摘 要: 希格斯(Higgs)粒子是迄今為止發(fā)現(xiàn)的第一個(gè)標(biāo)量粒子.在粒子物理標(biāo)準(zhǔn)模型中,希格斯粒子起到了非常重要的作用.另一方面,在宇宙暴漲時(shí)期,使宇宙加速膨脹的往往是也一個(gè)標(biāo)量場(chǎng),或者標(biāo)量粒子,被稱(chēng)為暴漲子.由于能標(biāo)的不同,希格斯粒子不能直接作為暴漲子,但通過(guò)一些間接的手段,暴漲子卻有可能是希格斯粒子在高能標(biāo)時(shí)的另一種表現(xiàn)形式.本文作者回顧了希格斯暴漲模型,并且著重討論了宇宙學(xué)常數(shù)在暴漲中所起到的作用.
關(guān)鍵詞: 希格斯粒子; 暴漲宇宙; 宇宙學(xué)常數(shù); 張標(biāo)比
中圖分類(lèi)號(hào): O 412.1 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1000-5137(2014)04-0384-07
最近,坐落在南極的BICEP2實(shí)驗(yàn)組觀(guān)測(cè)到了宇宙微波背景輻射中的光子極化B-模式[1].由數(shù)據(jù)分析可知,這一結(jié)果證實(shí)了宇宙的確在早期發(fā)生過(guò)暴漲[2-4].實(shí)際上,在宇宙暴漲時(shí)期,度規(guī)場(chǎng)的張量擾動(dòng)對(duì)應(yīng)著引力波的產(chǎn)生,觀(guān)測(cè)到B-模式也就意味著觀(guān)測(cè)到了引力波,只是這種引力波是在早期宇宙中被激發(fā)的,稱(chēng)為原初引力波.通過(guò)對(duì)B-模式的測(cè)量,能夠估計(jì)出張量擾動(dòng)的幅度,通常人們會(huì)用一個(gè)稱(chēng)為張標(biāo)比的量來(lái)描述它.根據(jù)BICEP2實(shí)驗(yàn)組的報(bào)告,張標(biāo)比被限制在r=0.20+0.07-0.05(68% CL).
在最簡(jiǎn)單的暴漲宇宙模型中,一個(gè)被稱(chēng)為暴漲子的標(biāo)量場(chǎng)驅(qū)動(dòng)著宇宙加速膨脹.為了能夠使宇宙在早期有足夠長(zhǎng)的暴漲時(shí)間,這個(gè)標(biāo)量場(chǎng)需要有一個(gè)非常平坦的勢(shì)能V().當(dāng)暴漲開(kāi)始的時(shí)候,它將從勢(shì)能高的地方緩慢地滾向勢(shì)能低的地方.這個(gè)過(guò)程就稱(chēng)為慢滾暴漲.現(xiàn)在雖然有很多暴漲模型,但是人們對(duì)暴漲子的本質(zhì)還知之甚少.在暴漲場(chǎng)候選者當(dāng)中,希格斯粒子是最佳人選,因?yàn)樗粌H在粒子物理標(biāo)準(zhǔn)模型中起到重要作用,而且是迄今為止人們觀(guān)測(cè)到的第一個(gè)標(biāo)量粒子.希格斯粒子的發(fā)現(xiàn)應(yīng)當(dāng)歸功于工作在歐洲大型強(qiáng)子對(duì)撞機(jī)(LHC)的科學(xué)家與工程師們[5-6].可是,要讓希格斯粒子實(shí)現(xiàn)早期宇宙的暴漲并不是件容易的事情,因?yàn)樗鼰o(wú)法給出正確的密度擾動(dòng)幅度.關(guān)于這點(diǎn),可以反過(guò)來(lái)從標(biāo)量擾動(dòng)的功率譜幅度As來(lái)估計(jì)出暴漲子的質(zhì)量.用一個(gè)混沌暴漲[7]中的平方勢(shì)能V()=m22/2,可得:
4 總 結(jié)
最近,由BICEP2實(shí)驗(yàn)組觀(guān)測(cè)到的宇宙微波背景輻射光子極化的B模式極大地推進(jìn)了早期宇宙和基礎(chǔ)物理的研究.所測(cè)量到的張標(biāo)比r≈0.2在區(qū)分和排除暴漲模型的時(shí)候,顯示了強(qiáng)有力的力量.希格斯粒子是最有希望成為暴漲場(chǎng)的基本粒子,但是它的質(zhì)量mh~O(102) GeV要遠(yuǎn)遠(yuǎn)小于暴漲子的質(zhì)量m~O(1013) GeV.為了解決這一等級(jí)問(wèn)題,需要引入希格斯粒子與引力的非最小耦合或者非正則動(dòng)能項(xiàng).通常,希格斯粒子預(yù)言了一個(gè)比較小的張標(biāo)比,不能很好地解釋BICEP2的結(jié)果.筆者回顧了現(xiàn)有的希格斯暴漲模型,并討論了宇宙學(xué)常數(shù)在暴漲時(shí)期的作用,發(fā)現(xiàn)希格斯混沌暴漲模型在宇宙學(xué)常數(shù)的幫助下不僅可以預(yù)言正確的譜指數(shù)ns≈0.96,較大的張標(biāo)比r≈0.2,而且所對(duì)應(yīng)的e-folding數(shù)在N≈50~60,足夠解決大爆炸宇宙學(xué)中的視界、平坦性等問(wèn)題.
