• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative Study on the Allergenicity of Different Litopenaeus vannamei Extract Solutions

    2014-05-02 05:42:18WULishaLINHaixinWANGGuoyingLUZongchaoCHENGuanzhiLINHongandLIZhenxing
    Journal of Ocean University of China 2014年1期

    WU Lisha, LIN Haixin, WANG Guoying, LU Zongchao, CHEN Guanzhi, LIN Hong, and LI Zhenxing,

    1) Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China

    2) Departments of Immunology, Qingdao University, Qingdao 266383, P. R. China

    3) The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, P. R. China

    Comparative Study on the Allergenicity of Different Litopenaeus vannamei Extract Solutions

    WU Lisha1), LIN Haixin1), WANG Guoying2), LU Zongchao1), CHEN Guanzhi3), LIN Hong1), and LI Zhenxing1),*

    1) Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China

    2) Departments of Immunology, Qingdao University, Qingdao 266383, P. R. China

    3) The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, P. R. China

    Allergen extracts are widely used for allergy diagnosis and treatment. The application of shrimp extract is hampered due to the low protein concentration and the inconsistent allergenicity. Extracting solutions are considered to be the primary limiting factor of protein extraction from crustaceans. This study aimed to select an optimal solution for shrimp protein extraction by comparing the allergenicity of different shrimp extracts. The effect of 7 existing or modified extracting solutions were evaluated, including the glycerol-NaCl solution, the glycerol Cocaine’s solution, the buffered saline solution, the Cocaine’s solution, the Glucose leaching solution, 1 mol L?1KCl solution, and 0.01 mol L?1phosphate buffered saline solution with and without dithiothreitolor (DTT). The quantitative (protein concentration) and qualitative parameters (SDS-PAGE protein patterns and immuno-reactivity) were determined using the sodium dodecyl sulfate polyacrylamide gel electrophoresis, enzyme linked immunosorbent assay and immunoblotting assay. Results showed that the 1 mol L?1KCl solution with DTT was optimal for shrimp protein extraction, which yielded high concentration and allergenicity in the protein extract, including major and minor allergens. The 1 mol L?1KCl solution with DDT is proposed for preparation of shrimp extract and associated allergy diagnosis, as well as potential applications for other crustaceans.

    shrimp; allergen; protein extract; extracting solution; allergenicity

    1 Introduction

    In recent years, the incidence of food allergic disease has substantially increased and food allergy has become an important food safety issue. The Food and Agriculture Organization of the United Nations (FAO) has identified 8 categories of food allergens which can easily cause human allergic reactions, including crustaceans (shrimps and crabs) (Deanet al., 1997). In shrimp sensitized individuals, the allergic reactions are characterized by the development of urticaria, vomiting, diarrhea, angioedema, asthma, and even life-threatening anaphylactic reactions (Daulet al., 1994). Natural allergenic products are commonly used for the diagnosis and treatment of allergic diseases. Laboratory diagnostic testing of food allergy relies on the detection of food allergen-specific IgE antibody in the skin (skin prick test) or in the serum. Double-blind, placebo-controlled oral food challenges are currently the standard for food allergy diagnosis (Bocket al., 1988; Sichereret al., 2006). The allergen extracts are needed as the prick test fluid and fixed antigen for determination of the serum IgE specificity.

    Ideally, a standardized extract must contain defined and consistent amounts of all the major and minor allergens with biologically activity (Jonaet al., 1997). In shrimps, the identified major allergens are proteins with molecular mass of 35–38 kDa, including the 34–39 kDa tropomyosin and a myofibrillar protein (Shantiet al., 1993; Daulet al., 1994; Leunget al., 1994). In addition, the shrimps contain minor allergens such as triosephosphate isomerase (28 kDa) (Bauermeisteret al., 2008), sarcoplasmic calcium-binding protein (20 kDa) (Shiomiet al., 2008; Ayusoet al., 2009), myosin light chain (20 kDa) (Ayusoet al., 2008), Troponin C (18 kDa) (Yuet al., 2008), and arginine kinase (40 kDa) (García-Orozcoet al., 2007). To ensure the thorough extraction of all the allergens capable of causing allergenic activities from shrimps, it is worthy selecting an optimal extracting solution.

    Dithiothreitolor (DTT) is a strong reducing agent commonly used for allergen extraction from a variety of animals and plants (Kathleenet al., 1984; Fredet al., 1980), particularly shrimps (Patricket al., 1994; Shantiet al., 1993). However, it remains unclear whether DTT affects the concentration and allergenicity of the protein extracts. Thus, this study compared the protein extraction effect of 7 extracting solutions with DTT and withoutDTT using biochemical and immunochemical methods. Results were used to select an optimal solution for allergen extraction from shrimps as well as other crustaceans.

    2 Materials and Methods

    2.1 Materials

    The shrimps (Litopenaeus vannamei) were purchased from a local market in Qingdao, China. After removal of the shells and heads, the shrimps were stored at ?20℃prior to use. Seven different extracting solutions were prepared (Table 1), including the glycerol-NaCl solution, the glycerol Cocaine’s solution, the buffered saline solution, the Cocaine’s solution, the Glucose leaching solution, the 1 mol L?1KCl solution, and the 0.01 mol L?1phosphate buffered saline (PBS) solution. Distilled water was used as control. The extracting solutions were used in two groups with and without dithiothreitol (DTT, Sigma, Missouri, USA), respectively.

