摘 要: 在冪律暴漲宇宙中,以時(shí)空測(cè)不準(zhǔn)原理作為出發(fā)點(diǎn),提出一種新的計(jì)算模函數(shù)的方法.該方法能夠使時(shí)空非對(duì)易效應(yīng)以線性的形式貢獻(xiàn)到密度擾動(dòng)的譜指數(shù)中.通過分析和比較,發(fā)現(xiàn)這一類新的冪律暴漲宇宙模型能夠預(yù)言一個(gè)比較大的張標(biāo)比,該預(yù)言非常好地符合最新的實(shí)驗(yàn)觀測(cè)結(jié)果.
關(guān)鍵詞: 暴漲宇宙; 時(shí)空; 測(cè)不準(zhǔn)原理; 張標(biāo)比
中圖分類號(hào): O 412.1 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1000-5137(2014)04-0369-09
大爆炸宇宙學(xué)模型雖然成功地預(yù)言了平均溫度大概在2.7 K的宇宙微波背景輻射,但是卻沒有能力解釋為什么宇宙幾乎是均勻和平坦的.事實(shí)上,宇宙微波背景輻射也是非常均勻的,它的不均勻性大概在十萬分之一的數(shù)量級(jí).為了解釋這些現(xiàn)象并最終解決宇宙平坦性等問題,人們提出了暴漲宇宙學(xué)[1-3].經(jīng)過三十多年的研究,人們發(fā)現(xiàn)暴漲宇宙學(xué)不僅僅能夠解決諸如為什么宇宙是平坦的這些問題,而且能夠告訴人們宇宙在其中晚期形成大尺度結(jié)構(gòu)的原因.計(jì)算表明,在宇宙暴漲時(shí)期所產(chǎn)生的量子擾動(dòng)最終會(huì)超出視界,成為經(jīng)典擾動(dòng),并最終成為結(jié)構(gòu)形成的種子.
在最簡單的暴漲宇宙模型中,一個(gè)被稱為暴漲子的標(biāo)量場(chǎng)驅(qū)動(dòng)著宇宙加速膨脹.為了能夠使宇宙在早期有足夠長的暴漲時(shí)間,這個(gè)標(biāo)量場(chǎng)需要有一個(gè)非常平坦的勢(shì)能.當(dāng)暴漲開始的時(shí)候,它將從勢(shì)能高的地方緩慢地滾向勢(shì)能低的地方.在此期間,它的量子擾動(dòng)與背景度規(guī)場(chǎng)擾動(dòng)的標(biāo)量模式耦合在一起,共同決定著宇宙的密度擾動(dòng).同時(shí),度規(guī)場(chǎng)擾動(dòng)的矢量模式?jīng)Q定著原初引力波的能量大小.張量擾動(dòng)與標(biāo)量擾動(dòng)的功率之比則稱為張標(biāo)比.追本溯源,無論是張量擾動(dòng)還是標(biāo)量擾動(dòng),它們都遵從量子場(chǎng)論的基本規(guī)律[4-6].也正是由于宇宙早期的暴漲過程,這些隨著時(shí)間增長的量子擾動(dòng)模式將最終超出視界,成為經(jīng)典擾動(dòng)而遺留下來.通過對(duì)宇宙微波背景輻射的觀測(cè),人們是可以對(duì)這些遺跡進(jìn)行測(cè)量并加以研究的.例如,美國的 Wilkinson Microwave Anisotropy Probe (WMAP)[7] 和歐洲的Planck[8]衛(wèi)星實(shí)驗(yàn).
到目前為止,人們已經(jīng)提出了各種各樣的暴漲宇宙模型,從簡單的混沌暴漲,到復(fù)雜的多場(chǎng)模型,應(yīng)有盡有.盡管現(xiàn)在對(duì)宇宙微波背景輻射的觀測(cè)已經(jīng)達(dá)到了前所未有的精度,但是還是很難確認(rèn)哪些理論模型是正確的,哪些是不正確的.于是,很多實(shí)驗(yàn)已經(jīng)將探測(cè)量子擾動(dòng)的B-模式作為首要任務(wù).研究表明,只有張量擾動(dòng)才會(huì)對(duì)B-模式有貢獻(xiàn),而標(biāo)量擾動(dòng)只對(duì)E-模式有貢獻(xiàn).可以說,探測(cè)到了B-模式就等價(jià)于探測(cè)到了張量擾動(dòng),或者說探測(cè)到了原初引力波.最近,工作在南極的Background Imaging of Cosmic Extragalactic Polarization 實(shí)驗(yàn)組成員公布了他們?cè)谧罱?年中收集到的最新數(shù)據(jù)(以下稱BICEP2),并聲稱發(fā)現(xiàn)了原初引力波.這一發(fā)現(xiàn)正是基于他們對(duì)擾動(dòng)B-模式的探測(cè).數(shù)據(jù)顯示[9],張標(biāo)比被限制在r=0.20+0.07-0.05,并且在7.0σ的置信水平上排除了r=0的可能性.