參考文獻(xiàn):
[1] ADE P A R,AIKIN R W,BARKATS D,et al.[BICEP2 Collaboration].BICEP2 I:Detection of B-mode polarization at degree angular scales[J/OL].arXiv:1403.3985[astro-ph.CO].
[2] GUTH A H.The inflationary universe:A possible solution to the horizon and flatness problems[J].Phys Rev D,1981,23(347):347-356.
[3] LINDE A D.A new inflationary universe scenario:A possible solution of the horizon,flatness,homogeneity,isotropy and primordial monopole problems[J].Phys Lett B,1982,108(6):389-393.
[4] ALBRECHT A,STEINHARDT P J.Cosmology for grand unified theories with radiatively induced symmetry dreaking[J].Phys Rev Lett 1982,48:1220-1223.
[5] AAD G,ABAJYAN T,ABBOTT B,et al.[ATLAS Collaboration].Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[J].Phys Lett B,2012,716(1):1-29.
[6] CHATRCHYAN S,KHACHATRYAN V,SIRUNYAN A M,et al.[CMS Collaboration].Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[J].Phys Lett B,2012,716(1):30-61.
[7] LINDE A D.Chaotic inflation[J].Phys Lett B,1983,129(3-4):177-181.
[8] BEZRUKOV F L,SHAPOSHNIKOV M.The standard model higgs boson as the inflaton[J].Phys Lett B,2008,659(3):703-706.
[9] COOK J L,KRAUSS L M,LONG A J,et al.Is higgs inflation dead[J/OL].arXiv:1403.4971[astro-ph.CO].
[10] GERMANI C,KEHAGIAS A.New model of inflation with non-minimal derivative coupling of standard model higgs boson to gravity[J].Phys Rev Lett,2010,105(1):011302.
[11] GERMANI C,WATANABE Y,WINTERGERST N.Self-unitarization of new higgs inflation and compatibility with Planck and BICEP2 data[J/OL].arXiv:1403.5766[hep-ph].
[12] KAMABA K,KOBAYASHI T,YAMAGUCHI M,et al.Higgs G-inflation[J].Phys Rev D,2011,83(8):083515.
[13] KAMABA K,KOBAYASHI T,TAKAHASHI T,et al.Generalized Higgs inflation[J].Phys Rev D,2012,86(2):023504.
[14] KAMABA K,KOBAYASHI T,KUNIMITSU T,et al.Graceful exit from Higgs G-inflation[J].Phys Rev D,2013,88(12):123518.