    Table 1 The composition of shrimp protein extracting solutions

    Protein standards for SDS-polyacrylamide gel electrophoresis (SDS-PAGE) were from Fermentas (Lithuania). Rabbit antiserum against tropomyosin was prepared by the Beijing Genomics Institute. Goat anti-human IgE and goat anti-rabbit IgG conjugated with peroxidase were purchased from Sigma (Missouri, USA) for Western blotting and indirect ELISA assays. Solid-phase enzyme immunoassays were using 96-well microtiter plates (Nunc, Denmark) and a Multiskan MK3 ELISA reader (Thermo Labsystems). Unless otherwise stated, all reagents were analytical grade.

    Sera were obtained from 4 patients in the Affiliated Hospital of Medical College of Qingdao University, Qingdao. The patients were selected based on their past clinical history of shrimp allergy,e.g., urticaria and diarrhea after ingestion of shrimps. All sera were stored at?80℃ until used.

    2.2 Methods

    2.2.1 Preparation of acetone powder

    Acetone powder was prepared from the shrimps used the method described by Greaser and Gergely (1971). Peeled shrimps were weighed and homogenized in a 0.85% sodium chloride (NaCl) solution (1 g mL?1). The homogenate was transferred to cold acetone (?20℃ precooling) at the ratio of 1:4. After stirring at 4℃ in 30 min, the mixture was centrifuged at 4000 r min?1for 15 min. The pellet was suspended in cold acetone again, and then centrifuged till the supernatant was clear. The supernatant was transferred to a clean filter paper and dried at room temperature, then ground and sieved through a 200 mesh. The obtained acetone powder was stored in a sealed glass container prior to use.

    2.2.2 Protein extraction

    The acetone powder (3 g) was extracted overnight with 30 mL of extracting solutions at 4℃. After centrifugation at 4000 r min?1for 30 min, the supernatant was dialyzed against double-distilled water for 24 h at 4℃. Then, the protein concentration was determined and the solution was lyophilized and stored at ?20℃ prior to use.

    2.2.3 Protein concentration determination

    The protein concentration was determined using bicinchoninic acid (BCA, Sigma, Missouri, USA) according to the Smith’s method (Lianget al., 2008) with slight modifications. Bovine serum albumin (BSA, Sigma, Missouri, USA) was used as the protein standard. The absorbance was measured at 590 nm, and each sample was measured in triplicate. Results are presented as the athrimetic mean values. One-dimensional variance analysis was carried out using SPSS 18.0.

    2.2.4 SDS-PAGE and immunoblotting assay

    SDS-PAGE was performed according to the method of Laemmliet al. (1970). Protein samples were mixed with ? volume of 1× Laemmli buffer (2% SDS, 25% glycerol, 14.4 mmol L?1β-mercaptoethanol (Sigma, Missouri, USA), and 0.1% bromphenol blue in 1 mol L?1Tris-HCl, pH 6.8), heated at 100℃ for 7 min, and then loaded to a 12% analytical SDS-polyacrylamide gel (15 μL/lane) on a vertical electrophoresis system (BIO-RAD). The gel was stained with Coomassie Brilliant Blue R-250 (Smithet al., 1988) or transferred to a 450 nm polyvinylidene fluoride membrane (PVDF, Pall-Gelman, USA). For western blotting,the gel was transferred by electroblotting at a constant current of 60 mA for 3.5 h according to Towbin and Gordon (1994) with some modifications. The membrane was stained with Ponceau S (Sigma, Missouri, USA) to verify the transfer of proteins. The blotting was ceased with 5% skimmed milk in PBST (pH 7.4, 0.01 mol L phosphate buffer, pH 7.4, containing 0.15 mol L NaCl, 0.05% Tween 20) for 2 h at 37℃. The membrane with blots was incubated with patients sera (1:20 in 2.5% skimmed milk) overnight at 4℃. After washed with PBST, the polyclonal goat anti-human IgE antibody conjugated with peroxidase (1:1000 in 2.5% skimmed milk) for 2 h and then washed again with PBST. Immunoreactive bands were developed using enhanced chemiluminescent (ECL) after final washing with PBST. Nonspecific binding of the anti-IgG antibody conjugate was measured in a similar blotting procedure.

    Coomassie blue stained gels and the developed PVDF membranes were scanned using Tanon-4200 automatic translation of a digital gel image analysis system. The low-range pre-stained SDS-PAGE protein mixture (Fermantas, Lithuania) was used as standard.

    2.2.5 Indirect ELISA

    The protein extracts (1 μg well?1) were immobilized on microtiter plates using 100 μL of carbonate coating buffer (pH 9.6) and then incubated overnight at 4℃. The coating buffer without protein extracts was incubated as blank control. The plates were washed and free binding sites were blocked with blocking buffer (5% BSA in PBST) for 2 h at 37℃. After being washed three times with PBST, rabbit anti-tropomyosin antibodies (1:20000 in PBS, containing 0.01 mmol L?1phosphate buffer, pH 7.4, containing 0.15 mmol L?1NaCl) was added for 1.5 h incubation at 4℃. The PBS without rabbit anti-tropomy- osin antibodies was incubated as negative control. The plates were washed again and 100 μL of goat anti-rabbit IgG conjugated with peroxidase (1:10000 in PBS) was added for 1 h incubation at 37℃. The plates were washed with PBST followed by the addition of 3, 3’, 5, 5’-tetrame-thylbenzidine (TMB, Sigma, Missouri, USA) as substrate, then incubated in dark for 15 min. The optical density (OD value) was measured at the 450 nm using an ELISA reader. All ELISA experiments were performed in triplicate.

