• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DNA Barcoding Assessment of Green Macroalgae in Coastal Zone Around Qingdao, China

    2014-05-02 05:42:09DUGuoyingWUFeifeiMAOYunxiangGUOShenghuaXUEHongfanandBIGuiqi
    Journal of Ocean University of China 2014年1期

    DU Guoying, WU Feifei, MAO Yunxiang, GUO Shenghua, XUE Hongfan, and BI Guiqi

    Bioengineering Department, College of Marine Life Science, Ocean University of China, Qingdao 266003, P. R. China

    DNA Barcoding Assessment of Green Macroalgae in Coastal Zone Around Qingdao, China

    DU Guoying, WU Feifei, MAO Yunxiang*, GUO Shenghua, XUE Hongfan, and BI Guiqi

    Bioengineering Department, College of Marine Life Science, Ocean University of China, Qingdao 266003, P. R. China

    An assessment with assistance of DNA barcoding was conducted on green macroalgae in coastal zone around Qingdao, China, during the period of April ? December, 2011. Three markers were applied in molecular discrimination, including the plastid elongation factortufA gene, the internal transcribed spacer (ITS) region of the ribosomal cistron and rubisco large subunit gene 3’regions (rbcL-3P). DNA barcoding discriminated 8 species, excluding species of genusCladophoraandBryopsisdue to failures in amplification. We ascertained and corrected 4 species identified by morphological methods for effectively assisting the classification. The genetufA presented more advantages as an appropriate DNA marker with the strongest amplification success rate and species discrimination power than the other two genes. The poorest sequencing success largely handicapped the application of ITS. Samples identified bytufA andrbcL asUlvaflexuosawere clustered into the clade ofU.proliferaby ITS in the neighbor-joining tree. Confusion with discrimination of the complex ofU. linza,U.proceraandU.prolifera(as the LPP complex) still existed for the three DNA markers. Based on our results,rbcL is recommended as a preferred marker for assistingtufA to discriminate green macroalgae. In distinguishing green-tide-formingUlvaspecies, the free-floating sample collected from the green tide in 2011 was proved to be identical withU. proliferain Yellow Sea for ITS andrbcL genes. This study presents a preliminary survey of green macroalgae distributed in the coastal area around Qingdao, and proves that DNA barcoding is a powerful tool for taxonomy of green macroalgae.

    green macroalgae; DNA barcoding;tufA; ITS;rbcL

    1 Introduction

    Like most marine algae, green macroalgae are notoriously difficult to identify with certainty due to their simple morphologies, phenotypic plasticity and convergent evolution. Species identification would, therefore, benefit greatly from the application of molecular tools. DNA barcoding is an excellent powerful method to assist taxonomy of macroalgae (Hebert and Gregory, 2005; Saunders, 2005; Robbaet al., 2006; Medlinet al., 2007; McDevit and Saunders, 2009). Following red and brown macroalgae, marine green macroalgae are increasingly developed DNA barcoding in recent few years (Nakazawaet al., 2004; Loughnaneet al., 2008; O’kellyet al., 2010; Saunders and Kucera, 2010; Buchheimet al., 2011).

    Considering the essentials of molecular markers for DNA barcoding, viz. discrimination on species level and universality of PCR primers (Hebertet al., 2003; Meieret al., 2008), several markers have been applied to green macroalgae (Saunders and Kucera, 2010; Mareset al., 2011; Wanget al., 2010a; Liuet al., 2012). These markers include the plastid rubisco large subunit (rbcL), elongation factortufA, universal plastid amplicon (UPA), the nuclear D2/D3 region of the large ribosomal subunit (LSU), the internal transcribed spacer of the ribosomal cistron (ITS), and 5S rDNA spacer region. There has been also an attempt using the secondary structure information of ITS2 to overcome some of the limitations of ITS2 as DNA barcode (Buchheimet al., 2011). Seldom could any markers be successful for all taxonomy of green macroalgae. Each of them has its advantages and disadvantages for barcoding. Some of them, such astufA, show satisfactory amplification and sequencing success, but still fail for the Cladophoraceae of green algae; ITS andrbcL even have high variability of species level resolution, and are not effective for amplification and sequencing due to the presence of introns (Famaet al., 2002; Clarkston and Saunders, 2010; Saunders and Kucera, 2010). Therefore, two or more markers have been commonly used for DNA barcoding rather than relying on a single marker (Hallet al., 2010; Saunders and Kucera, 2010).

    Since 2007, especially during the 2008 Summer Olympic Games, large-scale green tides caused by algae bloom constantly occured in Qingdao costal areas, making green algae attacting high society attention (Liuet al., 2009; Huet al., 2010; Zhaoet al., 2012). With the assistance ofDNA barcoding, researchers identified the species causing these green tides as mainlyUlva prolifera, and found their sources off the southern coast of Jiangsu province (Wanget al., 2010a, b; Panget al., 2010; Liuet al., 2012). These researches strongly promoted a molecular system for identifying green algae based on both morphological and molecular assessments. However, there is still a short age of molecular system and a thorough investigation on green macroalgae in coastal areas of China. On the other hand, along with decreasing biodiversity of macroalgae in the coastal area of Qingdao (Liu and Zhang, 1994; Liuet al., 1999; Yanget al., 2009), it is essential to record the present species for long-term monitoring on green macroalgae. Only depending on this database would it be possible to uncover those invasive or cryptic species.

    Our study aims to investigate the green macroalgae in coastal zone of Qingdao, identify the distributed species with assistance of DNA barcoding, evaluate the appropriate markers for green macroalgae, and distinguish the localUlvaspecies with the green-tide-formingUlvaspecies.

    2 Materials and Methods

    2.1 Sample Collections and Identification

    Forty-four individuals were collected from April, 2011 to December, 2011 in the intertidal zone along the coast of Northwest Yellow Sea around Qingdao, China (Three of them were collected as references in Rizhao, south of Qingdao (Fig.1)). After cleaning, each sample was morphologically identified (according to Tseng, 1983 and Tsenget al., 2009). Microscopic morphology of the fresh fronds, including the color, texture and branching of the thalli, as well as the cell arrangements and shapes were observed under an Olympus CX31microscope (Olympus Co., Japan). Subsamples were stored in liquid N2(? 80℃) for DNA extraction.