盡管現(xiàn)在已經(jīng)有了很多暴漲宇宙模型,但是人們對(duì)暴漲場(chǎng)的本質(zhì)還是知之甚少.暴漲發(fā)生在早期宇宙,那時(shí),宇宙的能量標(biāo)度非常高,大概在大統(tǒng)一甚至普朗克能標(biāo)附近.因此,當(dāng)涉及暴漲場(chǎng)相關(guān)的計(jì)算時(shí),需要一些來自于量子引力的適當(dāng)修正.超弦理論作為量子引力最有希望的候選者之一,應(yīng)當(dāng)給出所需要的修正方法.事實(shí)上,非微擾超弦(或者M(jìn))理論指出,任何一個(gè)物理過程,在相互作用距離非常小的時(shí)候,應(yīng)該滿足以下不確定關(guān)系:
參考文獻(xiàn):
[1] GUTH A H.The Inflationary Universe:A Possible Solution to the Horizon and Flatness Problems[J].Phys Rev D,1981,23(347):347-356.
[2] LINDE A D.A New Inflationary Universe Scenario:A Possible Solution of the Horizon,F(xiàn)latness,Homogeneity,Isotropy and Primordial Monopole Problems[J].Phys Lett B,1982,108(6):389-393.
[3] ALBRECHT A,STEINHARDT P J.Cosmology for grand unified theories with radiatively induced symmetry breaking[J].Phys Rev Lett 1982,48:1220-1223.
[4] FENG C J,LI X Z.Is Non-minimal Inflation Eternal[J].Nucl Phys B,2010,841(1-2):178-187.
[5] FENG C J,LI X Z,SARIDAKIS E N.Preventing eternality in phantom inflation[J].Phys Rev D,2010,82(2):023526.
[6] CAI Y F,WANG Y.Noncommutative eternal inflation possible[J].Journal of Cosmology and Astroparticle Physics,2007(6):22,1~10.
[7] HINSHAW G,LARSON D,KOMATSU E,et al.[WMAP Collaboration].Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations:Cosmological parameter results[J].Astrophys J Suppl 2013,208(2):19.
[8] ADE P A R,AGHANIM N,ARMITAGE-CAPLAN C,et al.[Planck Collaboration].Planck 2013 results.XXII.Constraints on inflation[J/OL].arXiv:1303.5082[astro-ph.CO].
[9] ADE P A R,AIKIN R W,BARKATS D,et al.[BICEP2 Collaboration].BICEP2 I:Detection of B-mode polarization at degree angular scales[J/OL].arXiv:1403.3985[astro-ph.CO].
[10] LI M,YONEYA T.D particle dynamics and the space-time uncertainty relation[J].Phys Rev Lett 1997,78(7):1219-1222.
[11] YONEYA T.String theory and space-time uncertainty principle[J].Prog Theor Phys 2000,103(6):1081-1125.
[12] BRANDENBERGER R,HO P M.Noncommutative space-time,stringy space-time uncertainty principle,and density fluctuations[J].Phys Rev D,2002,66(2):023517.
[13] HUANG Q G,LI M.CMB power spectrum from noncommutative space-time[J].Journal of High Energy Physics,2003(6):14,1~6.
[14] TSUJIKAWA S,MAARTENS R,BRANDENBERGER R.Noncommutative inflation and the CMB[J].Phys Lett B,2003,574(3-4):141-148.
[15] HUANG Q G,LI M.Noncommutative inflation and the CMB multipoles[J].Journal of Cosmology and Astroparticle Physics,2003,11:1-10.
[16] HUANG Q G,LI M.Power spectra in spacetime noncommutative inflation[J].Nucl Phys B,2005,713(1-3):219-234.
[17] LIU D J,LI X Z.Non-commutative power-law inflation:Mode equation and spectra index[J].Phys Lett B,2004,600(1-2):1-6.
[18] LIU D J,LI X Z.Cosmological perturbations and noncommutative tachyon inflation[J].Phys Rev D,2004,70(12):123504.
[19] CHENG C,HUANG Q G.Constraints on the cosmological parameters from BICEP2,Planck and WMAP[J/OL].arXiv:1403.7173[astro-ph.CO].
[20] ADE P A R,AGHANIM N,ARMITAGE-CAPLAN C,et al.[Planck Collaboration].Planck 2013 results.XVI.Cosmological parameters[J/OL].arXiv:1303.5076[astro-ph.CO].
Abstract: Based on space-time uncertainty principle,the authors propose a new class of power-law inflation.By using a new method of solving the mode function,a linear term contributes to the spectral index of the power spectra.In this model,it could predict a large tensor-to-scalar ratio,which is well consistent with latest observations.
Key words:inflation; space-time; uncertainty principle; tensor-to-scalar ratio
(責(zé)任編輯:顧浩然)