    2.2.6 Statistical analysis

    All analyses were carried out in triplicate and data were expressed as means standard deviation. A one-way analysis of variance (ANOVA) was performed to calculate significant differences in treatment means. A probability value ofP<0.05 was considered significant, and only significant differences were considered unless stated otherwise.

    3 Results

    3.1 Protein Concentration of Different Shrimp Extracts

    Comparison of shrimp extracts in the 7 extracting solutions showed that in the presence of DTT, the protein concentration was significantly higher in S6 than in other extracting solutions (P<0.01). Addition of DTT resulted in significantly higher protein concentrations in most of the shrimp extracts except for S3 (Fig.1).

    Fig.1 The concentration of proteins in different shrimp extracts determined by BCA assay. S1: glycerol-NaCl solution; S2: glycerol Cocaine’s solution; S3: buffered saline solution; S4: Cocaine’s solution; S5: Glucose leaching solution; S6: 1 mol L?1KCl; S7: 0.01 mol L?1PBS; and C8: distilled water (control).

    3.2 Protein Composition of Different Shrimp Extracts

    SDS-PAGE assay showed that shrimp extracts of the same protein concentration without DTT yielded contained more components in the solutions S1, S6 and S7 than in the other solutions (Fig.2). The most dominant protein components (36 kDa and 20 kDa) appeared in the solutions S1, S3–S7 and C8, but not S2.

    Fig.2 SDS-PAGE/Coomassie blue-staining of different shrimp extracts of the same protein concentration without DTT. M, Molecular weight marker; Lanes 1: glycerol-NaCl solution (S1); 2: glycerol Cocaine’s solution (S2); 3: buffered saline solution (S3); 4: Cocaine’s solution (S4); 5: Glucose leaching solution (S5); 6: 1 mol L?1KCl (S6); 7: 0.01 mol L?1PBS (S7); and 8: distilled water (C8, control).

    In the presence of DTT, more protein components were extracted in S1, S6 and S7. The 36 kDa and 20 kDa proteins remained as the dominant components (Fig.3). Comparison of the Figs.2 and 3 showed a lack of difference in the protein composition of each lane.

    3.3 Tropomyosin Allergenicity of Different Shrimp Extracts

    The tropomyosin allergenicity of different shrimp extracts was evaluated by indirect ELISA using the rabbit antiserum against shrimp tropomyosin. The shrimp proteins at the same concentration showed significantly higher binding ability in the extracting solutions with DTT (Fig.4). The OD values of shrimp protein extracts with DTT showed the same trend compared to the extracts without DTT. Overall, the OD value of S1 extract had the highest allergenicity than the other extracts.

    Fig.4 Indirect ELISA of tropomyosin in different shrimp protein extracts. S1, glycerol-NaCl solution; S2, glycerol Cocaine’s solution; S3, buffered saline solution; S4, Cocaine’s solution; S5, Glucose leaching solution; S6, 1 mol L?1KCl; S7: 0.01 mol L?1PBS; and C8: distilled water (control).

    3.4 Allergenicity of Different Shrimp Extracts Without DTT

    The allergenicity of different shrimp protein extracts without DTT was confirmed by immunoblotting assay using 4 human sera of shrimp allergy patients. The results of immunoblotting assay (Fig.5) supported the conclusion that the shrimp protein extracts obtaiend wtih different extracting solutions had different allergenicity to the tested patient sera. With the sera of patients A and B, the extracts of S3 to C8 showed the same immunogenicity. The IgE-bands of 6, 7 and 8 immunized by the sera of patients A, B and D showed substantially higher allergenicity than the other bands.

    Fig.5 The allergenicity of different shrimp protein extracts detected by western blotting assay. Samples were separated by SDS-PAGE followed immunological detection using the sera of 4 shrimp allergic patients (A, B, C, and D). M, molecular weight marker; Lanes 1: glycerol-NaCl solution (S1); 2: glycerol Cocaine’s solution (S2); 3: buffered saline solution (S3); 4: Cocaine’s solution (S4); 5: Glucose leaching solution (S5); 6: 1 mol L?1KCl (S6); 7: 0.01 mol L?1PBS (S7); and 8: distilled water (C8, control).

    4 Discussion

    At present, DTT is frequently used to reduce the disulfide bonds of proteins. It prevents the formation of intramolecular and intermolecular disulfide bonds between cysteine residues of proteins, further preventing the protein crystallization from water-soluble to water-insoluble forms (Ruegget al., 1977). This explains why the extract rate in solutions with DTT was higher than that in solutions without DTT (Fig.1). The characteristics of the major allergen tropomyosin of shrimps have been widely studied (Ruegget al., 1993; Shantiet al., 2007; Motoyamaet al., 1984). In the present study, the allergenicity of tropomyosin in different protein extracts with DTT was higher than that in the solutions without DTT except for S3 and S4 (Fig.4).

    SDS-PAGE showed that the same protein components were obtained from the corresponding extracting solutions with or without DTT. The extracted proteins were treated with β-mercaptoethanol, a protein denaturant, which played a similar role as DTT. That is, β-mercaptoethanol could change the spherical proteins to linear forms (Wesselet al., 1984) while not changing the composition and molecular mass of the proteins.