    Fig.1 Map of sampling sites. a) western coast of Yellow Sea around Qingdao; b) detailed sites around Qingdao.

    2.2 DNA Extraction and Sequencing

    DNA was extracted from about 100 mg subsample using DNeasy Plant Kit (TIANGEN Biotech, Beijing, China) following the manufacturer’s specifications. The plastid elongation factortufA gene, nuclear internal transcribed spacer (ITS) region of the ribosomal cistron, and plastid Rubisco large subunit gene 3’ regions (rbcL-3P) were amplified using the published primers,i.e.: the forward primer oftufA(tufGF4) 5’ GGNGCNGCNCAAATGGA YGG 3’) from Saunders and Kucera (2010), the reverse primer oftufA(tufA R) 5’ CCTTCNCGAATMGCRAAW CGC 3’ from Famaet al. (2002); for therbcL-3P, the forward primer GrbcLFi (5’ TCTCARCCWTTYATG CGTTGG 3’) from Saunders and Kucera (2010); the reverse primer is 1385R (5’ AATTCAAATTTAATTTCTT TCC 3’) as published by Manhart (1994); the ITS primers were designed by Haydenet al.(2003) (18S1505, F: 5’TCTTTGAAACCGTATCGTGA 3’; ENT26S, R: 5’GCT TATTGATATGCTTAAGTTCAGCGGGT 3’).

    PCR amplification was carried out using the PCR amplification reactor (Mycylcer thermal cycler, BIO-RAD, US) with the PCR Master Mix (TIANGEN Biotech, Beijing, China) to a final volume of 20 μL per reaction according to the manufacturer’s recommendations. PCR profiles referred to Saunders and Kucera (2010) were: tufA? an initial denaturation cycle at 94℃ for 4 min, 38 cycles at 94℃ for 1 min, 45 ℃ annealing for 30 s, 72℃extension for 1 min, followed by 72℃ final extension step performed for 7 min; ITS ? an initial 3 min denaturation at 94℃, 38 cycles of 94℃ for 30 s, 54℃ annealing for 40 s, 72℃ extension for 1.5 min, followed by 72℃ final extension for 7 min. rbcL-3P ? an initial 2 min denaturation at 95 ℃, 35 cycles of 93℃ for 1 min, 50℃ annealing for 45 s, 72℃ extension for 2 min, followed by 72 ℃ final extension for 7 min. All PCR products were held at 4℃ following amplification till the samples were processed.

    Amplification products were checked by 1.0% agarose gel electrophoresis. Fragments oftufA, ITS region andrbcLwere cut from the gel and purified using a TIANgel midi DNA purification Kit (TIANGEN, Beijing, China).

    The amplified DNA samples were sequenced by procedures specified by BGI Biotechnology Co. LTD (Shenzhen, China).

    2.3 Data Analyses

    Multiple sequence alignment was conducted using the CLustal X 1.83 (UCD, Bublin, Ireland). The evolutionary distances were calculated with the neighbor-joining (NJ) method using Mega 5.0 (Tamuraet al., 2007). Additional sequences oftufA, ITS andrbcLgene of green macroalgae were downloaded from GenBank for phylogenetic analysis. The evolutionary divergences of NJ tress were computed using Kimura 2-parameter method (Tamaruet al., 2004). Robustness of the NJ trees was tested with 1000 replicates of the data by bootstrapping.

    3 Results

    3.1 Morphological Identification

    By traditional morphological methods, totally 44 collected individuals were identified as 12 species,i.e.,Ulva pertusa,U. linza,U. intestinalis,U.lactuca,U.compre-ssa,U. prolifera,Monostromanitidum,Codiumfragile,Cladophorafascicularis,C.utriculosa,Bryopsispennate, andB.corticulans.

    3.2 DNA Barcoding Identification

    There were 8 collected samples that failed to be amplified in molecular identification, including 4 ofCladophorafascicularis, one ofC.utriculosa, one ofBryopsis pennate, and two ofB.corticulans. A total of 9 species were identified by the three gene barcodes (Table 1).

    Thirty-sixtufA sample sequences were obtained, and were sorted into 8 distinct groups in the NJ tree, which was composed of 13 groups with 27 additional sequences downloaded from the GenBank (Fig.2) Based on the sequence matching, these specimens were assigned to 8 species,i.e.,Ulva flexuosa,U.californica,U.procera/linza,U.laetevirens,U.compressa,U.australis,Monostromasp.,Codiumfragile; there was an unkown species of Ulvales (close toBligingiamarginata). ForUlva, intraspecific divergences were 0?0.6%, while interspecificdivergences were 1.0%?10.3%. The barcoding gap betweenU.linza/proceraandU.proliferawas 2.4% fortufA. ForMonostromaspp., the evolutionary distance was 2.3%. The intraspecific variation ofCodium fragilewas 1.8%. Among all tested genera (Ulva,Monostroma,BlidingiaandCodium), the evolutionary divergences ranged from 22.4% to 34.2%.

    Table 1 List of samples identified by tufA, ITS and rbcL sequences

    Fig.2 Neighbor-joining tree using tufA sequences of 36 collected samples and 27 additional sequences.

    Sequencing success rate was the lowest for the ITS with only 21 sequences obtained. With 27 additional downloaded sequences, totally 48 ITS sequences were grouped into 12 distinguishable clades in the NJ tree. Those 21 sample sequences were resolved into 6 clades, belonging to 6 species,i.e.,U.prolifera,U.linza/prolifera,U.laetevirens,U.compressa,U.australis/pertusa,Monostromaarcticum(Fig.3). ForUlva, the barcoding gaps of intraspecies ranged from 0 to 0.7%, and those of interspeciese were 1.2%?14.5%. ForMonostroma, the intraspecific variations were 0 and 3.0% forM.arcticumandM.grevillei, respectively. The interspecific variation forMonostromawas 3.4%. The evolutionary divergences between species of genusUlvaandMonostromawere larger than 34.6%.

    Fig.3 Neighbor-joining tree using ITS sequences of 21 collected samples and 27 additional sequences.

