• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QSAR for Photodegradation Activity of Polycyclic Aromatic Hydrocarbons in Aqueous Systems

    2014-05-02 05:42:05XUXiangandLIXianguo
    Journal of Ocean University of China 2014年1期

    XU Xiang, and LI Xianguo,

    1) College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China

    2) Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China

    QSAR for Photodegradation Activity of Polycyclic Aromatic Hydrocarbons in Aqueous Systems

    XU Xiang1),2), and LI Xianguo2),*

    1) College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China

    2) Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China

    The relationship between chemical structures and photodegradation activity of 12 PAHs is studied using DFT and HF methods, and stepwise multiple linear regression analysis method. The equilibrium geometries and vibration frequency have been investigated by considering Solvent effects using a selfconsistent reaction field based on the polarizable continuum model. With DFT and HF methods, different quantum chemical structural descriptors are obtained by quantum chemical calculation and the results with DFT method are better for QSAR model. It is concluded that the photodegradation activity is closely related to its molecular structure. In the regression analysis, the main factors affecting photodegradation rate include the energy of the highest occupied orbital EHOMOand the number of six-carbon benzene ring N1, and the QSAR model successfully established is logkb=6.046 + 54.830EHOMO+ 0.272N1. Statistical evaluation of the developed QSAR shows that the relationships are statistically significant and the model has good predictive ability. EHOMOis the most important factor influcing the photodegradation of PAHs, because the higher EHOMOis, the more easily electron will be excited and the more easily molecular will be degraded. Comparison of the photodegradation of PAHs with their biodegradation shows that the committed step of biodegradation is that the effects of microorganisms make the chemical bond break, while in the committed step of photodegradation PAHs eject electrons.

    quantitative structure-activity relationship (QSAR); polycyclic aromatic hydrocarbons (PAHs); density functional theory (DFT); photodegradation

    1 Introduction

    PAHs are aromatic hydrocarbons with two or more fused benzene rings. They are mostly produced by the incomplete combustion or the thermal decomposition under reducing atmosphere of fossil fuels like oil and coal, and materials containing hydrocarbon like wood, natural gas, gasoline, heavy oil, organic polymer compounds, paper, crop straw, tobacco,etc. Now, they widely exist in natural water (Grimmer and Misfeld, 1983; Grimmer and Pott, 1983; Mekenyanet al., 1994; Sunet al., 2011; Wanget al., 2012) and the direct photodegradation is one important transformation for PAHs.

    Because of the limits of various conditions, the experimental study about the direct photodegradation of PAHs is relatively less than the biodegradation. Two classical sets of data were reported by Smith (Smithet al., 2001) and Zepp (Zepp and Schlotzhauer, 1979), which listed the photodegradation half-life of 13 PAHs at noon of midsummer days. By using PM3 semi-empirical method, Chenet al. (2001) calculated the quantum chemical parameters of 13 PAHs and established the QSAR model with three structural parameters (ELUMO?EHOMO, (ELUMO?EHOMO)2, ELUMO+EHOMO). Based on the same data sets as Chen, Luet al. (2005) calculated the quantum chemical parameters by using HF and DFT method and also established the QSAR model with only one structural parameter (EHOMO).

    Through the studies above we can raise the following questions: 1) The experimental data comes from different researchers and the experiments are performed under different conditions, so the two sets of data inevitably contained certain inconsistencies. 2) All the structural parameters to establish QSAR models which are calculated by quantum chemistry are just the gas state without considering solvent effect, while the photodegradation reactions proceed in aqueous system. 3) The research results of Chen and Lu have some different points. For the reasons mentioned above, using the experimental data of Fasnacht and Blough (Fasnachtet al., 2002) for 12 PAHs in aqueous system, we studied the relationship between chemical structures and photodegradation activity of 12PAHs with stepwise multiple linear regression analysis method and successfully established the QSAR model.

    2 Materials and Methods

    2.1 Experimental Data

    The experimental data on photodegradation activity of 12 PAHs were obtained from literature (Fasnachtet al., 2002). The photodegradation rate constantskbof 12 PAHs and the photodegradation activity expressed by logkbare listed in Table 1.

    2.2 Calculation Method

    The geometries of all the molecules were optimizedusing DFT and HF method at B3LYP/6-31+G (d, p) level. The stationary points were characterized by frequency calculations in order to verify that the transition states have one and only one imaginary frequency. In chemistry, solvent effect is actually the group of effects that a solvent has on chemical reactivity. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction. Reactivity and reaction mechanisms are often pictured as the behavior of isolated molecules in which the solvent is treated as a passive support. However, solvents can actually influence reaction rates and the order of a chemical reaction (Reichardt, 1990; Jones, 1984; James, 1985, Sarwaret al., 2010)). In solution, the behaviour of ions and molecules is dictated mainly by the solvent and only to a lesser extent by their intrinsic properties. Because the photodegradation reactions in this study happened in aqueous system, solvent effects have been considered as the using of a selfconsistent reaction field (SCRF) (Simkin and Sheikhet, 1995) based on the polarizable continuum model (PCM) of Tomasi’s group (Baroneet al., 1998). All calculations were carried out with Gaussian 03 program package (Frischet al., 2003).