    Comparison of the concentration, composition and allergenicity of different protein extracts showed that 1 mol L?1solution KCl (S6) with DTT was the optimal extracting solution for the shrimpPenaeus vannamei. The extracting temperature and pH were not considered in the present study as previous work has indicated that variations in the extraction temperature or pH have no effect on the quality of extracted protein or the degradation of allergens in milk and hen’s egg, except for the strong alkaline conditions (Steinhoffet al., 2011).

    In addition, the 1 mol L?1KCl solution (S6) with DTT was tested protein extraction from other crustacean. Extracts of crab, lobster and crayfish obtained using the optimized solution were found superior in terms of protein concentration and composition compared with those obtained using other solutions (data not shown).

    In conclusion, this study presents an optimal extracting solution,i.e., 1 mol L?1KCl solution with DTT, for extraction of allergens from shrimp as well as other crustaceans. The 1 mol L?1KCl solution with DTT proved efficient in comparison to other existing or modified extracting solutions. It has great potential for preparation of various commercial crustacean extracts that can be used in allergy diagnosis and treatment.

    Acknowledgements

    This work was supported by the Natural Science Foundation of China (No. 31371730), and National Science & Technology Pillar Program (No. 2012BAD28B05).

    Ayuso, R., Grishina, G., Bardina, L., Carrillo, T., Blanco, C., Ibaňez, M. D., Sampson, H. A., and Beyer, K., 2008. Myosin light chain is a novel shrimp allergen, lit v 3. Journal of Allergy and Clinical Immunology, 122 (4): 795-802.

    Ayuso, R., Grishina, G., Ibáňez, M. D., Blanco, C., Carrillo, T., Bencharitiwong, R., Sánchez, S., Nowak-Wegrzyn, A., and Sampson, H. A., 2009. Sarcoplasmic calcium-binding protein is an EF-hand-type protein identified as a new shrimp allergen. Journal of Allergy and Clinical Immunology, 124 (1): 114-120.

    Bauermeister, K., Wangorsch, A., Perono Garoffo, L., Reuter, A., Conti, A., Falk, S., Taylor, S. L., Vieths, S., Holzhauser, T., Ballmer-Weber, B.K., and Reese, G., 2008. Novel crustacean allergens identified in North Sea shrimp crangon and other crustacean species–sarcoplasmic calcium-binding protein, troponin C, troponin I, triosephosphate isomerase, and myosin light chain. http://www.ncbi.nlm.nih.gov/protein/ 238477329.

    Bj?rkstén, F., Halmepuro, L., Hannuksela, M., and Lahti, A., 1980. Extraction and properties of apple allergens. Allergy, 35 (8): 671-677.

    Bock, S. A., Sampson, H. A., Atkins, F. M., Zeiger, R. S., Lehrer, S., Sachs, M., Bush, R. K., and Metcalfe, D. D., 1988. Double-blind, placebo-controlled food challenge (DBPCFC) as an office procedure: A manual. Journal of Allergy and Clinical Immunology, 82 (6): 986-997.

    Daul, C. B., Slattery, M., Reese, G., and Lehrer, S. B., 1994. Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Internatioanl Archives Allergy and Immunology, 105 (1): 49-55.

    Dean, D. M., Hugh, A. S., and Ronald, A. S., 1997. Food Allergy: Adverse Reactions to Foods and Food Additives. 2nd edition. Blackwell Science Inc., 583pp.

    García-Orozco, K. D., Aispuro-Hernández, E., Yepiz-Plascencia, G, Calderón-de-la-Barca, A. M., and Sotelo-Mundo, R. R., 2007. Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei. Internatioanl Archives Allergy and Immunology, 144 (1): 23-28.

    Greaser, M. L., and Gergely, J., 1971. Reconstitution of troponin activity from three protein components. The Journal of Biological Chemistry, 246: 4226-4233.

    Jona, R., and Fronda, A., 1997. Comparative histochemical analysis of cell wall polysaccharides by enzymatic and chemical extractions of two fruits. Biotechnology Histochemistry, 72 (1): 22-28.

    Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

    Leitermann, K., and Jr. Ohman, J. L., 1984. Cat allergen 1: Biochemical, antigenic, and allergenic properties. Journal of Allergy and Clinical Immunology, 74 (2): 147-153.

    Leung, P. S., Chow, K. H., Ansari, A., Bandea, C. I., Kwan, H. S., Nagy, S. M., and Gershwin, M. E., 1994. Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. Journal of Allergy and Clinical Immunology, 94 (5): 882-890.

    Leung, P. S., Chu, K. H., Chow, W. K., Ansari, A., Bandea, C. I., Kwan, H. S., Nagy, S. M., and Gershwin, M. E. 1994. Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. Journal of Allergy and Clinical Immunology, 94 (5): 882-890.

    Liang, Y. L., Cao, M. J., Su, W. J., Zhang, L. J., Huang, Y. Y., and Liu, G. M., 2008. Identification and characterisation of the major allergen of Chinese mitten crab (Eriocheir sinensis). Food Chemistry, 111 (4): 998-1003.

    Motoyama, K., Suma, Y., Ishizaki, S., Nagashima, Y., and Shiomi, K., 2007. Molecular cloning of tropomyosins identified as allergens in six species of crustaceans. Journal of Agriculture and Food Chemistry, 55 (3): 985-991.

    Ruegg, U. T., and Rudinger, J., 1977. Reductive cleavage of cystine disulfides with tributylphosphine. Methods in Enzymology, 47: 111-116.