    TherbcLsequences of 28 samples were successfully amplified and sequenced, but were only identified to 4?5 species. They were assigned to species ofU.procera/prolifera,U.procera,U.flexuosa,U.laetevirensand U.australis/pertusa(Fig.4). The intraspecific divergences ofUlvawere less than 0.18%. ForMonostroma grevillei, its intraspecific divergences were 0?0.98%. The interspecific divergences ofUlvavaried from 0.98% to 4.4%. The evolutionary divergences between species of genusUlvaandMonostromawere 17.3%?18.8%.

    When excluding genusCladophoraandBryopsis, the rates of successful amplification of the three markers were 91.7%, 77.8% and 66.7% fortufA, ITS andrbcL, respectively. If including these two genera, they would decrease to 75%, 63.3% and 54.5%, respectively. Therates of successful sequencing of the three markers were 100%, 57.1% and 100%, respectively.

    Based on the data for genusUlvawhich showed the largest most species diversity in this study, the barcode gaps (difference between maximal intra- and minimal inter-specific divergence) were 1.69%, 0.49% and 0.31% fortufA, ITS andrbcL, respectively.

    Fig.4 Neighbor-joining tree using rbcL sequences of 28 collected samples and 26 additional sequences.

    4 Discussions

    4.1 Applicability of the Markers

    All three markers failed to amplify the 5 samples fromCladophoraand the 3 samples fromBryopsis. When excluding the two genera,tufA showed the highest amplification success rate of 91.7%, sequencing success rate of 100%, and the largest barcode gap of 1.69%. ThetufA showed the strongest species-discrimination power by sorting out 8 species of the remaining 36 samples, includingCodium fragileandMonostromasp. Till to date,tufA has been known to lack introns for the variety of green algal taxa (De Clercket al., 2008; Verbruggenet al., 2009; Zuccarelloet al., 2009; H?nderleret al., 2010). Generally, thetufA has the best combination of universality, sequence success and discriminatory power. Therefore,tufA is the most appropriate marker among all the candidates for DNA barcoding of green macroalgae, and has been strongly recommend by Saunders and Kucera (2010) after evaluating five markers of ITS, LSU, rbcL,tufA and UPA for marine green macroalgae.

    Although ITS had relatively higher PCR success thanrbcL in this study, its lowest sequencing success rate might be due to the contaminants or multiple PCR products (Saunders and Kucera, 2010). The ITS discriminated 7 species excludingCodium, and had a medium barcode gap (0.49%). However, in the identification ofU. flexuosaandU. linza-procera-prolifera(LPP, Shimadaet al., 2008), the ITS showed large discrepancy with the other two markers, and classified most of those samples toU.proliferaorU.linza/prolifera(Table 1). Considering its handicap to sequencing and high levels of variation that make such above disarray on molecular concepts, ITS is not recommended as a suitable DNA marker for green macroalgae barcoding, even though ITS was used in most of previous studies on green tide species in Yellow Sea (Liuet al., 2009; Huet al., 2010; Zhaoet al., 2012).

    Due to its utility of DNA barcoding,rbcL has formed the basis of several taxonomic and phylogenetic studies in maine green macroalgae to resolve taxonomic issues of the genusUlva(Hayden and Waaland, 2002, 2004; Haydenet al., 2003). On the other hand, the presence of introns inrbcL still negatively affects its universality as a barcode (Hanyudaet al., 2000; Saunders and Kucera, 2010). Pursuing a higher barcode gap ofrbcL-3P thanrbcL-5P (refer to Saunders and Kucera, 2010), the authors used 3P region ofrbcL in this study, obtaining 100% sequencing success with shorter sequence fragments. However, the lowest amplification success also exhibited in our study due to the obstacle of introns. On the contrary, it was deduced that there were no introns inrbcL-5P region in the same study of Saunders and Kucera (2010). Given the fact thatrbcL is an important chloroplast gene for all photosynthetic organisms (Hollingsworthet al., 2009), the applicability of this marker might be extended by choosing a more suitable fragment in this gene. On the background of unsettlement of DNA barcodes for macroalgae, we recommend use ofrbcL as an assistant marker coupled withtufA, and endeavor further to make it more universal.

    4.2 Species Discrimination

    The molecular methods show their advantages on species identification, such as certainty and accuracy (Valentiniet al., 2008; Raduloviciet al., 2010). In this study, DNA barcoding greatly assisted ascertaining and correcting morphological identification. For example, one sample which was hard to be classified morphologically, was sorted into Ulvales bytufA, close toBlidingia marginatain evolutionary distance (0.087); 9 samples identified by morphological methods asU. intestinaliswere confirmed belonging toU. australis/pertusaandU. flexuosa, respectively. Moreover, 2 samples ofU. lactucamorphologi-cally were distinctly ascertained by three markers asU. laetevirens. And one sample ofMonostramamorphologically identified asM. nitidumin fact molecularly matched toM.arcticumby ITS.

    In our NJ trees based on ITS and rbcL sequences,Ulva australiswas proved to be identical withU.pertusa. FortufA discrimination, due to the absence ofU. pertusa tufA gene in NCBI Gene Bank (although it was listed in the paper by Saunders and Kucera (2010), it was presented in NCBI Gene Bank asU. australis), 15 amplified samples were directly identified asU. australis. Therefore, totally 17 samples were discriminated as the same species ofU. australisby at least one of the three genes (tufA, ITS orrbcL).

    In previous studies, it wasUlva prolifera(Müller) J. Agardh that was identified as the causative species for green tides happening in successive years since 2007 in coastal areas of Yellow Sea (Sunet al., 2008; Leliaertet al., 2009). Because of the lacking ofU. proliferatufA gene in Gene Bank in china, we analyzed the gene of our sample (HQW-20110710-1, which was collected from the green tide in 2011) with those ITS andrbcL genes of green algae from Yellow Sea of China. It indicated that our sample was identical with HM 584727 and HM 584728 for ITS gene, and with HM 584765 and HM 584769 forrbcL gene. However, in the three gene’s NJ trees, this freefloating sample was grouped into different clades asU. procera/linzabytufA,U. Linza/proliferaby ITS, andU. procera/proliferabyrbcL, respectively. This discrepancy is, on the one hand, owing to the uncompleted database of DNA barcode, and, on the other hand, to the complex of so calledUlva linza-procera-proliferacomplex (LPP clade, Shimadaet al., 2008, Leliaertet al., 2009). For the latter case, we suggest thatU. proceraandU. linzabe unified asU. linza, not only because of the fact that theU. procera(K. Ahlner) is currently regarded as a taxonomic synonym ofU. linzaLinnaeus (Haydenet al., 2003) in Algaebase (http://www.algaebase.org/), and both species were clustered together intufA NJ tree in our study, but also the fact that phylogeneticallyU. linzaandU. proceracould be clearly distinguished fromU. proliferaby 5s rDNA spacer (Shimadaet al., 2008, 2010; Liuet al., 2012). In addition, either morphologically or molecularly, further discrimination or rectification needs to be carried on samples from different regions in the world.