    Table 1 Compounds studied, structure and the experimental first-order biomass-normalized rate coefficients (kb) and the photodegradation activity (logkb)

    In this study the data used to establish QSAR model were obtained from the calculation results, which included the energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest unoccupied molecular orbital (ELUMO), the HOMO and LUMO orbital energy difference (△E= ELUMO?EHOMO), the energy of the next-HOMO (NEHOMO), the energy of the next-LUMO (NELUMO), total energy (ET), molecular dipole moment (μ), molar volume (Vm), the number of six-carbon benzenoid ring (N1), the number of all types of rings (N2), the most negative charge of carbon atomthe most positive charge of hydrogen atomand the in-plane bending vibration frequency of the conjugated ring of PAHs (Freq).

    QSAR model was established using SPSS 13.0 statistical analysis software package, including dependent variable logkband independent variables mentioned above and obtained from calculated results. In the process of multivariate stepwise linear regression analysis, the independent variables having high correlation coefficients with the dependent variable were chosen and introduced into the regression equation (Xiaet al., 2011). The validity of the established model was judged by R (correlation coefficient between observed values and fitted values),R2(determination coefficient),S.E. (standard error of regression estimation),F(value of theFstatistic), Sig.F(significance of the F statistic), Std. Dev. (standard deviation),RMSE(the root mean squared error) andn(the number of analytical compounds).

    3 Results

    3.1 Structural Parameters and Related Relationship

    To establish QSAR model, the relationship between logkband each of molecular descriptors should be firstobtained. In this paper, DFT and HF methods are adopted in all calculations, and the calculation results are compared. The 14 molecular descriptors of 12 PAHs are listed in Table 2, and the correlation coefficients of each molecular descriptor with logkbare shown in Table 3. By comparing the values of correlation coefficients, the molecular descriptors which have a significant relationship with logkbare chosen to establish QSAR model. As is shown in Table 3, the results with DFT and HF method are consistent. EHOMOhas the highest correlation coefficient with logkband the value is 0.843 by DFT method and it is 0.800 by HF method, which is different from the calculation results of Lu (Luet al., 2005) by using DFT and HF methods. It can be found that except for the correlation coefficient between (ELUMO+EHOMO) and logkb, the results calculated by the two methods are similar. Because the correlation coefficient between (ELUMO+EHOMO) and logkbis not relatively high, (ELUMO+EHOMO) will be eliminated before establishing QSAR model without affecting the final results. So in this paper, the calculation results of DFT method are chosen to study the relationship between the structure and photodegradation activity of PAHs.

    Table 2a Descriptors of PAHs used in QSAR study

    Table 2b Descriptors of PAHs used in QSAR study

    Table 2c Descriptors of PAHs used in QSAR study

    Table 2d Descriptors of PAHs used in QSAR study

    Table 3 Correlation coefficients of descriptors used in this study

    The eight molecular descriptors EHOMO, N1,△E, △E2, ELUMO+EHOMOandμhave higher correlation coefficient with logkband are selected to establish QSAR model. To ensure the stability of the built model, the eight descriptors are taken pairwise in collinearity diagnostics. If the correlation of two parameters is significant, the parameter with smaller correlation coefficient with logkbwill be eliminated before establishing QSAR model. For instance, when the correlation coefficient between △Eand △E2is 0.997 and the correlation coefficients with logkbare ?0.623 and ?0.642, respectively, △E is eliminated. Finally,before establishing QSAR model.

    Table 4 The colinearity analysis between two parameters having close relationships with logkb

    3.2 Development of QSARs

    After collinearity diagnostics, the major parameters influencing photodegradation activity,i.e. EHOMO, N1, (ELUMO+EHOMO) andμwere used to establish QSAR model. In order to get the best QSAR model, we tried to select different parameter groups as independent variables and logkbas dependent variable and carried out multiple linear regression analysis. We take EHOMOas independent variable, carried out linear regression analysis, and got Eq. (1):

    Eq.(1) has high correlation coefficient 0.843, small standard error, large Fisher check value, and the significance of the F statistic 0.001. So there are obvious linear regression relations between independent variables and dependent variable. Eq.(1) shows that the photodegradation activity of PAHs is closely related to the energy of the highest occupied molecular orbital, which is in agreement with the research result of Lu (Luet al., 2005). This result is closely related to the photodegradation mechanism of PAHs that the committed step of its photodegradation in aqueous system is ejecting one electron with absorbing one photon and ejecting electrons is absolutely crucial. The higher EHOMOis, the more easily electron will be excited and the more easily molecular will be degraded.