    Shanti, K. N., Martin, B. M., Nagpal, S., Metcalfe, D. D., and Rao, P. V., 1993. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. The Journal of Immunology, 151 (10): 5354-5363.

    Shanti, K. N., Martin, B. M., Nagpal, S., Metcalfe, D. D., and Rao, P. V., 1993. Identif i cation of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. The Journal of Immunology, 151 (10): 5354-5363.

    Shiomi, K., Sato, Y., Hamamoto, S., Mita, H., and Shimakura, K., 2008. Sarcoplasmic calcium binding protein: identification as a new allergen of the black tiger shrimp Penaeus monodon. Internatioanl Archives Allergy and Immunology, 146 (2): 91-98.

    Sicherer, S. H., and Sampson, H. A., 2006. Food allergy. Journal of Allergy and Clinical Immunology, 117 (2 Suppl Mini Primer): 470-475.

    Smith, I., Cromie, R., and Stainsby, K., 1988. Seeing gel wells well. Analytical Biochemistry, 169 (2): 370-371.

    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C., 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150 (1): 76-85.

    Steinhoff, M., Fischer, M., and Paschke-Kratzin, A., 2011. Comparison of extraction conditions for milk and hen’s egg allergens. Food Additives & Contaminants: Part A, 28 (4): 373-383.

    Towbin, H., and Gordon, J., 1984. Immunoblotting and dot immunobinding: current status and outlook. Journal of Immunological Methods, 72 (2): 313-340.

    Wessel, D., and Flügge, U. I., 1984. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry, 138 (1): 141-143.

    Yu, C. J., Lin, Y. F., Chiang, B. L., and Chow, L. P., 2003. Proteomics and immunological analysis of anovel shrimp allergen, Pen m 2. The Journal of Immunology, 170: 445-453.

    (Edited by Qiu Yantao)

