酶基因多態(tài)性與肺癌易感性的研究
    TLR9和VDR基因多態(tài)性與結(jié)核病易感性的相關(guān)性分析
    非洲的遠(yuǎn)程教育
    泰和县| 漳州市| 乾安县| 哈巴河县| 凤翔县| 精河县| 沧源| 深水埗区| 高密市| 宣汉县| 苍溪县| 攀枝花市| 基隆市| 阿图什市| 简阳市| 布拖县| 凤凰县| 托里县| 肃南| 赤城县| 尼勒克县| 文昌市| 阿图什市| 乌拉特前旗| 安达市| 尖扎县| 鹿邑县| 成都市| 翼城县| 黄大仙区| 江门市| 阿荣旗| 三都| 寿阳县| 唐山市| 无极县| 慈利县| 高邑县| 吉隆县| 普兰县| 海原县|