    To investigate the influence of adding variables to QSAR model, we add N1 as an independent variable and get Eq.(2) based on Eq.(1):

    Moreover, adding (ELUMO+EHOMO) as an independent variable gives Eq.(3) based on Eq.(2):

    Addingμas an independent variable gives Eq.(4) based on Eq.(3):

    4 Discussion

    By comparing the various parameters in Eqs.(1?4), it can be found that Eq.(2) is an ideal QSAR model. This is because with the increase of the variable, correlation coefficient R and determination coefficientR2become bigger, but Eq.(2) has smaller standard deviationS.E., smaller root mean squared error RMSE and relatively larger F check value. Comparing the photodegradation of PAHs with their biodegradation shows that though there is one high correlation coefficient between the vibration frequency of benzene ring and biodegradation activity (Xuet al., 2012), there is almost no correlation between the vibration frequency of benzene ring and the photodegradation activity with a correlation coefficient 0.043. This is because the reaction mechanisms of biodegradetion and photodegradation are different. The committed step of biodegradation is that microorganisms make the chemical bond break, while in the committed step of photodegradation PAHs eject electrons.

    In order to validate the predictive ability of Eq.(2), the variable logkbof 12 PAHs are calculated by Eq.(2), and Fig.1 is the scatter graph of experimental and predicted values, showing that the predicted values are in good agreement with the experimental values. Fig.2 is the plots of regression standardized residuals versus the predicted values, which shows that the plots are randomly and uniformly distributed at horizontal band (?1.5, 1.5). Through the above analysis, it can be concluded that the QSAR model has a good predictive ability.

    Furthermore, a leave-one-out cross-validation procedure was performed to assess the robustness of each QSAR. The procedure created perturbed training sets by removing one of the compounds from the original training sets. The perturbed training sets were used to develop partial QSARs to predict the activity of the removed compound. The squared differences between the experi-mental and predicted activities for the removed compound were used to calculate the mean cross-validated coefficient of determination (2LOOQ). For Eq.(2), the2LOOQ,FLOOandRMSELOOof validation results are 0.7383, 11.2830 and 0.3324, respectively, which change little compared with the value of the developed model (R2=0.750,F=13.476,RMSE=0.303). So the obtained QSAR model has good robustness.

    Fig.1 The scatter graph of experimental and predicted values.

    Fig.2 The plots of regression standardized residuals versus the predicted values.

    5 Conclusions

    With DFT and HF methods, different quantum chemical structural descriptors are obtained by quantum chemical calculation and the results with DFT method are more superior for QSAR model. By means of regression analysis, the main factors affecting photodegradation rate are picked out, and EHOMOhas the highest correlation coefficient with logkbas the committed step of PAHs’photodegradation in aqueous system is ejecting electrons. The higher EHOMOis, the more easily electron will be excited and the more easily molecular will be degraded. By multiple linear regression analysis, the QSAR model for chemical structure of PAHs and their photodegradation activity is successfully established. From the comparison between experimental and predicted values and that between the distribution of regression standardized residuals and the leave-one-out cross-validation, it can be found that the established QSAR model has good robustness and predictive ability. Comparison between the photodegradation of PAHs with their biodegradation shows that the committed step of biodegradation is that the effects of microorganisms make the chemical bond break, while in the committed step of photodegradation PAHs eject electrons.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Nos. 40976041 and 20775074). We are also grateful to the reviewers of the paper.

    Barone, V., Cossi, M., and Tomasi, J., 1998. Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19: 404-417.

    Chen, J., Peijnenburg, W., Quan, X., Che, S., Martens, D., Schramm, K. W., and Kettrup, A., 2001. Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight? Environmental Pollution, 114: 137-143.

    Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, J. T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., 2003. Gaussian 03. Revision B.05. Gaussian, Inc., Pittsburgh, PA.

    Fasnacht, M. P., and Blough, N. V., 2002. Aqueous photodegradation of polycyclic aromatic hydrocarbon. Environmental Science and Technology, 36: 4364-4369.

    Grimmer, G., and Misfeld, J., 1983. Environmental carcinogens: A risk for man? Concept and strategy of the identification of carcinogens in the environment. In: Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons, Chemistry, Occurrence, Biochemistry, Carcinogenicity. Grimmer, G., ed., CRC Press, Boca Raton, FL, 1-26.

    Grimmer, G., and Pott, F., 1983. Occurrence of PAH. In: Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons, Chemistry, Occurrence, Biochemistry, Carcinogenicity. Grimmer, G., ed., CRC Press, Boca Raton, FL, 61-128.

