摘 要: 暴漲宇宙也可以通過暴漲場的動能項來實現(xiàn),稱為K-inflation暴漲模型.在暴漲時期,宇宙的能量非常高,引力的效應也比較大.根據(jù)廣義相對論,引力是由時空的幾何來描述的.筆者以時空測不準原理作為出發(fā)點,研究了在非對易時空中的K-inflation模型.結(jié)果表明,在該模型中,所有的擾動模式都產(chǎn)生在視界之內(nèi),并且時空的非對易效應以線性項的形式貢獻到擾動的功率譜指數(shù)中.與實驗觀測比較之后,發(fā)現(xiàn)該模型能夠比較好地符合最新的數(shù)據(jù).
關鍵詞: 暴漲宇宙; K-inflation; 測不準原理; 張標比
中圖分類號: O 412.1 文獻標識碼: A 文章編號: 1000-5137(2014)04-0359-10
暴漲宇宙學[1-3],不僅僅成功地解決了大爆炸宇宙學中的平坦性問題、視界問題、熵問題等等,而且能夠解釋今天的宇宙大尺度結(jié)構(gòu).研究表明,之所以有大尺度結(jié)構(gòu)在宇宙中晚期形成,是因為在暴漲時期,暴漲場(又稱暴漲子)與時空背景場(稱為度規(guī)場)的量子擾動被迅速地拉伸到視界外并停止演化,繼而演化成了經(jīng)典擾動而得以保留下來,最終成為了大尺度結(jié)構(gòu)形成的種子.事實上,暴漲有可能從來都沒有結(jié)束,這一現(xiàn)象稱為永恒暴漲[4-6].通過對宇宙微波背景輻射的觀測,人們可以了解到宇宙在暴漲時期的情形.例如:美國的 Wilkinson Microwave Anisotropy Probe(WMAP)[7] 和歐洲的Planck[8]衛(wèi)星實驗,都得到了非常豐富的信息.
宇宙微波背景輻射中的溫度漲落就是由暴漲場和度規(guī)場的標量模式相互耦合而產(chǎn)生的.不僅溫度漲落的數(shù)據(jù)可以用來限制和區(qū)分現(xiàn)有的暴漲宇宙模型,其他的諸如光子極化的數(shù)據(jù)也同樣可以.于是,很多實驗已經(jīng)將探測光子極化的B-模式作為首要任務.研究表明,只有張量擾動才會對B-模式有貢獻,而標量擾動只對E-模式有貢獻.可以說,探測到了B-模式就等價于探測到了張量擾動,或者說探測到了原初引力波.最近,工作在南極的Background Imaging of Cosmic Extragalactic Polarization實驗組成員公布了他們在最近的3年中收集到的最新數(shù)據(jù)(以下稱BICEP2),并聲稱發(fā)現(xiàn)了原初引力波.這一發(fā)現(xiàn)正是基于他們對擾動B-模式的探測.數(shù)據(jù)顯示[9],張標比被限制在r=0.20+0.07-0.05,并且在7.0σ的置信水平上排除了r=0的可能性.綜合這些數(shù)據(jù),就可以對現(xiàn)在應有盡有的暴漲宇宙模型,包括簡單的混沌暴漲到復雜的多場模型都能加以限制和排除.
在最簡單的暴漲宇宙模型中,一個被稱為暴漲子的標量場驅(qū)動著宇宙加速膨脹.為了能夠使宇宙在早期有足夠長的暴漲時間,這個標量場需要有一個非常平坦的勢能.當暴漲開始的時候,它將從勢能高的地方緩慢地滾向勢能低的地方.這個過程就稱為慢滾暴漲.然而,實現(xiàn)慢滾并不只能依靠平坦的勢能,也可以由動能來實現(xiàn),只不過現(xiàn)在的動能項復雜一些,通常,把這樣一種復雜的動能項稱為非正則動能,而這樣一類模型稱為K-inflation[10-11].比如說快子(tachyon)模型[12-13],Dirac-Born-Infeld(DBI)模型[14],都屬于這一類.