    The remarkable benefits of DNA barcoding have already been widely accepted; however, for green macroalgae, their convergence of morphological characters is strong but the number of synapomorphic characters is few, and conflicts between traditional phonetic and phylogenentic classifications would inevitably exist for a period (Medlinet al., 2007; Pr?schold and Leliaert, 2007; Saunders and Mcdevit, 2012). In our study, the confusion in molecular identification of some samples also implied that further work needs to be done in several ways, such as establishing appropriate DNA markers, completing the gene database on consistency of traditional and molecular concepts, as well as combining molecular and morphological methods together when identifying species with extreme morphological plasticity (Mareset al., 2011).

    Acknowledgements

    This research was financially supported by the Public Science and Technology Research Funds Projects of Ocean (201105021 and 201305030), National Natural Science Foundation China (41276137), Shandong Provincial Natural Science Foundation, China (ZR2011CM 018), and Qingdao Municipal Science and Technology Program, China (09-2-5-3-hy).

    Buchheim, M. A., Keller, A., Koetschan, C., F?rster, F., Merget, B., and Wolf, M., 2011. Internal transcribed spacer 2 (nu ITS2 rRNA) sequence-structure phylogenetics: Towards an automated reconstruction of the green algal tree of life. Plos one, 6 (2): 1-10.

    Clarkston, B. E., and Saunders, G. W., 2010. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales) with a description of Euthora timburtonii. Botany, 88: 119-131.

    De Clerck, O., Verbruggen, H., Huisman, J. M., Faye, E. J., Leliaert, F., Schils, T., and Coppejans, E., 2008. Systematics and biogeography of the genus Pseudocodium (Bryopsidales, Chlorophyta), including the description of P. natalense sp. nov. from South Africa. Phycologia, 47: 225-235.

    Fama, P., Wysor, B., Kooistra, W., and Zuccarello, G. C., 2002. Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene. Journal of Phycology, 38: 1040-1050.

    Hall, J. D., Fu?íková, K., Lo, C., Lewis, L. A., and Karol, K. G., 2010. An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie Algologie, 31 (4): 529-555.

    H?ndeler, K., W?gele, H., Wahrmund, U., Rüdinger, M., and Knoop, V., 2010. Slugs’ last meals: Molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda). Molecular Ecology Resources, 10: 968-978.

    Hanyuda, T., Arai, S., and Uedak, K., 2000. Variability in the rbcL introns of Caulerpalean algae (Chlorophyta, Ulvophyceae). Journal of Plant Research, 113: 403-413.

    Harper, J. T., and Sauders, G. W., 2001. The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae, Rhodophyta). Les cahiers de Biologie Marine, 42: 25-38.

    Hayden, H. S., Blomster, J., Maggs, C. A., Silva, P. C., Stanhope, M. J., and Waaland, J. R., 2003. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology, 38: 277-294.

    Hayden, H. S., and Waaland, J. R., 2002. Phylogenetic systematics of the Ulvaceae (Ulvales, Ulvophyceae) using chloroplast and nuclear DNA sequences. Journal of Phycology, 38: 1200-1212.

    Hayden, H. S., and Waaland, J. R., 2004. A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the northeast Pacific. Phycologia, 43: 364-382.

    Hebert, P. D. N., Cywinska, A., Ball, S. L., and Deward, J. R., 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Biology, 270: 313-321.

    Hebert, P. D. N., and Gregory, T. R., 2005. The promise of DNAbarcoding for taxonomy. Systematic Biology, 54: 852-859.

    Hu, C., Li, D., Chen, C., Ge, J., Muller-Karger, F. E., Liu, J., Yu, F., and He, M. X., 2010. On the recurrent Ulva prolifera blooms in the Yellow Sea and East. Journal of Geophysical Research, 115, C05017, DOI: 10.1029/2009JC005561.

    Leliaert, F., Zhang, X., Ye, N., Malta, E., Engelen, A. H., Mineur, F., Verbruggen, H., and Clerck, O. D., 2009. Identity of the Qingdao algal bloom. Phycological Research, 57: 147-151.

    Liu, D. Y., Wang, Z. Y., Sun, J., Huang, Z. Y., and Qian, S. B., 1999. Study of the benthic algae in the littoral of Qingdao coast. Transactions of Oceanology and Limnology, 3: 35-40.

    Liu, D. Y., Keesing, J. K., Xing, Q. G., and Shi, P., 2009. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin, 58: 888-895.

    Liu, F., Pang, S. J., Zhao, X. B., and Hu, C. M., 2012. Quantitative molecular and growth analyses Ulva propagules in sediment of Jiangsu initially green tides. Marine Environmental Research, 74: 56-63.

    Loughnane, C. J., McIvor, L. M., Rindi, F., Stengel, D. B., and Guiry, M. D., 2008. Morphology, rbcL phylogeny and distribution of distromatic Ulva (Ulvophyceae, Chlorophyta) in Ireland and southern Britain. Phycologia, 47: 416-429.

    Manhart, J. R., 1994. Phylogenetic analysis of green plant rbcL sequences. Molecular Phylogenetics and Evolution, 3: 114-127.

    Mares, J., Leskinen, E., Sitkowska, M., Skácelová, O., and Blomster, J., 2011. True identity of the European freshwater Ulva revealed by molecular and morphological methods. Journal of Phycology, 47: 1177-1192.

    Mcdevit, D. C., and Saunders, G. W., 2009. On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol. Phycological Research, 57: 131-141.