    Jones, R., 1984. Physical and Mechanistic Organic Chemistry. Cambridge University Press, Cambridge, 94-114.

    James, T. H., 1985. Chemical reaction dynamics in solution. Annual Review of Physical Chemistry, 36: 573-597.

    Lu, G. N., Dang, Z., Tao, X. Q., and Zhang, D. C., 2005. Quantum chemistry study on photolysis activity of polycyclic aromatic hydrocarbons. Environmental Chemistry, 24 (4): 459-462.

    Mekenyan, O. G., Ankley, G. T., Veith, G. D., and Call, D. J., 1994. QSARs for photoinduced toxicity: 1. Acute lethality ofpolycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere, 28: 567-582.

    Reichardt, C., 1990. Solvent Effects in Organic Chemistry. Wiley-VCH, Marburg, 147-181.

    Simkin, B. Y., and Sheikhet, I., 1995. Quantum Chemical and Statistical Theory of Solutions: A Computational Approach. Ellis Horwood, London,1-44.

    Smith, J. H., Mabey, W. R., Bahonos, N., Holt, B. R., Lee, S. S., Chou, T. W., Venberger, D. C., and Mill, T., 1979. Environmental Pathways of Selected Chemicals in Fresh Water Systems: Part II. Laboratory Studies (Interagency Energy- Environment Research Report EPA-600/7-78-074). Environmental Research Laboratory Office of Research and Development, US Environmental Protection Agency, Athens, GA.

    Sun, P. Y., Gao, Z. H., Wang, X. P., Zhou, Q., Zhao, Y. H., and Li, G. M., 2011. Application of a step-by-step fingerprinting identification method on a spilled oil accident in the Bohai Sea area. Journal of Ocean University of China, 10 (1): 35-41.

    Sundberg, R. J., and Carey, F. A., 2007. Advanced Organic Chemistry: Structure and Mechanisms. Springer, New York, 359-376.

    Sarwar, M. G., Dragisic, B., Salsberg, L. J., Gouliaras, C., and Taylor, M. S., 2010. Journal of the American Chemical Society, 132 (5): 1646-1653.

    Wang, Y., Li X. G., Peng, X. W., Tang, X. L., and Deng, X. Y., 2012. Optimization of sample pretreatment for determination of polycyclic aromatic hydrocarbons in estuarine sediments by gas chromatography. Journal of Ocean University of China, 11 (2): 159-164.

    Xia, S. W., Mao Y. P., Xue, Q. Q., and Yu, L. M., 2011, QSAR and molecular design of some quinoline derivatives as antimicrobial. Chemical Journal of Chinese Universities, 32 (10): 2415-2420.

    Xu, X., Li, X. G., and Sun, S. W., 2012. A QSAR study on the biodegradation activity of PAHs in aged contaminated sediments. Chemometrics and Intelligent Laboratory Systems, 114: 50-55.

    Zepp, R. G., and Schlotzhauer, P. F., 1979. In: Polynuclear Aromatic Hydrocarbons. Jones, P. W., and Leber, P., eds., Ann Arbor Science Publishers, Ann Arbor, MI, 141-158.

    (Edited by Ji Dechun)