    * Corresponding author. Tel: 0086-532-82032389

    E-mail: lizhenxing@ouc.edu.cn

    (Received March 25, 2012; revised May 15, 2012; accepted May 10, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    久久久久久九九精品二区国产| 青青草视频在线视频观看| 国产成人a∨麻豆精品| 99热全是精品| 小蜜桃在线观看免费完整版高清| av在线蜜桃| 日韩欧美精品v在线| 久久久久久久午夜电影| 91精品伊人久久大香线蕉| 国产69精品久久久久777片| 国产免费又黄又爽又色| 成人毛片60女人毛片免费| 日日撸夜夜添| 亚洲高清免费不卡视频| 午夜福利成人在线免费观看| 国产成人精品福利久久| av免费观看日本| 有码 亚洲区| 午夜福利视频1000在线观看| 日本三级黄在线观看| 伊人久久精品亚洲午夜| 寂寞人妻少妇视频99o| 搡女人真爽免费视频火全软件| 欧美日韩视频高清一区二区三区二| 国产成人aa在线观看| 精品人妻一区二区三区麻豆| 美女脱内裤让男人舔精品视频| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲网站| 中文字幕av在线有码专区| av在线蜜桃| 国产一区亚洲一区在线观看| 国产淫片久久久久久久久| 国产大屁股一区二区在线视频| 亚洲无线观看免费| 深夜a级毛片| av在线播放精品| 欧美3d第一页| 国产成人freesex在线| 亚洲精品,欧美精品| 有码 亚洲区| 国产精品久久久久久精品电影小说 | 欧美xxⅹ黑人| 亚洲自偷自拍三级| 亚洲最大成人手机在线| 国产成人精品一,二区| 九九在线视频观看精品| xxx大片免费视频| 69人妻影院| 超碰97精品在线观看| kizo精华| 亚洲av国产av综合av卡| 深爱激情五月婷婷| 99热这里只有是精品在线观看| av黄色大香蕉| 亚洲丝袜综合中文字幕| 大陆偷拍与自拍| 深爱激情五月婷婷| 久热久热在线精品观看| 久久久久久久久久久免费av| 亚洲美女视频黄频| 亚洲综合精品二区| 青春草视频在线免费观看| 国产精品久久久久久久电影| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器| 精品一区二区三卡| 午夜福利在线在线| 青青草视频在线视频观看| 婷婷色av中文字幕| 亚洲av二区三区四区| 日本色播在线视频| 久久6这里有精品| 干丝袜人妻中文字幕| 少妇人妻一区二区三区视频| 亚洲国产高清在线一区二区三| 中文欧美无线码| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 18禁在线播放成人免费| 久久99热6这里只有精品| 国产精品不卡视频一区二区| 亚洲熟女精品中文字幕| 亚洲精品影视一区二区三区av| 九九爱精品视频在线观看| 国产精品一区二区三区四区免费观看| 国产成人免费观看mmmm| 久久久久精品性色| 国产成人午夜福利电影在线观看| 少妇人妻一区二区三区视频| 午夜老司机福利剧场| 精品久久久久久久久久久久久| 老司机影院毛片| 99热网站在线观看| 老司机影院成人| 亚洲av中文av极速乱| 国产欧美另类精品又又久久亚洲欧美| 日韩 亚洲 欧美在线| 成人午夜精彩视频在线观看| 深夜a级毛片| 国精品久久久久久国模美| 中文字幕制服av| 日韩欧美 国产精品| 亚洲自偷自拍三级| 狂野欧美白嫩少妇大欣赏| 久久久久久久久中文| 男女啪啪激烈高潮av片| 搡老妇女老女人老熟妇| 国产精品久久久久久久久免| 99视频精品全部免费 在线| 国产精品国产三级国产av玫瑰| 免费观看的影片在线观看| 国产成人精品一,二区| 午夜福利高清视频| 偷拍熟女少妇极品色| 嘟嘟电影网在线观看| 亚洲色图av天堂| 亚洲怡红院男人天堂| 99久久精品国产国产毛片| 日韩视频在线欧美| 亚州av有码| 一本久久精品| 人人妻人人看人人澡| 久久99蜜桃精品久久| 亚洲精品久久午夜乱码| 国产高清三级在线| 中文字幕av成人在线电影| 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 国产高清不卡午夜福利| 国国产精品蜜臀av免费| 色视频www国产| 亚洲最大成人中文| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 国产淫语在线视频| 美女大奶头视频| 91久久精品国产一区二区成人| 亚洲av在线观看美女高潮| 亚洲国产高清在线一区二区三| 97在线视频观看| 少妇人妻精品综合一区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费在线观看| 乱系列少妇在线播放| 国产亚洲精品av在线| av免费观看日本| 最后的刺客免费高清国语| 国产色婷婷99| 国产黄色免费在线视频| 亚洲精品影视一区二区三区av| 夜夜爽夜夜爽视频| 久久久午夜欧美精品| 欧美激情在线99| 又爽又黄a免费视频| 精品一区二区三区人妻视频| 一夜夜www| 日日啪夜夜爽| 日日啪夜夜撸| 性色avwww在线观看| 久久这里有精品视频免费| 国产精品福利在线免费观看| 亚洲av免费高清在线观看| 国产在线男女| 九九久久精品国产亚洲av麻豆| 亚洲国产色片| 99久久九九国产精品国产免费| 一级毛片 在线播放| 熟女人妻精品中文字幕| 天天躁日日操中文字幕| 少妇人妻一区二区三区视频| 中文字幕免费在线视频6| 91精品国产九色| 啦啦啦韩国在线观看视频| 亚洲电影在线观看av| 亚洲av成人精品一二三区| 日日干狠狠操夜夜爽| 国产乱来视频区| 日韩欧美国产在线观看| 成人鲁丝片一二三区免费| 一本一本综合久久| 国产片特级美女逼逼视频| 禁无遮挡网站| 乱系列少妇在线播放| 日韩一区二区三区影片| 久久99热6这里只有精品| 极品少妇高潮喷水抽搐| 欧美变态另类bdsm刘玥| 免费大片黄手机在线观看| 2021天堂中文幕一二区在线观| 人妻夜夜爽99麻豆av| 男女国产视频网站| 亚洲av在线观看美女高潮| 国产爱豆传媒在线观看| 丝袜美腿在线中文| 