    Medlin, L. K., Metifies, K., John, U., and Olsen, J. L., 2007. Algal molecular systematic: A review of the past and prospects for the future. In: Unravelling the Algae-the Past, Present and Future of Algal Systematic. Brodie, J., and Lewis, J., eds., CRC Press, Boca Raton, FL, 341-353.

    Meier, R., Zhang, G., and Ali, F., 2008. The use of mean instead of smallest interspecific distances exaggerates the size of the‘Barcoding Gap’ and leads to misidentification. Systematic Biology, 57: 809-813.

    Nakazawa, A., Yamada, T., and Nozaki, H., 2004. Taxonomic study of Asterococcus (Chlorophyceae) based on comparative morphology and rbcL gene sequences. Phycologia, 43: 711-721.

    O’Kelly, C. J., Kurihara, A., Shipley, T. C., and Sherwood, A. R., 2010. Molecular assessment of Ulva spp. (Ulvophyceae, Chlorophyta) in the Hawaiian Islands. Journal of Phycology, 46: 728-735.

    Pang, S. J., Liu, F., Shan, T. F., Xu, N., Zhang, Z. H., Gao, S. Q., Chopin, T., and Sun, S., 2010. Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Marine Environmental Research, 69: 207-215.

    Pr?schold, T., and Leliaert, F., 2007. Systematics of the green algae: Conflict of classic and modern approaches. In: Unravelling the Algae ? the Past, Present and Future of Algal Systematic. Brodie, J., and Lewis, J., eds., CRC Press, Boca Raton, FL, 123-153.

    Robba, L., Russell, S., Baker, G., and Brodie, J., 2006. Assessing the use of the mitochondrial COX I marker for use in DNA barcoding of red algae (Rhodophyta). American Journal of Botany, 93 (8): 1101-1108.

    Shimada, S., Yokoyama, N., Arai, A., and Hiraoka, M., 2008. Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. Journal of Applied Phycology, 20: 979-989.

    Saunders, G. W., 2005. Applying DNA barcoding to red macroalgae a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B, 360: 1879-1888.

    Saunders, G. W., and Kucera, H., 2010. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie Algologie, 31 (4): 487-528.

    Sun, S., Wang, F., Li, C., Qin, S., Zhou, M., Ding, L., Pang, S., Duan, D., Wang, G., Yin, B., Yu, R., Jiang, P., Liu, Z., Zhang, G., Fei, X., and Zhou, M., 2008. Emerging challenges: Massive green algae blooms in the Yellow Sea. Nature Precedings, hdl: 10101/ npre.2008.2266.1.

    Tamura, K., Nei, M., and Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of USA, 101: 11030-11035.

    Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software Ver. 4.0. Molecular Biology and Evolution, 24: 1596-1599. Tseng, C. K., 1983. Common Seaweeds of China. Science Press, Beijing, 25-33.

    Tseng, C. K., Xia, B. M., and Zhou, X. T., 2009. Seaweeds in Yellow Sea and Bohai Sea of China. Science Press, Beijing, 254pp (in Chinese).

    Valentini, A., Pompanon, F., and Taberlet, P., 2008. DNA barcoding for ecologists. Trends in Ecology and Evolution, 24 (2): 110-117.

    Verbruggen, H., Tyberghein, L., Pauly, K., Vlaeminck, C., Van Nieuwenhuyze, K., Koositra, W., Leliaert, F., and De Clerck, O., 2009. Macroecology meets macroevolution: Evolutionary niche dynamics in the seaweed Halimeda. Global Ecology and Biogeography, 18: 393-405.

    Wang, J. F., Li, N., Jiang, P., Boo, S. M., Lee, W. J., Cui, Y., Lin, H., Zhao, J., Liu, Z., and Qin, S., 2010a. Ulva and Enteromorpha (Ulvaceae, Chlorophyta) from two sides of the Yellow Sea: Analysis of nuclear rDNA ITS and plastid rbcL sequence data. China Journal of Oceanology and Limnology, 28: 763-768.

    Wang, J. F., Jiang, P., Cui, Y. L., Li, N., Wang, M. Q., Lin, H. Z., Hee, P., and Qin, S., 2010b. Molecular analysis of green-tideforming macroalgae in Yellow Sea. Aquatic Botany, 93: 25-31.

    Yang, Z., Wang Y., Dong, K. S., Tang, X. X., and Zhao, X., 2009. The survey on the community of benthic marine macroalgae. Periodical of Ocean University of China, 39 (4): 647-651.

    Zhao, J., Jiang, P., Liu, Z. Y., Wei, W., Lin, H. Z., Li, F. C., Wang, J. F., and Q, S., 2012. The Yellow Sea green tides were dominated by one species, Ulva (Enteromorpha) prolifera, from 2007 to 2011. Chinese Science Bulletin, DOI: 10.1007/ s11434-012-5441-3.

    Zuccarello, G., Price, N., Verbruggen, H., and Leliaert, F., 2009. Analysis of a plastid multigene data set and the phylogenetic position of the marine macroalga Caulerpa filiformis (Chlorophyta). Journal of Phycology, 45: 1206-1212.

    (Edited by Ji Dechun)

