摘 要: 討論了一個與BICEP觀測值相符的G- 暴漲模型.在該模型中,高階與低階拉氏量不會產(chǎn)生相互壓低的效應(yīng),從而伽利略子的各階拉氏量都對結(jié)果產(chǎn)生貢獻(xiàn).在適當(dāng)?shù)剡x取參數(shù)值后,該模型的張標(biāo)比與單場暴漲的結(jié)果有一個很小的修正值.重要的是,這一修正使張標(biāo)比與BICEP觀測值一致.
關(guān)鍵詞: 張標(biāo)比; G-暴漲; 伽利略子
中圖分類號: O 412.1 文獻(xiàn)標(biāo)識碼: A 文章編號: 1000-5137(2014)04-0411-06
0 引 言
修正引力理論一直是引力研究的熱點(diǎn).伽利略子模型[1] 是修正引力的一個重要分支.由于伽利略子模型中運(yùn)動方程最高階只到2階,因此整個理論中不會出現(xiàn)多余的自由度,即BD鬼不會在該理論中出現(xiàn)[2-3].通過非線項的引進(jìn)可以解決vDVZ不連續(xù)性[4].與此同時,可以證明在太陽系尺度,Vainshtein機(jī)制的出現(xiàn)會屏蔽掉高階項的效應(yīng),從而使得該理論在太陽系尺度的牛頓測試仍然成立[5].另外,在宇觀尺度,伽利略子能夠提供一個自加速解[6-7].這些優(yōu)點(diǎn),使得伽利略子在修正引力理論中占有重要的地位.
另一方面,宇宙微波背景觀測證實(shí)了宇宙早期存在一個暴漲階段[8].使得本來只在理論預(yù)言的暴漲理論變成了事實(shí),這不僅大大地推動了宇宙學(xué)的發(fā)展,還讓人們看到了早期引力波的信息.引力波的發(fā)現(xiàn),以及較大的張標(biāo)比,也成為各種修正引力存活的試金石.
2011年,Tsutomu將伽利略子理論應(yīng)用到早期暴漲宇宙時期,并稱之為G-暴漲理論[9-10].由于參數(shù)較多,G-暴漲理論的行為特征很復(fù)雜.本文作者討論了一個特定的G-暴漲模型,給出了它的宇宙學(xué)特性,并計算了相應(yīng)的張標(biāo)比.
參考文獻(xiàn):
[1] NICOLIS A,RATTAZZI R,TRINCHERINI E.The galileon as a local modification of gravity[J].Phys Rev D,2009,79(6):064036[arXiv:0811.2197[hep-th]].
[2] CHARMOUSIS C,GREGORY R,KALOPER N,et al.DGP Specteroscopy[J].JHEP,2006(10):066- [arXiv:hep-th/0604086].
[3] GORBUNOV D,KOYAMA K,SIBIRYAKOV S,More on ghosts in the Dvali-Gabadaze-Porrati model[J].Phys Rev D,2006,73(4):044016.
[4] KOYAMA K,PADILLA A,SILVA F P.Ghosts in asymmetric brane gravity and the decoupled stealth limit[J].JHEP,2009(03):134- [arXiv:0901.0713[hep-th]].
[5] DEFFAYET C,DVALI G R,GABADAZE G,et al.Nonperturbative continuity in graviton mass versus perturbative discontinuity[J].Phys Rev D,2002,65(4):044026 [arXiv:hep-th/0106001].
[6] DEFFAYET C.Cosmology on a brane in minkowski bulk[J].Phys Lett B,2001,502(1-4):199-208 [arXiv:hep-th/0010186].
[7] DEFFAYET C,DVALI G R,GABADAZE G.Accelerated universe from gravity leaking to extra dimensions[J].Phys Rev D,2002,65(4):044023 [arXiv:astro-ph/0105068].
[8] 李新洲,暴漲宇宙與原初引力波[J],上海師范大學(xué)學(xué)報:自然科學(xué)版,2014,43(4):331-342.
[9] KOBAYASHI T,YAMAGUCHI M,YOKOYAMA J.Inflation driven by the galileon field[J].Phys Rev Lett,2010,105(23):231302.
[10] KOBAYASHI T,YAMAGUCHI M,YOKOYAMA J.Generalized G-inflation:Inflation with the most general second-order field equations[J].Prog Theor Phys,2011,126(3):511-529[arXiv:1105.5723[hep-ph]].
[11] FENG C J,LI X Z,LIU D J.Note on power-Law inflation in noncommutative space-time[J/OL].[arXiv:1404.0168 [astro-ph.CO]].
[12] HUANG Q G,LI M.Noncommutative inflation and the CMB multipoles[J].JCAP,2003(11):001-.
[13] LIU D J,LI X Z.Non-commutative power-law inflation: mode equation and spectra index[J].Phys Lett B,2004,600(1-2):1-6.
Abstract: We calculate the tensor-to-scalar ratio in a G-inflation in this paper.In our model,we can avoid the behavior that the contribution of higher order is too much to screen the lower order Lagrangian,or vice versa.Every order Lagrangian of Galileons contribute to the result.Choosing a proper parameter,the tensor-to-scalar ratio of our model is little smaller than the ratio of one field Slow-roll inflation.However,this result can fit much better with BICEP.
Key words: the tensor-to-scalar ratio; G-inflation; Galileons
(責(zé)任編輯:顧浩然)