    * Corresponding author. Tel: 0086-532-66782215

    E-mail: lixg@ouc.edu.cn

    (Received May 12, 2012; revised March 4, 2013; accepted March 22, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    亚洲av成人精品一二三区| 亚洲四区av| 久久久久久久大尺度免费视频| 精品人妻在线不人妻| 欧美日韩亚洲综合一区二区三区_| 91aial.com中文字幕在线观看| 男女高潮啪啪啪动态图| 国产精品一区二区精品视频观看| 人人妻,人人澡人人爽秒播 | 免费观看人在逋| 国产精品一国产av| av在线播放精品| 亚洲三区欧美一区| 国产一卡二卡三卡精品 | 丝袜美足系列| 高清在线视频一区二区三区| 99国产综合亚洲精品| 国产精品无大码| 亚洲国产av影院在线观看| 桃花免费在线播放| 一级毛片 在线播放| 2018国产大陆天天弄谢| 丝袜脚勾引网站| 精品亚洲成a人片在线观看| 国产在线免费精品| 婷婷色综合大香蕉| 亚洲,一卡二卡三卡| 少妇 在线观看| 日韩精品免费视频一区二区三区| 男的添女的下面高潮视频| 自拍欧美九色日韩亚洲蝌蚪91| 丰满少妇做爰视频| 最新的欧美精品一区二区| 美女扒开内裤让男人捅视频| 免费黄色在线免费观看| av视频免费观看在线观看| 国产成人精品久久二区二区91 | 国产一级毛片在线| 欧美激情极品国产一区二区三区| 日韩不卡一区二区三区视频在线| 精品国产国语对白av| 韩国精品一区二区三区| 人体艺术视频欧美日本| 日韩一卡2卡3卡4卡2021年| 丁香六月欧美| 伊人久久国产一区二区| 中文字幕人妻丝袜制服| 色综合欧美亚洲国产小说| 日韩免费高清中文字幕av| 国产乱人偷精品视频| 国产精品.久久久| 一区在线观看完整版| 久久影院123| 免费黄色在线免费观看| 老汉色av国产亚洲站长工具| 日韩不卡一区二区三区视频在线| 又黄又粗又硬又大视频| 久久婷婷青草| 国产极品天堂在线| 最近中文字幕高清免费大全6| 妹子高潮喷水视频| 性高湖久久久久久久久免费观看| 国产成人免费观看mmmm| 老司机深夜福利视频在线观看 | 欧美亚洲日本最大视频资源| 人人妻人人爽人人添夜夜欢视频| 在线观看免费午夜福利视频| 日韩欧美精品免费久久| 男人添女人高潮全过程视频| 丝袜人妻中文字幕| 久久青草综合色| 欧美亚洲日本最大视频资源| 大陆偷拍与自拍| 少妇人妻久久综合中文| 热99国产精品久久久久久7| 搡老岳熟女国产| 久久人妻熟女aⅴ| 亚洲精品乱久久久久久| 最近2019中文字幕mv第一页| 国产一卡二卡三卡精品 | 黄色视频在线播放观看不卡| 国产午夜精品一二区理论片| 街头女战士在线观看网站| 两个人看的免费小视频| 亚洲专区中文字幕在线 | 欧美日韩av久久| 在线观看免费视频网站a站| 久久99一区二区三区| 国产男人的电影天堂91| 中文乱码字字幕精品一区二区三区| 一区福利在线观看| 欧美人与性动交α欧美精品济南到| 日本爱情动作片www.在线观看| 丝袜在线中文字幕| 成人亚洲欧美一区二区av| 亚洲伊人久久精品综合| av女优亚洲男人天堂| 男人添女人高潮全过程视频| 街头女战士在线观看网站| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 国产高清国产精品国产三级| 午夜精品国产一区二区电影| 国产伦人伦偷精品视频| 777米奇影视久久| 老司机影院成人| 午夜免费观看性视频| 亚洲精品自拍成人| 亚洲 欧美一区二区三区| 狠狠精品人妻久久久久久综合| 久久久久久久久久久免费av| 一级毛片 在线播放| 老司机亚洲免费影院| 久久婷婷青草| 最黄视频免费看| 嫩草影院入口| 国产精品久久久av美女十八| 免费高清在线观看视频在线观看| av国产久精品久网站免费入址| 日本91视频免费播放| 国产成人精品久久久久久| 亚洲精品国产一区二区精华液| 最近2019中文字幕mv第一页| 亚洲中文av在线| 色婷婷av一区二区三区视频| 九色亚洲精品在线播放| 18禁国产床啪视频网站| 日本wwww免费看| 日韩免费高清中文字幕av| 国产精品香港三级国产av潘金莲 | 夫妻午夜视频| 女的被弄到高潮叫床怎么办| 免费女性裸体啪啪无遮挡网站| 色综合欧美亚洲国产小说| 一级黄片播放器| 精品人妻熟女毛片av久久网站| 免费在线观看黄色视频的| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美在线精品| 视频在线观看一区二区三区| av国产精品久久久久影院| 丝瓜视频免费看黄片| 欧美日韩亚洲综合一区二区三区_| 欧美日韩亚洲国产一区二区在线观看 | 又大又爽又粗| 校园人妻丝袜中文字幕| tube8黄色片| 满18在线观看网站| 亚洲伊人久久精品综合| 熟女少妇亚洲综合色aaa.| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 999精品在线视频| 精品一品国产午夜福利视频| 久久久久久久久久久免费av| 纵有疾风起免费观看全集完整版| 精品一区二区免费观看| 久久久久精品国产欧美久久久 | 国产成人一区二区在线| 亚洲精品乱久久久久久| 狂野欧美激情性bbbbbb| 午夜福利免费观看在线| 多毛熟女@视频| 亚洲精品国产区一区二| 亚洲国产精品一区二区三区在线| 黄色毛片三级朝国网站| 亚洲av成人不卡在线观看播放网 | 人人澡人人妻人| 亚洲专区中文字幕在线 | 亚洲精品在线美女| 狠狠婷婷综合久久久久久88av| 欧美中文综合在线视频| 免费黄网站久久成人精品| 一级毛片黄色毛片免费观看视频| 综合色丁香网| 成年动漫av网址| 黄片无遮挡物在线观看| av不卡在线播放| 免费看不卡的av| 观看av在线不卡| 夜夜骑夜夜射夜夜干| 亚洲人成网站在线观看播放| 十分钟在线观看高清视频www| 欧美精品亚洲一区二区| 夫妻性生交免费视频一级片| 黑人欧美特级aaaaaa片| 人人妻,人人澡人人爽秒播 | 国产精品久久久人人做人人爽| 满18在线观看网站| 久久久国产一区二区| 在线免费观看不下载黄p国产| 人人妻人人爽人人添夜夜欢视频| 美女主播在线视频| 人人妻人人添人人爽欧美一区卜| 最近2019中文字幕mv第一页| 人体艺术视频欧美日本| 亚洲欧洲精品一区二区精品久久久 | 亚洲精华国产精华液的使用体验| av片东京热男人的天堂| 妹子高潮喷水视频| 一级片免费观看大全| av国产精品久久久久影院| 免费少妇av软件| 两性夫妻黄色片| 老司机深夜福利视频在线观看 | 青春草视频在线免费观看| 午夜av观看不卡| 我要看黄色一级片免费的| 人妻一区二区av| 操美女的视频在线观看| 悠悠久久av| 精品免费久久久久久久清纯 | 国产精品国产三级国产专区5o| 亚洲av日韩精品久久久久久密 | 国产精品女同一区二区软件| 亚洲精品久久成人aⅴ小说| 国产熟女午夜一区二区三区| 欧美精品亚洲一区二区| 免费观看av网站的网址| 亚洲精品久久午夜乱码| 国产午夜精品一二区理论片| 亚洲精品乱久久久久久| 九九爱精品视频在线观看| 精品福利永久在线观看| 丰满少妇做爰视频| 欧美激情极品国产一区二区三区| 国产亚洲最大av| 久久人人97超碰香蕉20202| 交换朋友夫妻互换小说| 亚洲,一卡二卡三卡| 在线观看免费视频网站a站| 久久精品久久久久久噜噜老黄| 777久久人妻少妇嫩草av网站| 大香蕉久久网| 丰满迷人的少妇在线观看| 91成人精品电影| 免费人妻精品一区二区三区视频| 欧美日韩国产mv在线观看视频| 国产成人午夜福利电影在线观看| 可以免费在线观看a视频的电影网站 | 麻豆av在线久日| av国产久精品久网站免费入址| 尾随美女入室| 国产亚洲午夜精品一区二区久久| 波多野结衣av一区二区av| 国产 一区精品| 色婷婷久久久亚洲欧美| 免费高清在线观看日韩| 久久青草综合色| 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 亚洲欧美精品综合一区二区三区| 久久人妻熟女aⅴ| 亚洲精品av麻豆狂野| 午夜福利乱码中文字幕| 亚洲成国产人片在线观看| 蜜桃国产av成人99| 久久99精品国语久久久| 一边摸一边抽搐一进一出视频| 美女高潮到喷水免费观看| 亚洲精品国产色婷婷电影| 日日啪夜夜爽| 日韩伦理黄色片| 久热爱精品视频在线9| 99国产综合亚洲精品| 久久久久久久精品精品| 国产一卡二卡三卡精品 | 国产深夜福利视频在线观看| 国产精品无大码| a 毛片基地| 波野结衣二区三区在线| 久久国产亚洲av麻豆专区| 国产精品久久久人人做人人爽| 成人国语在线视频| 新久久久久国产一级毛片| 国产精品无大码| 水蜜桃什么品种好| 天堂中文最新版在线下载| 91精品国产国语对白视频| 国产精品久久久人人做人人爽| 亚洲一级一片aⅴ在线观看| 欧美亚洲日本最大视频资源| 免费高清在线观看视频在线观看| 五月天丁香电影| 亚洲av电影在线进入| 9色porny在线观看| 亚洲成人国产一区在线观看 | 在线 av 中文字幕| 国产免费现黄频在线看| 国产男人的电影天堂91| 9热在线视频观看99| 亚洲国产成人一精品久久久| 国产毛片在线视频| 男女高潮啪啪啪动态图| 两个人免费观看高清视频| av片东京热男人的天堂| 亚洲国产精品国产精品| 国产国语露脸激情在线看| 啦啦啦啦在线视频资源| 汤姆久久久久久久影院中文字幕| 老司机影院成人| 精品国产露脸久久av麻豆| 