    * Corresponding author. Tel: 0086-532-82032789

    E-mail: yxmao@ouc.edu.cn

    (Received October 30, 2012; revised January 4, 2013; accepted March 20, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    日韩人妻高清精品专区| 99久久久亚洲精品蜜臀av| 日本在线视频免费播放| 99热这里只有是精品在线观看| 久久99热6这里只有精品| 一进一出抽搐动态| 麻豆国产av国片精品| 午夜精品久久久久久毛片777| 国模一区二区三区四区视频| 三级毛片av免费| 91精品国产九色| 老司机午夜福利在线观看视频| 久久国内精品自在自线图片| 欧美又色又爽又黄视频| 国产av在哪里看| 亚洲成人精品中文字幕电影| 我的老师免费观看完整版| 欧美日韩黄片免| 午夜福利在线在线| 99久久中文字幕三级久久日本| 美女xxoo啪啪120秒动态图| 少妇裸体淫交视频免费看高清| 淫秽高清视频在线观看| 免费人成视频x8x8入口观看| 亚洲av日韩精品久久久久久密| 欧美zozozo另类| 嫁个100分男人电影在线观看| 亚洲av电影不卡..在线观看| 日本一本二区三区精品| 熟妇人妻久久中文字幕3abv| 亚洲成人久久性| 日本色播在线视频| 亚洲精品国产成人久久av| 我要搜黄色片| 乱人视频在线观看| 一个人观看的视频www高清免费观看| 午夜老司机福利剧场| 精品人妻熟女av久视频| 国产aⅴ精品一区二区三区波| 日日摸夜夜添夜夜添av毛片 | 亚洲av中文字字幕乱码综合| 久久久久国产精品人妻aⅴ院| 久久精品91蜜桃| 少妇人妻一区二区三区视频| 亚洲精品日韩av片在线观看| 变态另类丝袜制服| 狠狠狠狠99中文字幕| 日日干狠狠操夜夜爽| 精品欧美国产一区二区三| 18禁黄网站禁片午夜丰满| 老司机福利观看| 久久久久久久久中文| 国内精品美女久久久久久| 一a级毛片在线观看| 舔av片在线| 午夜免费激情av| 99热这里只有精品一区| 久久久久免费精品人妻一区二区| 成人国产综合亚洲| 在线观看av片永久免费下载| 少妇被粗大猛烈的视频| 丰满乱子伦码专区| 国产成人aa在线观看| 亚洲天堂国产精品一区在线| 欧美日韩瑟瑟在线播放| av中文乱码字幕在线| 国产国拍精品亚洲av在线观看| 99久久无色码亚洲精品果冻| 久久精品国产亚洲网站| 亚洲av成人精品一区久久| 亚洲性久久影院| 99视频精品全部免费 在线| 精华霜和精华液先用哪个| 欧美一区二区国产精品久久精品| 欧美成人性av电影在线观看| 国内精品久久久久久久电影| 国产精品电影一区二区三区| 国内精品美女久久久久久| 在线免费观看的www视频| 性色avwww在线观看| 成人鲁丝片一二三区免费| 久久国产精品人妻蜜桃| 久久国产精品人妻蜜桃| 国产伦一二天堂av在线观看| 国产精品不卡视频一区二区| 伦精品一区二区三区| 午夜福利在线观看免费完整高清在 | 最新在线观看一区二区三区| 窝窝影院91人妻| 国产伦在线观看视频一区| 91久久精品电影网| 成人国产麻豆网| 我要看日韩黄色一级片| 性色avwww在线观看| 91精品国产九色| 男女那种视频在线观看| 国产av麻豆久久久久久久| 久久婷婷人人爽人人干人人爱| 长腿黑丝高跟| 午夜福利视频1000在线观看| 成人鲁丝片一二三区免费| 亚洲av中文字字幕乱码综合| 午夜福利高清视频| 88av欧美| 最近视频中文字幕2019在线8| 桃红色精品国产亚洲av| 别揉我奶头 嗯啊视频| 亚洲性久久影院| 亚洲 国产 在线| 亚洲av.av天堂| 男女之事视频高清在线观看| 色精品久久人妻99蜜桃| 欧美丝袜亚洲另类 | 免费在线观看影片大全网站| 国产伦精品一区二区三区视频9| 欧美性猛交╳xxx乱大交人| 欧美色视频一区免费| 级片在线观看| 黄色日韩在线| 大型黄色视频在线免费观看| 久久中文看片网| 校园人妻丝袜中文字幕| 国产日本99.免费观看| 国产高清三级在线| av天堂中文字幕网| 热99在线观看视频| 亚洲欧美日韩卡通动漫| www.www免费av| 国产精品一区www在线观看 | 亚洲自拍偷在线| 亚洲av美国av| 69av精品久久久久久| 国内精品久久久久久久电影| 亚洲三级黄色毛片| 日本黄色视频三级网站网址| 精品久久久久久久久亚洲 | 中国美白少妇内射xxxbb| 国产精品美女特级片免费视频播放器| 色视频www国产| 精品久久久噜噜| 欧美+日韩+精品| 国产高清视频在线播放一区| 国产主播在线观看一区二区| 18禁在线播放成人免费| 国产成人av教育| 级片在线观看| 色综合色国产| 婷婷精品国产亚洲av在线| 成年女人永久免费观看视频| 天天躁日日操中文字幕| 国产成人aa在线观看| 99热精品在线国产| 波野结衣二区三区在线| 美女大奶头视频| 国产精品日韩av在线免费观看| 男人的好看免费观看在线视频| 人妻久久中文字幕网| 91狼人影院| 中文字幕av成人在线电影| 亚洲熟妇熟女久久| videossex国产| 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久久av| 亚洲欧美激情综合另类| 日韩在线高清观看一区二区三区 | 国产伦在线观看视频一区| 美女高潮的动态| 一边摸一边抽搐一进一小说| 91精品国产九色| 亚洲午夜理论影院| 久久热精品热| 亚洲熟妇熟女久久| 1024手机看黄色片| 日本一本二区三区精品| 三级男女做爰猛烈吃奶摸视频| 美女免费视频网站| 狂野欧美激情性xxxx在线观看| 国产成人影院久久av| 国产av一区在线观看免费| 亚洲第一电影网av| 国产色爽女视频免费观看| 国产熟女欧美一区二区| 超碰av人人做人人爽久久| 成年免费大片在线观看| av.在线天堂| 99九九线精品视频在线观看视频| 亚洲在线自拍视频| 色在线成人网| 在现免费观看毛片| 国产精品一区二区三区四区免费观看 | 婷婷亚洲欧美| 综合色av麻豆| 国产成人a区在线观看| 国产精品福利在线免费观看| 一区二区三区免费毛片| 不卡视频在线观看欧美| 国产精品日韩av在线免费观看| 亚洲av电影不卡..