[15] NAKAYAMA K,TAKAHASHI F.Higgs chaotic inflation in standard model and NMSSM[J].Journal of Cosmology and Astroparticle Physics,2011(2):10,1-9.
[16] NAKAYAMA K,TAKAHASHI F.Running kinetic inflation[J].Journal of Cosmology and Astroparticle Physics,2010,11(9):1-24.
[17] TAKAHASHI F.Linear inflation from running kinetic term in supergravity[J].Phys Lett,2010,693(2):140-143.
[18] NAKAYAMA K,TAKAHASHI F.Higgs chaotic inflation and the primordial B-mode polarization discovered by BICEP2[J/OL].arXiv:1403.4132[hep-ph].
[19] GONG Y.The challenge for single field inflation with BICEP2 result[J/OL].arXiv:1403.5716[gr-qc].
[20] ADE P A R,AGHANIM N,ARMITAGE-CAPLAN C,et al.[Planck Collaboration].Planck 2013 results.XXII.Constraints on inflation[J/OL].arXiv:1303.5082[astro-ph.CO].
[21] AAD G,ABAJYAN T,ABBOTT B,[ATLAS Collaboration],Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC[J].Phys Lett B,2013,726(1-3):88-119.
[22] CHATRCHYAN S,KHACHATRYAN V,SIRUNYAN A M,et al.[CMS Collaboration].Observation of a new boson with mass near 125 GeV in pp collisions ats=7 and 8 TeV[J].Journal of High Energy Physics,2013(6),081-1~117.
[23] 馮朝君,李新洲.暴漲宇宙與宇宙學(xué)常數(shù)問(wèn)題[J].上海師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014,43(4):378-383.
[24] ZHANG J F,LI Y H,ZHANG X.Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2[J/OL].arXiv:1403.7028[astro-ph.CO].
[25] DVORKIN C,WYMAN M,RUDD D H,et al.Neutrinos help reconcile Planck measurements with both Early and Local Universe[J/OL].arXiv:1403.8049[astro-ph.CO].
[26] ZHANG J F,LI Y H,ZHANG X.Cosmological constraints on neutrinos after BICEP2[J/OL].arXiv:1404.3598[astro-ph.CO].
[27] 馮朝君,李新洲.無(wú)窮級(jí)數(shù)單標(biāo)量場(chǎng)暴漲宇宙模型與原初引力波[J].上海師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014,43(4):391-398.
[28] CHENG C,HUANG Q G.Constraints on the cosmological parameters from BICEP2,Planck and WMAP[J/OL].arXiv:1403.7173[astro-ph.CO].
[29] CHENG C,HUANG Q G.Constraint on inflation model from BICEP2 and WMAP 9-year data[J/OL].arXiv:1404.1230[astro-ph.CO].
[30] LI H,XIA J Q,ZHANG X.Global fitting analysis on cosmological models after BICEP2[J/OL].arXiv:1404.0238[astro-ph.CO].
[31] WU F,LI Y,LU Y,CHEN X.Cosmological parameter fittings with the BICEP2 data[J/OL].arXiv:1403.6462[astro-ph.CO].
[32] LIZARRAGA J,URRESTILLA J,DAVERIO D,et al.Can topological defects mimic the BICEP2 B-mode signal[J/OL].arXiv:1403.4924[astro-ph.CO].
[33] HO C M,HSU S D.Does the BICEP2 observation of cosmological tensor modes imply an era of nearly planckian energy densities[J/OL].arXiv:1404.0745[hep-ph].
Abstract: Higgs is the only scalar particle that already observed up to now.In the standard model of particle physics,Higgs plays a very important role.On the other hand,inflation is also driven by scalar field called inflaton.Higgs boson can not be the inflaton since the large hierarchy energy scale of the mass between inflaton and itself.However,by using some indirectly method,inflaton could be another aspect of the Higgs boson.In this paper,the authors review some Higgs inflation models and discuss the role of the cosmological constant during inflation.
Key words: Higgs boson; inflation; cosmological constant; tensor-to-scalar ratio
(責(zé)任編輯:顧浩然)