日日爽夜夜爽网站| 19禁男女啪啪无遮挡网站| 在线观看国产h片| 日本欧美视频一区| 大码成人一级视频| 搡老岳熟女国产| 操美女的视频在线观看| 成人影院久久| 午夜福利乱码中文字幕| 中文字幕色久视频| 亚洲成人免费av在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 另类精品久久| 成人手机av| 午夜激情av网站| 亚洲欧美一区二区三区黑人| 高清不卡的av网站| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| 国产精品三级大全| 日韩精品免费视频一区二区三区| av网站在线播放免费| 丝袜喷水一区| 日韩中文字幕视频在线看片| 亚洲成人免费av在线播放| 久久这里只有精品19| 久久久久久久大尺度免费视频| 一区二区三区精品91| 久久久久国产精品人妻一区二区| 亚洲欧美精品自产自拍| 我要看黄色一级片免费的| 色网站视频免费| 高清不卡的av网站| 看十八女毛片水多多多| 午夜免费鲁丝| 亚洲精品美女久久久久99蜜臀 | 国产日韩欧美视频二区| 婷婷色麻豆天堂久久| 曰老女人黄片| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 欧美日韩亚洲综合一区二区三区_| 丝袜美足系列| 叶爱在线成人免费视频播放| 丰满少妇做爰视频| av.在线天堂| 午夜福利影视在线免费观看| 在线天堂最新版资源| 王馨瑶露胸无遮挡在线观看| 国产精品av久久久久免费| 91精品伊人久久大香线蕉| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 看免费成人av毛片| 国产成人a∨麻豆精品| 九草在线视频观看| 美女福利国产在线| 黄色一级大片看看| 久久国产亚洲av麻豆专区| 岛国毛片在线播放| 亚洲国产欧美网| 国产在线免费精品| 9191精品国产免费久久| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 久久精品人人爽人人爽视色| 亚洲婷婷狠狠爱综合网| 欧美日韩一区二区视频在线观看视频在线| 无限看片的www在线观看| 大陆偷拍与自拍| 丰满少妇做爰视频| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 啦啦啦 在线观看视频| svipshipincom国产片| 晚上一个人看的免费电影| 久久99一区二区三区| 五月天丁香电影| 人成视频在线观看免费观看| 少妇 在线观看| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| av在线观看视频网站免费| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 日韩中文字幕欧美一区二区 | 久久ye,这里只有精品| 秋霞伦理黄片| 亚洲av电影在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 国产免费现黄频在线看| 嫩草影院入口| 亚洲国产日韩一区二区| 啦啦啦在线免费观看视频4| 一区福利在线观看| 伦理电影免费视频| 人人妻人人爽人人添夜夜欢视频| 一区二区三区四区激情视频| 成人亚洲精品一区在线观看| 我要看黄色一级片免费的| 国产av精品麻豆| 亚洲欧美一区二区三区久久| 在线看a的网站| 777久久人妻少妇嫩草av网站| 国产精品 国内视频| a级毛片黄视频| 欧美在线一区亚洲| 国产精品一二三区在线看| 一区二区三区精品91| 国产一级毛片在线| 日韩制服骚丝袜av| 搡老岳熟女国产| www.精华液| 国产精品久久久人人做人人爽| 一级毛片电影观看| 欧美老熟妇乱子伦牲交| 天美传媒精品一区二区| 精品少妇黑人巨大在线播放| 大片免费播放器 马上看| 一级毛片黄色毛片免费观看视频| 老司机在亚洲福利影院| 成人手机av| 国产欧美日韩一区二区三区在线| av片东京热男人的天堂| 精品视频人人做人人爽| 欧美久久黑人一区二区| 国产一区二区激情短视频 | 人人澡人人妻人| 国产成人精品福利久久| 亚洲欧美清纯卡通| 又粗又硬又长又爽又黄的视频| 亚洲国产看品久久| 搡老乐熟女国产| 老汉色av国产亚洲站长工具| 天天躁日日躁夜夜躁夜夜| 亚洲七黄色美女视频| 9热在线视频观看99| 超色免费av| 婷婷成人精品国产| 国产精品秋霞免费鲁丝片| 十八禁高潮呻吟视频| 亚洲av福利一区| 久久毛片免费看一区二区三区| 国产日韩一区二区三区精品不卡| 岛国毛片在线播放| 欧美 亚洲 国产 日韩一| 久久免费观看电影| 亚洲av综合色区一区| 99热国产这里只有精品6| 91成人精品电影| 国产成人啪精品午夜网站| 久久av网站| 