在线观看| 国产女主播在线喷水免费视频网站 | 日本a在线网址| 又爽又黄a免费视频| 日韩人妻高清精品专区| 午夜福利在线观看吧| 赤兔流量卡办理| 日韩中字成人| 久久99热6这里只有精品| 国产亚洲精品久久久久久毛片| 色综合站精品国产| 欧美又色又爽又黄视频| 午夜精品在线福利| 婷婷精品国产亚洲av| 欧美性猛交黑人性爽| 成熟少妇高潮喷水视频| 欧美又色又爽又黄视频| 男人和女人高潮做爰伦理| 在线国产一区二区在线| 久久久久久久久大av| 国内精品久久久久久久电影| 悠悠久久av| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| 成年女人永久免费观看视频| 日韩欧美在线二视频| 大型黄色视频在线免费观看| 一本一本综合久久| 国产精品99久久久久久久久| 国产一区二区激情短视频| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 狠狠狠狠99中文字幕| 大又大粗又爽又黄少妇毛片口| 日韩中字成人| 国产中年淑女户外野战色| 亚洲av二区三区四区| 色综合站精品国产| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| videossex国产| 在线播放无遮挡| 我的女老师完整版在线观看| 欧美高清性xxxxhd video| av.在线天堂| 我要搜黄色片| 可以在线观看毛片的网站| 国产主播在线观看一区二区| 91精品国产九色| 亚洲成人久久性| 嫩草影院新地址| 国产精品永久免费网站| 亚洲乱码一区二区免费版| 久久久久九九精品影院| 亚洲va日本ⅴa欧美va伊人久久| 99在线人妻在线中文字幕| 亚洲av电影不卡..在线观看| 国产真实伦视频高清在线观看 | 少妇熟女aⅴ在线视频| 色综合色国产| 看黄色毛片网站| av在线蜜桃| 亚洲精品色激情综合| 在现免费观看毛片| 人人妻人人看人人澡| 亚洲国产精品sss在线观看| 久久亚洲真实| 真实男女啪啪啪动态图| 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| 成人二区视频| 亚洲av二区三区四区| 国产精品人妻久久久影院| 中文字幕精品亚洲无线码一区| 国产亚洲精品av在线| www日本黄色视频网| 成人无遮挡网站| 人妻丰满熟妇av一区二区三区| 此物有八面人人有两片| 亚洲七黄色美女视频| 中文在线观看免费www的网站| 日韩人妻高清精品专区| 69人妻影院| 一本精品99久久精品77| 日韩欧美 国产精品| 国内毛片毛片毛片毛片毛片| 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| 麻豆国产97在线/欧美| 三级毛片av免费| 中出人妻视频一区二区| 亚洲av免费高清在线观看| 又爽又黄a免费视频| 日本黄色视频三级网站网址| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕日韩| 国产一区二区在线av高清观看| 美女高潮的动态| 又紧又爽又黄一区二区| 成人国产麻豆网| 久久久国产成人免费| 色5月婷婷丁香| 免费看a级黄色片| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 国产精品久久久久久亚洲av鲁大| 两个人视频免费观看高清| 国产在线精品亚洲第一网站| 又粗又爽又猛毛片免费看| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久| av在线蜜桃| 少妇裸体淫交视频免费看高清| 级片在线观看| 国产精品一及| 国产在视频线在精品| 一区福利在线观看| 国产精品伦人一区二区| 18禁黄网站禁片免费观看直播| 两人在一起打扑克的视频| 成人毛片a级毛片在线播放| 毛片女人毛片| 日本黄色视频三级网站网址| 久久九九热精品免费| 亚洲人成网站在线播放欧美日韩| 桃红色精品国产亚洲av| 欧美三级亚洲精品| 久久九九热精品免费| 久久香蕉精品热| 亚洲国产精品成人综合色| 日本熟妇午夜| 亚洲aⅴ乱码一区二区在线播放| 国产伦一二天堂av在线观看| 天美传媒精品一区二区| 人妻制服诱惑在线中文字幕| 日日干狠狠操夜夜爽| 伦精品一区二区三区| 国产精品自产拍在线观看55亚洲| 久久久久免费精品人妻一区二区| 在线观看美女被高潮喷水网站| 看黄色毛片网站| 色综合站精品国产| 日韩在线高清观看一区二区三区 | 51国产日韩欧美| 12—13女人毛片做爰片一| 久久久色成人| 欧美一区二区精品小视频在线| 日本一二三区视频观看| 免费观看在线日韩| 久久久国产成人免费| 亚洲一区二区三区色噜噜| 高清毛片免费观看视频网站| 国产精品98久久久久久宅男小说| 午夜老司机福利剧场| 日本成人三级电影网站| www.www免费av| 在线观看免费视频日本深夜| 日韩欧美精品免费久久| 精品一区二区三区视频在线观看免费| 99在线视频只有这里精品首页| 国产精品久久久久久久电影| 亚洲四区av| 亚洲中文字幕一区二区三区有码在线看| a在线观看视频网站| 国产高清不卡午夜福利| 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 国产精华一区二区三区| 日韩欧美 国产精品| 久99久视频精品免费| 国产高清视频在线播放一区| 成人无遮挡网站| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 简卡轻食公司| 亚洲国产日韩欧美精品在线观看| 精品乱码久久久久久99久播| 在线看三级毛片| 悠悠久久av| 久久久久国内视频| 内射极品少妇av片p| 少妇的逼好多水| 免费黄网站久久成人精品| 亚洲专区中文字幕在线| 夜夜爽天天搞| 午夜日韩欧美国产| 国产伦精品一区二区三区视频9| 最近在线观看免费完整版| 亚洲性久久影院| 日本精品一区二区三区蜜桃| 中文字幕免费在线视频6| 免费看a级黄色片| 久久九九热精品免费| 色综合婷婷激情| 国产91精品成人一区二区三区| 国国产精品蜜臀av免费| av黄色大香蕉| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 黄色配什么色好看| 亚洲性夜色夜夜综合| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 给我免费播放毛片高清在线观看| 在线播放无遮挡| 日日撸夜夜添| 亚洲国产色片| 久久久久国产精品人妻aⅴ院| 一进一出好大好爽视频| 亚洲欧美激情综合另类| 国产一级毛片七仙女欲春2| 日本爱情动作片www.