少妇的逼水好多| 亚洲精品日韩av片在线观看| 禁无遮挡网站| 看十八女毛片水多多多| 久久久久久久久中文| 天天躁夜夜躁狠狠久久av| 嫩草影院新地址| 真实男女啪啪啪动态图| av国产免费在线观看| 一本一本综合久久| 人人妻人人澡人人爽人人夜夜 | 精品国内亚洲2022精品成人| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人手机在线| 欧美激情国产日韩精品一区| 高清av免费在线| 特大巨黑吊av在线直播| 中文天堂在线官网| 一区二区三区免费毛片| 伦精品一区二区三区| 黑人高潮一二区| 建设人人有责人人尽责人人享有的 | 最近中文字幕高清免费大全6| 99热这里只有是精品50| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 欧美激情国产日韩精品一区| 色综合站精品国产| 国产 一区 欧美 日韩| 汤姆久久久久久久影院中文字幕 | 国产伦一二天堂av在线观看| 天堂√8在线中文| 国产精品久久久久久久久免| 汤姆久久久久久久影院中文字幕 | 岛国毛片在线播放| 日韩强制内射视频| 精品国内亚洲2022精品成人| 久久久久久伊人网av| 久久精品国产亚洲网站| 成人毛片a级毛片在线播放| 国精品久久久久久国模美| 午夜免费观看性视频| 免费播放大片免费观看视频在线观看| 亚洲一区高清亚洲精品| 日韩人妻高清精品专区| 午夜福利视频1000在线观看| 亚洲经典国产精华液单| 国产黄片视频在线免费观看| 国产又色又爽无遮挡免| 我的女老师完整版在线观看| 午夜精品国产一区二区电影 | 国产真实伦视频高清在线观看| 禁无遮挡网站| 亚洲av二区三区四区| 最近视频中文字幕2019在线8| 日日啪夜夜爽| 精品国产三级普通话版| 超碰97精品在线观看| 亚洲精品aⅴ在线观看| 在线观看免费高清a一片| 18+在线观看网站| 日日撸夜夜添| 国产单亲对白刺激| 欧美+日韩+精品| 国产真实伦视频高清在线观看| 乱人视频在线观看| 日韩欧美国产在线观看| 国内揄拍国产精品人妻在线| 干丝袜人妻中文字幕| 两个人的视频大全免费| 一区二区三区乱码不卡18| 麻豆成人av视频| 亚洲av福利一区| 久久久久久久国产电影| 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| 成人亚洲欧美一区二区av| av在线天堂中文字幕| 国产成人精品一,二区| 精品国产三级普通话版| 欧美3d第一页| 国产亚洲5aaaaa淫片| 好男人视频免费观看在线| 国产大屁股一区二区在线视频| 国产精品久久久久久久电影| 亚洲欧洲国产日韩| 一夜夜www| 国产 一区 欧美 日韩| 22中文网久久字幕| 毛片女人毛片| 在线a可以看的网站| 免费看美女性在线毛片视频| 赤兔流量卡办理| 一级毛片 在线播放| 伊人久久精品亚洲午夜| av免费在线看不卡| 中文字幕制服av| 只有这里有精品99| 51国产日韩欧美| 你懂的网址亚洲精品在线观看| 嫩草影院新地址| 中文字幕av在线有码专区| 成人av在线播放网站| 18+在线观看网站| 国产精品一区二区三区四区久久| 中文字幕人妻熟人妻熟丝袜美| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 在线a可以看的网站| 日日干狠狠操夜夜爽| 日本三级黄在线观看| 欧美人与善性xxx| 最新中文字幕久久久久| 男人狂女人下面高潮的视频| 国产精品无大码| 国产精品美女特级片免费视频播放器| 一区二区三区高清视频在线| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 国产精品福利在线免费观看| 乱系列少妇在线播放| 日韩精品青青久久久久久| or卡值多少钱| 麻豆乱淫一区二区| 大又大粗又爽又黄少妇毛片口| 国产成人精品福利久久| 99久久精品热视频| 亚洲精品成人av观看孕妇| 国产精品一区二区在线观看99 | 国产淫片久久久久久久久| 麻豆成人av视频| 欧美bdsm另类| 美女cb高潮喷水在线观看| 精品久久久久久久人妻蜜臀av| 欧美xxⅹ黑人| 日韩大片免费观看网站| 国产免费视频播放在线视频 | 97人妻精品一区二区三区麻豆| 综合色丁香网| 国产亚洲91精品色在线| 亚洲av成人av| 春色校园在线视频观看| 又爽又黄无遮挡网站| 亚洲欧美日韩东京热| 日韩av不卡免费在线播放| 午夜激情久久久久久久| 少妇熟女欧美另类| 黄色一级大片看看| 综合色av麻豆| av专区在线播放| 午夜激情久久久久久久| 美女被艹到高潮喷水动态| 午夜激情久久久久久久| 美女被艹到高潮喷水动态| 久久久久久伊人网av| 99久久人妻综合| 看非洲黑人一级黄片| 99久国产av精品| 中文欧美无线码| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 久久久色成人| 国内少妇人妻偷人精品xxx网站| 成年人午夜在线观看视频 | 免费观看无遮挡的男女| 网址你懂的国产日韩在线| 久久97久久精品| 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| 少妇高潮的动态图| 久久韩国三级中文字幕| 亚洲成色77777| 毛片一级片免费看久久久久| 欧美区成人在线视频| 精品久久久精品久久久| 国产精品久久久久久久电影| 老司机影院成人| 人妻夜夜爽99麻豆av| 亚洲精品日本国产第一区| 三级国产精品欧美在线观看| 麻豆成人午夜福利视频| 亚洲精品视频女| 日韩 亚洲 欧美在线| 中文字幕av成人在线电影| 水蜜桃什么品种好| 午夜日本视频在线| 午夜激情欧美在线| 亚洲自拍偷在线| 麻豆av噜噜一区二区三区| 国产亚洲5aaaaa淫片| 色视频www国产| 国产精品无大码| 亚洲精品456在线播放app| 国产真实伦视频高清在线观看| 嘟嘟电影网在线观看| 婷婷色综合大香蕉| 精品久久久久久成人av| 久久韩国三级中文字幕| 一个人看的www免费观看视频| 国产免费视频播放在线视频 | 简卡轻食公司| 中文字幕av成人在线电影| 午夜激情福利司机影院| 国产真实伦视频高清在线观看| 国产精品久久久久久久久免| 亚洲怡红院男人天堂| 日韩欧美国产在线观看| 