中文字幕av电影在线播放| 叶爱在线成人免费视频播放| 国产黄色视频一区二区在线观看| 丝袜人妻中文字幕| 久久人人97超碰香蕉20202| 国产成人欧美在线观看 | 母亲3免费完整高清在线观看| 天堂俺去俺来也www色官网| 久久久久精品久久久久真实原创| 午夜福利视频在线观看免费| 伦理电影免费视频| 女人久久www免费人成看片| 精品久久久精品久久久| 一级,二级,三级黄色视频| 黄色 视频免费看| e午夜精品久久久久久久| 国产精品香港三级国产av潘金莲 | 欧美另类一区| 亚洲av在线观看美女高潮| 欧美亚洲 丝袜 人妻 在线| 久久精品久久久久久久性| 国产欧美日韩综合在线一区二区| 国产日韩欧美在线精品| 成人18禁高潮啪啪吃奶动态图| 美女高潮到喷水免费观看| 国产精品久久久久成人av| 电影成人av| 悠悠久久av| 中国三级夫妇交换| 国产精品国产av在线观看| 亚洲精品久久午夜乱码| av.在线天堂| 国产亚洲av高清不卡| 日本一区二区免费在线视频| 亚洲国产看品久久| 日本av手机在线免费观看| 免费高清在线观看日韩| 狂野欧美激情性bbbbbb| 操出白浆在线播放| 免费少妇av软件| 精品第一国产精品| 黑丝袜美女国产一区| 成人国产av品久久久| 国产麻豆69| 日本欧美视频一区| 人人妻人人添人人爽欧美一区卜| 欧美日韩一区二区视频在线观看视频在线| 一边摸一边做爽爽视频免费| 极品人妻少妇av视频| 巨乳人妻的诱惑在线观看| 久久久久人妻精品一区果冻| 啦啦啦 在线观看视频| 99久国产av精品国产电影| 国产黄频视频在线观看| 国产乱人偷精品视频| 丰满乱子伦码专区| 人人妻人人澡人人爽人人夜夜| 老司机影院成人| 亚洲色图 男人天堂 中文字幕| 亚洲伊人色综图| 久久久精品94久久精品| 男女无遮挡免费网站观看| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线 | 另类精品久久| 91国产中文字幕| 一边摸一边做爽爽视频免费| av在线观看视频网站免费| 精品国产超薄肉色丝袜足j| 黄片无遮挡物在线观看| 老汉色∧v一级毛片| 国产欧美日韩综合在线一区二区| 熟妇人妻不卡中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品国产精品| 色吧在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久视频综合| 精品视频人人做人人爽| 激情五月婷婷亚洲| 亚洲男人天堂网一区| av国产精品久久久久影院| 国产精品.久久久| 日韩欧美精品免费久久| 免费女性裸体啪啪无遮挡网站| 中文乱码字字幕精品一区二区三区| 男的添女的下面高潮视频| 欧美精品亚洲一区二区| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 男女边摸边吃奶| 精品国产超薄肉色丝袜足j| 如日韩欧美国产精品一区二区三区| 国产亚洲一区二区精品| 日本av免费视频播放| 悠悠久久av| 国产麻豆69| 精品亚洲成a人片在线观看| 国产97色在线日韩免费| 黄片小视频在线播放| 无限看片的www在线观看| 91aial.com中文字幕在线观看| 欧美精品高潮呻吟av久久| 黄色怎么调成土黄色| 狠狠婷婷综合久久久久久88av| 婷婷色av中文字幕| 午夜激情久久久久久久| 国产在线免费精品| 最近的中文字幕免费完整| 性少妇av在线| 亚洲成人国产一区在线观看 | 午夜福利视频在线观看免费| 欧美日韩视频高清一区二区三区二| 亚洲欧美精品自产自拍| 中文字幕制服av| 国产精品欧美亚洲77777| 久久精品人人爽人人爽视色| 一边摸一边做爽爽视频免费| 亚洲成国产人片在线观看| 国产精品二区激情视频| 不卡av一区二区三区| 观看av在线不卡| 久久精品aⅴ一区二区三区四区| 午夜日韩欧美国产| 91国产中文字幕| 国产色婷婷99| av卡一久久| 免费人妻精品一区二区三区视频| 午夜影院在线不卡| 一二三四中文在线观看免费高清| 老鸭窝网址在线观看| 老熟女久久久| 久久人人爽av亚洲精品天堂| 亚洲一码二码三码区别大吗| 日韩制服丝袜自拍偷拍| 国产高清国产精品国产三级| 欧美最新免费一区二区三区| 亚洲国产精品成人久久小说| 街头女战士在线观看网站| 伊人久久大香线蕉亚洲五| 午夜老司机福利片| 亚洲少妇的诱惑av| 欧美少妇被猛烈插入视频| 欧美人与善性xxx| 男男h啪啪无遮挡| 午夜福利在线免费观看网站| 咕卡用的链子| 色精品久久人妻99蜜桃| 丁香六月天网| 亚洲 欧美一区二区三区| 亚洲精品视频女| 国产精品久久久av美女十八| 国产成人免费无遮挡视频| 男女边摸边吃奶| 国产一区有黄有色的免费视频| 丁香六月欧美| 亚洲人成电影观看| 美女中出高潮动态图|