在线观看 | 免费在线观看日本一区| 日韩中字成人| 夜夜夜夜夜久久久久| ponron亚洲| 久久久久九九精品影院| 日本熟妇午夜| 精品午夜福利在线看| 欧美日韩亚洲国产一区二区在线观看| 悠悠久久av| 国产白丝娇喘喷水9色精品| 久久久久久久久久黄片| 91精品国产九色| 在线观看免费视频日本深夜| 亚洲av成人av| 国产在视频线在精品| 国产精品久久久久久亚洲av鲁大| 18禁裸乳无遮挡免费网站照片| 国产精品乱码一区二三区的特点| 欧美日韩国产亚洲二区| 国产精品福利在线免费观看| 亚洲精品影视一区二区三区av| a级一级毛片免费在线观看| 一级a爱片免费观看的视频| 午夜免费激情av| 午夜免费男女啪啪视频观看 | 欧美激情久久久久久爽电影| 国产男人的电影天堂91| 色尼玛亚洲综合影院| 亚洲乱码一区二区免费版| av女优亚洲男人天堂| 国语自产精品视频在线第100页| 中文字幕熟女人妻在线| 中文字幕久久专区| 日本 av在线| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费| 99riav亚洲国产免费| 国产乱人伦免费视频| 国产在线男女| 男人狂女人下面高潮的视频| 99视频精品全部免费 在线| 色精品久久人妻99蜜桃| 国产精品乱码一区二三区的特点| 国产精品日韩av在线免费观看| 精品一区二区三区av网在线观看| 国产伦精品一区二区三区视频9| 一级av片app| 最好的美女福利视频网| 热99re8久久精品国产| 国产午夜福利久久久久久| 国模一区二区三区四区视频| 变态另类成人亚洲欧美熟女| 岛国在线免费视频观看| 欧美高清成人免费视频www| 综合色av麻豆| a级一级毛片免费在线观看| 99热网站在线观看| 成年女人毛片免费观看观看9| 日本黄大片高清| 亚洲七黄色美女视频| 美女被艹到高潮喷水动态| 国产精品三级大全| 成人一区二区视频在线观看| 亚洲精品色激情综合| 日本在线视频免费播放| 少妇丰满av| 一级av片app| 亚洲美女黄片视频| xxxwww97欧美| 最好的美女福利视频网| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| bbb黄色大片| 国内精品美女久久久久久| 国产精华一区二区三区| 小说图片视频综合网站| 亚洲欧美清纯卡通| av.在线天堂| 亚洲精品久久国产高清桃花| 亚洲成av人片在线播放无| 国产亚洲91精品色在线| 成人美女网站在线观看视频| 久久精品国产清高在天天线| 亚洲男人的天堂狠狠| 午夜福利欧美成人| 国产日本99.免费观看| 此物有八面人人有两片| 午夜爱爱视频在线播放| 九九在线视频观看精品| 午夜老司机福利剧场| 免费av不卡在线播放| 午夜亚洲福利在线播放| 久久久久免费精品人妻一区二区| 亚洲狠狠婷婷综合久久图片| 午夜日韩欧美国产| a级毛片a级免费在线| 少妇的逼水好多| 亚洲精品国产成人久久av| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 国产精品综合久久久久久久免费| 国产淫片久久久久久久久| 国内少妇人妻偷人精品xxx网站| 国产精品美女特级片免费视频播放器| av在线蜜桃| 麻豆成人午夜福利视频| 色哟哟哟哟哟哟| 一本一本综合久久| 国产免费一级a男人的天堂| 1024手机看黄色片| 国产午夜福利久久久久久| 国产成人影院久久av| 亚洲av二区三区四区| 一区二区三区四区激情视频 | 亚洲第一区二区三区不卡| 最近最新免费中文字幕在线| 国产白丝娇喘喷水9色精品| 免费大片18禁| 波多野结衣巨乳人妻| 亚洲熟妇中文字幕五十中出| 亚洲久久久久久中文字幕| 午夜影院日韩av| bbb黄色大片| 此物有八面人人有两片| 国产真实乱freesex| 国产午夜福利久久久久久| 麻豆国产av国片精品| 日本黄色视频三级网站网址| 俺也久久电影网| 亚洲人成网站在线播放欧美日韩| 亚洲精华国产精华精| 亚洲av二区三区四区| 日日干狠狠操夜夜爽| 欧美+日韩+精品| 亚洲七黄色美女视频| 人妻制服诱惑在线中文字幕| 久久6这里有精品| 黄色一级大片看看| 一区二区三区四区激情视频 | 国产伦精品一区二区三区视频9| 亚洲人成网站在线播| 五月伊人婷婷丁香| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 国产单亲对白刺激| 久久久午夜欧美精品| 少妇人妻精品综合一区二区 | 欧美性猛交╳xxx乱大交人| 国产成人一区二区在线| 久久6这里有精品| 精品不卡国产一区二区三区| 久久九九热精品免费| 欧美一区二区精品小视频在线| 国产视频内射| 3wmmmm亚洲av在线观看| 免费黄网站久久成人精品| 国产精品一及| 免费人成在线观看视频色| 欧美性猛交黑人性爽| 久久精品国产亚洲av涩爱 | 男人舔奶头视频| 久久草成人影院| 亚洲综合色惰| 99精品在免费线老司机午夜| 国产一区二区三区在线臀色熟女| 搞女人的毛片| 97热精品久久久久久| 1000部很黄的大片| 桃色一区二区三区在线观看| 91av网一区二区| 黄色丝袜av网址大全| 国产av不卡久久| av在线亚洲专区| 久久亚洲真实| 亚洲第一区二区三区不卡| 国产亚洲av嫩草精品影院| 国产高潮美女av| 最近在线观看免费完整版| 中文字幕av成人在线电影| 女人被狂操c到高潮| 在线观看一区二区三区| 亚洲av不卡在线观看| 香蕉av资源在线| 久久久精品大字幕| 听说在线观看完整版免费高清| 欧美人与善性xxx| 久久午夜福利片| 日本黄大片高清| 两人在一起打扑克的视频| 国产高清激情床上av| 欧美最黄视频在线播放免费| 免费看美女性在线毛片视频| 看十八女毛片水多多多| 俺也久久电影网| 国内少妇人妻偷人精品xxx网站| 欧美丝袜亚洲另类 | 午夜免费激情av| 97碰自拍视频| 亚洲人成网站在线播| 国产欧美日韩精品亚洲av| 成人永久免费在线观看视频| 中国美女看黄片|