另一方面,廣義相對論被認為是低能有效理論,在暴漲發(fā)生的時候,宇宙的能量標度非常高,可以與大統(tǒng)一甚至普朗克能標相比擬.因此,當涉及暴漲場相關的計算時,需要一些來自于量子引力的適當修正.超弦理論作為量子引力最有希望的候選者之一,應當給出所需要的修正方法.事實上,非微擾超弦(或者M)理論指出,任何一個物理過程,在相互作用距離非常小的時候,應該滿足以下不確定關系:
4 總 結(jié)
本文作者采用與文獻[24-25]中同樣的方法,研究了一類被稱為k-inflation模型的暴漲宇宙模型.通過比較觀測數(shù)據(jù),模型中的參數(shù)λ和N得到了限制,見圖1.利用Planck給出了功率譜幅度,Rs(k=0.002 Mpc-1)=2.215× 10-19[34],還可以估計出暴漲時期的哈勃參數(shù)H*=πrRs/2 ≈4.67×10-5Mpl,從而估計出弦的特征尺度大概在ls~10-30 cm,這個值略大于文獻[25]中得到的值.
參考文獻:
[1] GUTH A H.The inflationary universe:A possible solution to the horizon and flatness problems[J].Phys Rev D,1981,23(347):347-356.
[2] LINDE A D.A new inflationary universe scenario:A possible solution of the horizon,flatness,homogeneity,isotropy and primordial monopole problems[J].Phys Lett B,1982,108(6):389-393.
[3] ALBRECHT A,STEINHARDT P J.Cosmology for grand unified theories with radiatively induced symmetry breaking[J].Phys Rev Lett,1982,48:1220-1223.
[4] FENG C J,LI X Z.Is non-minimal inflation eternal[J].Nucl Phys B,2010,841(1-2):178-187.
[5] FENG C J,LI X Z,SARIDAKIS E N.Preventing eternality in phantom inflation[J].Phys Rev D,2010,82(2):023526.
[6] CAI Y F,WANG Y.Noncommutative eternal inflation possible[J].Journal of Cosmology and Astroparticle Physics,2007,06:022,1-10.
[7] HINSHAW G,LARSON D,KOMATSU E,et al.[WMAP Collaboration].Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:Cosmological parameter results[J].Astrophys J Suppl 2013,208(2):19.
[8] ADE P A R,AGHANIM N,ARMITAGE-CAPLAN C,et al.[Planck Collaboration].Planck 2013 results.XXII.Constraints on inflation[J/OL].arXiv:1303.5082[astro-ph.CO].
[9] ADE P A R,AIKIN R W,BARKATS D,et al.[BICEP2 Collaboration].BICEP2 I:Detection of B-mode polarization at degree angular scales[J/OL].arXiv:1403.3985[astro-ph.CO].
[10] ARMENDARIZ-PICON C,DAMOUR T,MUKHANOV V F.K-inflation[J].Phys Lett B,1999,458(2-3):209-218.
[11] GARRIGA J,MUKHANOV V F.Perturbations in k-inflation[J].Phys Lett B 1999,458(2-3):219-225.
[12] SEN A.Rolling tachyon[J].Journal of High Energy Physics,2002(04),048,1-17.
[13] SEN A.Tachyon matter[J].Journal of High Energy Physics,2002(07),065,1-17.
[14] ALISHAHIHA M,SILVERSTEIN E,TONG D.DBI in the sky[J].Phys Rev D,2004,70(12):123505.
[15] LI M,YONEYA T.D particle dynamics and the space-time uncertainty relation[J].Phys Rev Lett,1997,78(7):1219-1222.
[16] YONEYA T.String theory and space-time uncertainty principle[J].Prog Theor Phys,2000,103(6):1081-1125.