午夜激情久久久久久久| 国产成人午夜福利电影在线观看| 视频中文字幕在线观看| 免费大片黄手机在线观看| 91精品伊人久久大香线蕉| 国产高清不卡午夜福利| 五月天丁香电影| 国产爱豆传媒在线观看| 人妻少妇偷人精品九色| 国产有黄有色有爽视频| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验| 一级毛片 在线播放| 成人鲁丝片一二三区免费| 国产成人精品久久久久久| 色综合站精品国产| 国产91av在线免费观看| 久久精品国产亚洲av涩爱| 成人国产麻豆网| 亚洲va在线va天堂va国产| 国产探花在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久精品电影小说 | 观看免费一级毛片| 少妇被粗大猛烈的视频| 免费在线观看成人毛片| 婷婷色综合大香蕉| 国产大屁股一区二区在线视频| 国产精品一区二区三区四区久久| 久久久久久久久中文| 超碰av人人做人人爽久久| 日韩国内少妇激情av| 男女视频在线观看网站免费| 国产午夜福利久久久久久| 国产精品一区www在线观看| 国产精品国产三级专区第一集| 欧美3d第一页| 亚洲怡红院男人天堂| 老师上课跳d突然被开到最大视频| 亚洲精品乱久久久久久| 亚洲人成网站在线观看播放| 在线观看美女被高潮喷水网站| 女人久久www免费人成看片| 久久午夜福利片| 国内精品美女久久久久久| 51国产日韩欧美| 亚洲自拍偷在线| 内地一区二区视频在线| 久久久久久久久久黄片| 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器| 国产精品福利在线免费观看| 丝瓜视频免费看黄片| 久久久久久伊人网av| 青春草视频在线免费观看| 激情 狠狠 欧美| 只有这里有精品99| 午夜福利成人在线免费观看| 爱豆传媒免费全集在线观看| 18+在线观看网站| 久久99热这里只频精品6学生| 国产精品.久久久| 免费观看的影片在线观看| 91午夜精品亚洲一区二区三区| 国产单亲对白刺激| 国产精品一及| 国产欧美日韩精品一区二区| 搡老妇女老女人老熟妇| 国产熟女欧美一区二区| 成人性生交大片免费视频hd| 日本色播在线视频| 丝袜喷水一区| 最近视频中文字幕2019在线8| 精品酒店卫生间| 高清欧美精品videossex| 日韩欧美 国产精品| 亚洲欧洲国产日韩| 美女xxoo啪啪120秒动态图| 国产一区二区三区综合在线观看 | 美女黄网站色视频| 亚洲人成网站在线观看播放| 日韩av在线大香蕉| 欧美区成人在线视频| 18禁裸乳无遮挡免费网站照片| 国产探花极品一区二区| 岛国毛片在线播放| 一级毛片 在线播放| 99热这里只有精品一区| 亚洲欧美精品专区久久| 久久久久精品性色| 人体艺术视频欧美日本| 观看美女的网站| 99热这里只有是精品50| 免费av毛片视频| 狠狠精品人妻久久久久久综合| 亚洲成人中文字幕在线播放| 麻豆精品久久久久久蜜桃| av网站免费在线观看视频 | 久热久热在线精品观看| 深夜a级毛片| 超碰97精品在线观看| 中文欧美无线码| 成人二区视频| 久久99蜜桃精品久久| 免费看av在线观看网站| 少妇人妻一区二区三区视频| 欧美成人精品欧美一级黄| 91aial.com中文字幕在线观看| 日韩一区二区三区影片| 日本与韩国留学比较| 麻豆av噜噜一区二区三区| av免费观看日本| 啦啦啦啦在线视频资源| 国产三级在线视频| videos熟女内射| 久久久精品94久久精品| 精品酒店卫生间| 在线免费十八禁| 国产精品福利在线免费观看| 最近最新中文字幕大全电影3| 嫩草影院精品99| 国产毛片a区久久久久| 99久国产av精品国产电影| 国产亚洲5aaaaa淫片| 又爽又黄a免费视频| 国产亚洲最大av| 国产精品1区2区在线观看.| 中文乱码字字幕精品一区二区三区 | 深爱激情五月婷婷| 全区人妻精品视频| 免费在线观看成人毛片| 七月丁香在线播放| 免费观看精品视频网站| 日韩成人av中文字幕在线观看| 免费观看av网站的网址| 男人爽女人下面视频在线观看| 亚洲自拍偷在线| 亚洲av成人精品一区久久| 视频中文字幕在线观看| 国产成人精品久久久久久| 国产精品久久久久久久电影| 国产亚洲一区二区精品| 一级毛片 在线播放| 尾随美女入室| 2021少妇久久久久久久久久久| 国产真实伦视频高清在线观看| 亚洲av成人精品一区久久| 校园人妻丝袜中文字幕| 1000部很黄的大片| 亚洲av电影不卡..在线观看| 国产国拍精品亚洲av在线观看| www.av在线官网国产| 亚洲精品日本国产第一区| 精品久久久久久久久亚洲| 免费人成在线观看视频色| 成人亚洲精品av一区二区| 日本猛色少妇xxxxx猛交久久| 久久鲁丝午夜福利片| 国产亚洲av嫩草精品影院| 亚洲精品日韩av片在线观看| 久久精品熟女亚洲av麻豆精品 | 久久亚洲国产成人精品v| 插阴视频在线观看视频| 国产三级在线视频| 一级爰片在线观看| 日本免费a在线| 国产精品一区二区性色av| 亚洲av电影不卡..在线观看| 色综合站精品国产| 精品久久久久久电影网| 久久久久免费精品人妻一区二区| 一本久久精品| 哪个播放器可以免费观看大片| 免费人成在线观看视频色| av卡一久久| 日韩av在线免费看完整版不卡| 内地一区二区视频在线| 久久久精品欧美日韩精品| 美女脱内裤让男人舔精品视频| 国产精品.久久久| 水蜜桃什么品种好| 国产精品久久久久久精品电影| 欧美日本视频| 美女cb高潮喷水在线观看| 精品久久久久久久久亚洲| 80岁老熟妇乱子伦牲交| 午夜福利在线观看吧| 亚洲自拍偷在线| 久久精品熟女亚洲av麻豆精品 | 麻豆成人av视频| 国产片特级美女逼逼视频| 草草在线视频免费看| 波多野结衣巨乳人妻| 国模一区二区三区四区视频| 亚洲成人精品中文字幕电影| 啦啦啦韩国在线观看视频| 好男人视频免费观看在线| 亚洲自拍偷在线| 国产欧美日韩精品一区二区| 欧美xxxx黑人xx丫x性爽| .国产精品久久| 久久久久性生活片| 亚洲国产欧美在线一区| 岛国毛片在线播放| 久久精品国产亚洲网站| 中文精品一卡2卡3卡4更新| 九草在线视频观看| 久久人人爽人人片av| 日韩欧美三级三区| 色综合色国产| 秋霞在线观看毛片| 97超视频在线观看视频| 久久久久国产网址|