[17] BRANDENBERGER R,HO P M.Noncommutative space-time,stringy space-time uncertainty principle,and density fluctuations[J].Phys Rev D,2002,66(2):023517.
[18] HUANG Q G,LI M.CMB power spectrum from noncommutative space-time[J].Journal of High Energy Physics,2003(6),014,1-6.
[19] TSUJIKAWA S,MAARTENS R,BRANDENBERGER R.Noncommutative inflation and the CMB[J].Phys Lett B,2003,574(3-4):141-148.
[20] HUANG Q G,LI M.Noncommutative inflation and the CMB multipoles[J].Journal of Cosmology and Astroparticle Physics,2003,11,001,1-10.
[21] HUANG Q G,LI M.Power spectra in spacetime noncommutative inflation[J].Nucl Phys B,2005,713(1-3):219-234.
[22] LIU D J,LI X Z.Non-commutative power-law inflation:Mode equation and spectra index[J].Phys Lett B,2004,600(1-2):1-6.
[23] LIU D J,LI X Z.Cosmological perturbations and noncommutative tachyon inflation[J].Phys Rev D,2004,70(12):123504.
[24] FENG C J,LI X Z,LIU D J.Note on Power-Law Inflation in Noncommutative Space-Time[J/OL].arXiv:1404.0168[astro-ph.CO].
[25] 馮朝君,李新洲.新一類基于時空測不準原理的冪律暴漲宇宙[J].上海師范大學學報:自然科學版,2014,43(4):369-377.
[26] GIBBONS G W.Cosmological evolution of the rolling tachyon[J].Phys Lett B,2002,537(1-2):1-4.
[27] KOFMAN L,LINDE A D.Problems with tachyon inflation[J].Journal of High Energy Physics,2002(7),004,1-11.
[28] FAIRBAIRN M,TYTGAT M H G.Inflation from a tachyon fluid[J].Phys Lett B,2002,546(1-2):1-7.
[29] PIAO Y S,CAI R G,ZHANG X M,et al.Assisted tachyonic inflation[J].Phys Rev D,2002,66(12):121301.
[30] LI X Z,HAO J G,LIU D J.Can quintessence be the rolling tachyon[J].Chin Phys Lett,2002,19(11):1584-1586.
[31] LI X Z,LIU D J,HAO J G.On the tachyon inflation[J].J.Shanghai Normal Univ.(Natural Sciences),2004,33(4):29-34.
[32] LI X Z,ZHAI X H.The tachyon inflationary models with exact mode functions[J].Phys Rev D,2003,67(6):067501.
[33] ZHANG H,Li X Z,NOH H.Brane tachyon dynamics[J].Phys Lett B,2010,691(1):1-10.
[34] PIAO Y S,HUANG Q G,ZHANG X M,et al.Nonminimally coupled tachyon and inflation[J].Phys Lett B,2003,570(1-2):1-4.
[35] SILVERSTEIN E,TONG D.Scalar speed limits and cosmology:Acceleration from D-cceleration[J].Phys Rev D,2004,70(10):103505.
[36] CHENG C,HUANG Q G.Constraints on the cosmological parameters from BICEP2,Planck and WMAP[J/OL].arXiv:1403.7173[astro-ph.CO].
[37] ADE P A R,AGHANIM N,ARMITAGE-CAPLAN C,et al.[Planck Collaboration].Planck 2013 results.XVI.Cosmological parameters[J/OL].arXiv:1303.5076[astro-ph.CO].
Abstract: Inflation could be also driven by kinetic terms of the inflaton field,which is called the K-inflation model.During the inflation epoch,one could not neglect gravitational effect since the energy was so much high.According to general relativity,gravity is described by space-time geometry.By considering the space-time uncertainty,it is found that all the modes were created inside the Hubble horizon,and it contributes a linear term in the spectral index of the scalar and tensor power spectral.
Key words: inflation; K-inflation; uncertainty principle; tensor-to-scalar ratio
(責任編輯:顧浩然)